
A Broker Architecture for Integrating Data Using a Web
Services Environment

K. H. Bennett1, N.E. Gold2, P.J. Layzell2, F. Zhu1, O.P. Brereton3, D.
Budgen3, J. Keane2, I. Kotsiopoulos2, M. Turner3, J. Xu1, O. Almilaji2,

J.C. Chen2, and A. Owrak2
1 Department of Computer Science, University of Durham, Durham, UK, DH1 3LE

{keith.bennett, jie.xu, fujun.zhu}@durham.ac.uk
2 Department of Computation, UMIST, Manchester, UK, M60 1QD

{nicolas.gold, paul.layzell}@co.umist.ac.uk
Department of Computer Science, Keele University, Keele, UK, ST5 5BG

{d.budgen, o.p.brereton}@cs.keele.ac.uk

Keywords: Infrastructure for service delivery, Connecting legacy
applications to services, Service Computing & Applications

Contact Author:
Prof. Keith Bennett
Department of Computer Science, University of Durham, Science
Laboratories, Durham, DH1 3LE, UK.
+44 (0)191 334 1708
keith.bennett@durham.ac.uk

Abstract. The web service protocol stack provides capabilities for loosely
integrating software services but does not provide the higher level support
needed for rapid evolution. An experimental system is described for
integrating the data from autonomous organizations within the UK health
service domain. The results of this experiment have confirmed the need for
an integration layer on top of the web service stack to provide the required
higher level functionality. In this paper, we summarise our progress to date,
and highlight several key research issues of general concern to the web
services field, which have emerged from our prototype system. These are set
in a general context of providing better ways to provide a service-based model
to IT users.

 K. H. Bennett1, N.E. Gold2, P.J. Layzell2, F. Zhu1, O.P. Brereton3, D. Budgen3, J.
Keane2, I. Kotsiopoulos2, M. Turner3, J. Xu1, O. Almilaji2, J.C. Chen2, and A. Owrak2

A Broker Architecture for Integrating Data Using a Web
Services Environment

K. H. Bennett1, N.E. Gold2, P.J. Layzell2, F. Zhu1, O.P. Brereton3, D.
Budgen3, J. Keane2, I. Kotsiopoulos2, M. Turner3, J. Xu1, O. Almilaji2,

J.C. Chen2, and A. Owrak2
1 Department of Computer Science, University of Durham, Durham, UK, DH1 3LE

{keith.bennett, jie.xu, fujun.zhu}@durham.ac.uk
2 Department of Computation, UMIST, Manchester, UK, M60 1QD

{nicolas.gold, paul.layzell}@co.umist.ac.uk
Department of Computer Science, Keele University, Keele, UK, ST5 5BG

{d.budgen, o.p.brereton}@cs.keele.ac.uk

Abstract. The web service protocol stack provides capabilities for loosely
integrating software services but does not provide the higher level support
needed for rapid evolution. An experimental system is described for integrating
the data from autonomous organizations within the UK health service domain.
The results of this experiment have confirmed the need for an integration layer
on top of the web service stack to provide the required higher level
functionality. In this paper, we summarise our progress to date, and highlight
several key research issues of general concern to the web services field, which
have emerged from our prototype system. These are set in a general context of
providing better ways to provide a service-based model to IT users.

1 Introduction

The web service protocol stack (SOAP, WSDL etc) provides capabilities for loosely
integrating software services. Currently, such protocols are limited to providing
communication and basic synchronization between services but do not support the
higher-level functionality needed to enable dynamic and ultra-late binding of services
to form software applications on demand to a specific set of requirements. Over the
last decade, we have been investigating ways to produce highly-evolvable software,
resulting in a service-oriented approach to software construction. This approach
requires far more than the current web service protocol stack provides, specifically, an
integration layer allowing the interpretation of requirements, negotiation of terms,
conditions and price, service failure management (including warranty and redress)
and management of the service supply chain. These issues were identified in early
prototype implementations [8] and have been re-confirmed by our experience of

A Broker Architecture for Integrating Data Using a Web Services Environment

building the prototype described here. The issues we identify provide a roadmap for
the development of the web service stack.

2 Background to Our Research: “Software as a Service”

In the 1990s, the Pennine Research Group (software engineers from the universities of
Durham, Keele and UMIST) together with members of the British Telecom Research
Laboratories undertook a project to consider the future of software over a ten year
timespan. The main findings [8, 9, 10] are expressed in terms of six key themes. Our
approach was to address software from a user perspective, and a summary major
conclusion was that the cost of ownership needs to be reduced. For example, users
were very unhappy with having to evolve, install, and support software (whether
bespoke or shrink wrapped). These disadvantages arise because software is owned,
whereas most users simply require the results from using the software.

Our conclusion was that software needs to move from being supply-side led to
demand-side led; in other words, software becomes something that is used, not
owned. The choice of competitive services within a marketplace is up to the user (or
their applications) based on qualities such as cost, warranty and performance. We
coined the term “software as a service” to describe this (see www.service-
oriented.com). A service-based model is one in which one or more services are
configured to meet a specific set of requirements at a point in time, executed and
disengaged [10]. This view is an example of a demand-led software market in which
software possession and ownership is separated from its use. This allows alternative
services to be substituted between each use of a system, allowing much richer finer-
grained flexibility. The data becomes available on demand and as available without
perturbing the operational systems.

We identified the importance of indirection and ultra-late binding (at the point of
need) in a large-scale distributed system to support this model. This is necessary but
not sufficient. As a simple example, a service application on machine A, wishing to
use a service on machine B, will need to pay for it, and in doing so expect some
obligations in return (such as quality of service, warranty, and performance). Binding
to such information will need to be automatic, without human assistance. Typically,
agreement of such costs will require negotiation between parties. Thus software as a
service involves issues far wider than the simple late binding of services using
standard protocols. Many of the new problems occur in this area, which we call
“terms and conditions”.

Such terms and conditions arise because service based software is being used in a
business environment. It is unrealistic to expect or require that software engineers
invent a whole new environment for doing business according to a whole range of
business models. Instead we expect that existing models will be used, of which there
is of course a vast experience acquired over thousands of years. The contribution will
therefore be to understand how these existing solutions are adapted, represented and
used in the programmatic interfaces offered by service based software. Solutions are
expected to be interdisciplinary, and a group, ISEN, has been set up to foster research
(www.service-oriented.com/isen/).

 K. H. Bennett1, N.E. Gold2, P.J. Layzell2, F. Zhu1, O.P. Brereton3, D. Budgen3, J.
Keane2, I. Kotsiopoulos2, M. Turner3, J. Xu1, O. Almilaji2, J.C. Chen2, and A. Owrak2

During this research, a significant development in web services technology took
place, which has become part of the enabling technology baseline by which part of
our vision for future software could be realised.

Shirky [6] suggests that web services address application program inter-operability.
The most general form involves binding complex programs together from pieces
anywhere in the world. General inter-operability has been tried before, but with
partial success, for example DCOM, Corba, and RMI. With these systems, both the
client and server have to load the system; with web services, the idea is to know
nothing about the “other end” other than what can be communicated via standard
protocols. So WSDL allows the description of a service so that a call for it can be
assembled and invoked from elsewhere. In order to communicate data in a system
independent way, XML is used. A UDDI registry allows service vendors to offer
services, and users to locate and call them using WSDL descriptions published along
with service identification information.

However, these web service technologies are really only the first part of the
solution to more flexible software. At the end of the initial phase of work, our
conclusion was that for web services to be widely used, a good technical solution
alone is insufficient. A major factor in the widespread acceptance of service-based
approaches is to provide an architectural layer beyond the existing web service
technology which provides added-value in terms of a service supply-chain, a services
market and appropriate levels of trust, confidence and importantly, security [11, 12].
Such a layer can be regarded as an integration layer in a services technology stack.

Software has previously been developed, delivered and maintained as a product.
The internet is stimulating interest in software which is instead delivered and used on
demand, because this potentially allows faster and more flexible evolution to meet
changing business needs; there is a much looser coupling with a service based
approach between business requirements and software solution. However, actually
implementing this is far more complex than technical considerations alone would
suggest. For example, service based software needs to be identified and then selected;
this may well require negotiation within a market [7]. The consumer application will
need to have confidence that the service performs as described, and if not, means of
redress are available. Fundamentally, the service model will fail if there is a lack of
trust between vendors and users. Our overall research is therefore directly concerned
with these wider problems.

To test our research findings and to scope the requirements for an integration layer
in the web services stack, we have undertaken a prototype implementation of web
services, addressing a real life problem. We choose, as the prototype application
domain, the issue of integrated health care data. This was a highly appropriate case
study because it combines the need for flexible software (functionality) with issues of
independent, heterogeneous data sources (data) which similarly need the type of ultra-
late binding required by the system’s functionality.

A Broker Architecture for Integrating Data Using a Web Services Environment

3 The Experimental System

3.1 Application Domain

We aim to support decision-making processes where multimodal information is
drawn from a set of heterogeneous, autonomous agencies. The domain of health and
social care has been chosen as it offers practical examples of all the problems for
which we seek technical solutions.

The UK approach is basically imposed, top down, large IT systems which
encompass all the contributing organisations, ranging from general medical
practitioners, through acute hospitals, and include specialist services such as
pathology. Additionally in the UK, the social services are included, because of the
desired aim to produce “seamless” service for the hospital patient who is then
discharged to the care of local social services.

One approach is data warehousing [1] where operational data sources are collected
into a large, centralised data store. This ‘filing cabinet’ approach has the
disadvantages of data duplication, and update issues. Further complications arise
when the underlying data is ‘owned’ by different organisations and is confidential.
Large-scale fully integrated IT systems have failed repeatedly to provide solutions
possibly because these systems were difficult to construct, manage, and evolve.
Therefore, in a rapidly evolving environment alternative solutions have been proposed
to enable adaptation to continuous change and maintenance of the trustworthy
requirements related to ownership of confidential data, whilst enabling the global
view of the distributed data sources.

Primary care practices, hospitals, mental health trusts and community health
services are independent organisations, each with their own information systems and
with strict rules about who may access information. Treatment of a patient will
however require access to all records relevant to the case. Our aim is to explore the
integration of data from many sources, given its often heterogeneous nature, for
example, in terms of such aspects as format, semantics, meaning, importance, quality,
ownership, cost and ethical control.

When information is created, modified, and stored independently, its integration
requires run-time binding on demand. In human-centred management of information,
this role is often performed by a human broker (such as a travel agent), who is able to
integrate information on demand. In this project, we are employing a similar model,
and the purpose of IBHIS (Integration Broker for Heterogeneous Information
Sources) is to create an information broker service that will support the reliable
integration of information held and managed by heterogeneous autonomous agencies.
The potential for this approach can be found in many domains as well as healthcare
(travel, military command & control, entertainment etc.). The project is being
evaluated through the development of a series of prototype brokers and proof-of-
concept healthcare demonstrators.

Brokerage, where distributed, heterogeneous data sources act as a global resource
for the purposes of querying associations between and within sources, allows existing
data sources to continue operational activity on their data and to retain ownership of

 K. H. Bennett1, N.E. Gold2, P.J. Layzell2, F. Zhu1, O.P. Brereton3, D. Budgen3, J.
Keane2, I. Kotsiopoulos2, M. Turner3, J. Xu1, O. Almilaji2, J.C. Chen2, and A. Owrak2

that data. Brokerage builds on both information integration and interoperability in
order to provide mediation to resolve impedance at multiple levels [2].

Potential advantages of a broker approach against fully integrated systems include:
–Supports multiple, independent data sources
–Handles syntactic, semantic and system heterogeneity
–Deals with globally distributed information
–Provides a pathway towards discovery and access of new information resources with
the minimum of human intervention.

The broker seeks to give the user a customised, virtual picture of key information,
when and where it is needed, using with permission data from autonomous systems.
There are different approaches to the problem of integration of heterogeneous
information sources depending on various constraints such autonomy, security, level
of integration, performance etc. Agent based systems, knowledge-based information
brokers, web information retrieval and brokering systems and Federated Database
Systems are all different implementations of the mediated approach. A detailed
survey of such systems is published by Paton et al. [3].

Several mediated systems or information brokers have been applied in the health
domain. WebFINDIT [4] is targeted at medical research in hospitals. Syanpses and
SynEx [5] provide integrated views of patient data from heterogeneous, distributed
information systems using the federated approach.

The health service is a highly complex domain, and for the purposes of our project,
it was decided to focus on three key research areas:

1. The extent to which broker architectures can support the integration of
heterogeneous data to given a single view of data for a patient.

2. How security and privacy should be addressed within a strong ethical
context. Such properties have to be provided with a very strong audit
function.

3. To what extent the evolution of health service IT can be supported.

In order to gain a good understanding and model of the domain, extensive
activities have been undertaken involving health service professionals; these are not
reported here.

3.2 Architecture

Our approach uses a three stage experiment, of which we report in detail on stage (a)
which has been implemented:

a) a federated schema approach using a passive broker with data access
services.

b) a service based approach using a passive broker.
c) a service based approach using an active broker.

A “passive” broker seeks information on demand and offers a customised view of
data. An “active” broker notifies the user of key changes. Our basic concept is that the
user queries IBHIS, and IBHIS interrogates ‘local’ data access services, and coalesces
results. Initially, this is based on statically-bound set-up knowledge of data sources

A Broker Architecture for Integrating Data Using a Web Services Environment

where the frequency of change may be critical; IBHIS uses a traditional federated
schema solution to integration. In the next version, this will be replaced by a broker
which itself is a service and can dynamically locate and bind data sources which are
not compile time fixed. The architecture of the first IBHIS broker is an amalgamation
of FDBMs, ontology use, and service-based software

The service-based model is realised in the first phase architecture by using web
services and open standards and protocols such as Java, SOAP, WSDL and UDDI. At
the same time, the global view of the distributed data is achieved by the creation of
one or more federated schemas according to the user requirements. Data source
registration and schema integration are essentially assumed to occur ‘once-and-for-
all’ at set-up time. Within the Health and Social care domain this is adequate as a
prototype; the possibility of data sources becoming unavailable during periods is
catered for. IBHIS currently operates within and between a relatively small number of
data sources, all of which hold ‘real’ data. In a more realistic model, it is necessary to
design a supply chain, where a hierarchical structure is used, and the potential for one
of the data sources itself to an IBHIS operating in a neighbouring health or social care
authority. In our experiments, only artificial data about imaginary patients is used.

This notion of a ‘meta-IBHIS’ lends itself potentially to a scalable architecture, but
the efficacy of this model across many hundreds of data sources is an area of
investigation.

The users of the IBHIS broker are provided with transparent access to the
heterogeneous, distributed data access services once the set-up phase is complete.
During the set-up, the registration of the users and the underlying data services takes
place. The system (or federation) administrator constructs the federated schema and
resolves all the semantic differences. The data recorded or created during the system
set-up are passed using XML to the Operational System. The architecture of the
IBHIS broker is described below and in Figure 1.

 K. H. Bennett1, N.E. Gold2, P.J. Layzell2, F. Zhu1, O.P. Brereton3, D. Budgen3, J.
Keane2, I. Kotsiopoulos2, M. Turner3, J. Xu1, O. Almilaji2, J.C. Chen2, and A. Owrak2

Figure 1: The IBHIS Broker

3.3 Operational System

The aim of the operational system is to acquire a query from the user, identify access
rights, locate the appropriate information sources and return the results to the user. In
order to provide this functionality, the operational system consists of five
communicating web services and a user interface. The web services interact
according to the following model [13]:

• A data access service advertises its WSDL definition into a UDDI registry
which in our case is integrated in the registry service.

• The client looks up the service’s definition in the registry.
• The client uses information from the WSDL definition to send messages or

requests directly to the service via SOAP.

Access Rule Service (ARS). The ARS is responsible for the initial user
authentication and subsequent authorisation. Within the architecture, the ARS is
primarily concerned with authorising access to the available data access services.
Authorisation to other system resources is performed by the services themselves.

The initial authentication is based around usernames and encrypted passwords.
The user logs onto the front-end, which in turn passes the user’s credentials to the
ARS. The current solution uses role based access control, where each role has its set
of access rights. Much research has been conducted into Role Based Access Control
(RBAC), and specifically into how it can be applied within the Health domain.
However, this work has indicated that RBAC alone was too inflexible and generalised
for use within the system architecture and so a more complex set of user-based access

Access
 Rule Service

Audit Service

System Audits
per Registration

Data Sources
User Profiles

User Audits
per Session

Federated
Query
Audit

Federated
Record
Audit

GUI

IBHIS Set-up
Registry Service

Schema Integration
Service

Ontology ServiceLocal
Data Service

User Profile Set-up
User Setup

Database

Federated
Query Service

Query Decomposer

Query Integrator

Local
Data Service

Database

Federated
Schema Service

Federated Schema

Access Rules

IBHIS
BROKER

A Broker Architecture for Integrating Data Using a Web Services Environment

rules were developed. These, along with the access rights for the corresponding role,
are used to form a user profile. In conjunction with the Federated Schema Service, the
user profile identifies which aspects of the federated schema the user is authorised to
view.

Federated Schema Service (FSS) and Query Service (FQS). The Federated
Schema Service (FSS) keeps the federated schema and all the mappings between the
export schema and the federated schema. The FSS is consulted by the Federated
Query Service during the query decomposition and integration process.

The Federated Schema and the corresponding mappings to the Export Schemas
are created during the set-up of the IBHIS broker.

The FQS is comprised of two sub-modules:
• Query Decomposer: decomposes the federated query into a set of local

queries; this is done in consultation with the FSS.
• Query Integrator: receives the set of local results from the data access

services and it integrates them into a federated record.
The FQS sends the federated query and the federated record to the audit service;

this is comprised of two sub-modules which keep track of every action of IBHIS that
needs to be recreated or audited in the future.

• User Audit (per session): holds information such as: user log-in date, time,
IP, logout, sequence of federated queries, of federated record, of sessions,
etc.

• System Audit (per Registration): holds information about data source (e.g.
registration date and time, intervals of availability, etc) and user setup.

Data Access Service (DAS). The DAS is constructed using web services, but unlike
typical web services, the DAS are data intensive and are responsible for providing
data from their respective sources. The broker administrator implements and describes
the service using WSDL and the Web Services Policy Framework [14] and also
provide the consumer of the service (the FQS) with the following information:

 The data that the DAS provides, and its format
 The domain and functionality related to the data,
 The security requirements for using the service
 Other non-functional characteristics, including quality of service, and cost

The administrator then publishes the description file into the registry service, for
discovery at run-time by the IBHIS operational system. For example, the DASs
themselves may be programmed using different languages, and may access data
sources produced by different vendors or may run on different operating systems, but
the DASs provide a unified way to access the data. This is essential in the UK health
services where data sources derive from many autonomous organisations, and use a
range of different technologies.

When the FQS decomposes the federated query into a set of local queries, the
FQS uses the registry service to look for a corresponding DAS that provides the
required data outputs for each sub-query. It then uses the DAS description to bind
with the data service, which accesses the data source owned by, for example, a local
hospital.

 K. H. Bennett1, N.E. Gold2, P.J. Layzell2, F. Zhu1, O.P. Brereton3, D. Budgen3, J.
Keane2, I. Kotsiopoulos2, M. Turner3, J. Xu1, O. Almilaji2, J.C. Chen2, and A. Owrak2

A detailed study of suitable implementation tools and environments was
undertaken. We are currently using Sun’s Java 2 Platform, Enterprise Edition (J2EE)
and IBM’s Websphere.

The experimental system comprises three databases holding data about imaginary
patients:
–Basic Patient Information (Keele)
–Treatment History (Manchester)
–Further Appointments (Durham)
There are three users with different authorisation levels according to their role.

This first prototype has achieved the following: a substantial application has been
built using web services. Familiarity has been gained with web services toolsets and
environments, providing reassurance on the technology. Extensive understanding of a
highly complex domain has been achieved. The basic idea of a broker has been
implemented.

This prototype has been useful in re-confirming our identification of the major
problems which are discussed further in the next section.

4 Discussion and Results

4.1 Architectural Issues

The prototype implementation represents one particular approach on a spectrum of
static binding to very late dynamic binding. A federated schema structure was
employed, built on component data access services at three sites. This showed that
creating such a high level schema manually from several data access services was
feasible, provided that the number of data access services is small, and the data access
services do not change often. If the approach is to be scaled up, manual integration of
the federated schema (at design time), based on rapidly changing component data
access services is not viable. A clear research problem is to understand better the
trade-offs in achieving late binding (on demand) of data.

4.2 Web Service Protocols

As far as possible, the prototype employed standard web services protocols. The use
of SOAP was successful. The prototype used RPC protocols for client-server
interaction. This proved simple to implement, and offered good performance for
simple calls. On the other hand, it enforced rigid data typing and binding. In
retrospect, the use of document access protocols would have allowed a query to the
data access service to be constructed dynamically. The RPC mechanism forced us to
use artificial methods of parameter transmission using packed strings instead of arrays
(hence requiring an overhead to pack, and then parse).

A Broker Architecture for Integrating Data Using a Web Services Environment

We also found that the tight coupling inherent in RPC calls caused severe problems
during the development of the prototype, as service interfaces changed rapidly. It is
not likely that RPC will provide an adequate mechanism for inter-program service
calls in the face of rapid evolution. Our prototype was able to cope because we
specified the service interfaces in advance. This is a serious restriction, and in
subsequent prototypes we will abandon this and experiment with document
messaging.

4.3 Registry

In the prototype, a UDDI registry was not used; as a result, the broker needed to
know about component data access services and interfaces at design time, although it
still enabled particular data access services to be located and bound in at run time
(given that the broker has a built-in extensive knowledge of the services). Clearly this
does not allow new data access services to be added easily, or permit changes to
existing services. A priority in the next prototype is the addition of a full UDDI type
registry for the support of dynamic data access services. This is a significant research
problem, as most web service experiments are concerned with providing executable
code as a service, not data. For example, it is not clear if the interface to the data
access service should be procedural (perhaps including in the service some business
logic); an alternative is to provide an interface based on SQL.

4.4 Web Services Description

We used WSDL exclusively to describe our web services. This was sufficient to
define adequate descriptions for the prototype, but we do not feel it will be sufficient
to describe the full functional and non-functional attributes necessary for a realistic
service oriented approach. In particular, it does not provide an adequate level of
description of security, versioning, quality of service, and costs. More generally in
the health service environment, we see that ontology-base approaches will be
essential to map between the various schemes of terminology in use; certainly, the
keyword type access of UDDI will be insufficient.

4.5 Development Issues

The three distributed data access services were programmed using different concepts,
at three different sites, on heterogeneous platforms, and based on different data base
management systems.
The project used IBM’s Websphere for the prototype. The services constructed met
the aim of platform and language independence, and we are confident that (following
experiments with GLUE, a second development environment) that implementation
independence should be readily achievable.
We found that Websphere (V5) provided the facilities to implement, test and deploy
web services. The ability automatically to generate WSDL, SOAP and XML saved

 K. H. Bennett1, N.E. Gold2, P.J. Layzell2, F. Zhu1, O.P. Brereton3, D. Budgen3, J.
Keane2, I. Kotsiopoulos2, M. Turner3, J. Xu1, O. Almilaji2, J.C. Chen2, and A. Owrak2

much time. The Concurrent Versions System supported version control for
development distributed across three sites.

4.6 Summary

The use of an integrated development environment saved considerable time, though
there was an inevitable overhead in familiarisation. Otherwise, two central issues have
emerged from our prototype:

1. Potentially, web services can benefit from very late binding in order to
construct, on the fly, a system which is required by the user. On the other hand, the
achievement of dynamic binding is beyond the capabilities of current protocols. The
trade-offs and capabilities on this spectrum of static through to ultra-late binding need
further experimentation and deeper understanding.

2. Much work on web services has concentrated on functional provision. It is
clear that additional problems of description, performance, scale, privacy and level of
abstraction arise with services which focus on data.

5. Wider Issues

Our experience with the IBHIS project has additionally confirmed that many of the
wider issues in service-based software that we have identified in previous work [8, 9,
10] exist for data-oriented service integration as much as for functional service
integration. This section describes these in more detail.

5.1 Supply Chain Formation and Management

The potential issues about supply chain management have been recognised in
component-based software engineering (CBSE) environments. However, most of the
solutions suggested are largely confined to using repositories or documents to indicate
component attributes [15, 16, 17, 18]. Such solutions favour stable user requirements
which are unlike the rapidly changing nature of the user requirements in IBHIS
environments. On the other hand, web services only address the technological issues
of the problem caused by heterogeneity among enterprise applications, middleware,
and components. Web services do not solve the problem of rapidly changing
requirements and the vast dynamics in supply chains (essentially recursive use of web
services) caused by requirement changes.

In a service environment, software services will be procured and assembled from
sub-services or components along supply chains. Therefore, optimising such supply
chains is essential. One question emerges: are the supply chains visible for all
participants in order to extend optimisation and coordination? A negotiation
description language (NDL) provides part of the answer to this question. Information

A Broker Architecture for Integrating Data Using a Web Services Environment

stored in automatic negotiations along supply chains can be very useful for other
participants to adjust their own activities for the purpose of optimising the whole
performance of supply chains. So far NDL is specific to one-to-one negotiation
situations [7, 19]. By expanding the scope of NDL to many-to-many negotiations,
participants can simultaneously obtain information about other suppliers and react
accordingly. More importantly, the information exchanged in negotiations can cover
both technical conformance and other legal, commercial aspects. Such information
will determine the success of online marketplaces in service environments. Successful
negotiation results guarantee not only the conformance of technical requirements but
also the agreement and fulfillment across various non-functional issues such as prices,
terms and conditions.

The central theme of our current research in this area is to combine the aspects of
many-to-many negotiations in NDL and optimize them using techniques such as
Quality Function Deployment [20]. With this approach, a user can go to the
marketplace to post requests for software services and have needs satisfied. Service
providers in the supply chain responsible for the request can procure, assemble, and
deliver their promised service according to agreed price, time duration, or other kinds
of technical or contractual conformances. This approach could allow service providers
to manage their service offerings and the according supply chains in an efficient and
viable way.

5.2 Service Quality Assessment

A new process is needed to address the issue of software quality. This would form a
just-in-time audit agent rapidly to assess the quality of individual software services
prior to system composition. Such a process would need to satisfy all of the usual
characteristics that exist within product quality evaluation, whilst addressing the
specific needs that are essential to the delivery of services. Furthermore, the
development of such a process will allow system brokers and consumers to identify
the important quality features that are relevant to their needs prior to system
composition. We are developing an automated tool, capable of performing quality
assessments on the fly.

We are concerned with two aspects of quality. The first focuses on what attributes
and characteristics of quality can be identified within our “software as a service”
model. The second addresses the measurement of these quality characteristics with
the aim of allowing automatic compatibility assessments of services to take place.

Selecting the ‘best’ service is a complex decision process for clients. The process
requires a large number of quality characteristics to be simultaneously measured and
evaluated. Many of these are related to one another thus may conflict insofar as
improvement in one often results in decline of another (e.g. as usability increases,
security may decrease).

We have devised a quality model linked to the International Standard for Software
Product Evaluation ISO-9126 (see [21]). The model aims to support the automated
evaluation of services prior to service composition.

 K. H. Bennett1, N.E. Gold2, P.J. Layzell2, F. Zhu1, O.P. Brereton3, D. Budgen3, J.
Keane2, I. Kotsiopoulos2, M. Turner3, J. Xu1, O. Almilaji2, J.C. Chen2, and A. Owrak2

5.3 Minimising Composition Time

One factor crucial to the success of our model is the speedy composition and delivery
of services to the customer. Two major factors are:

1. Searching time: the time spent on the process of screening the marketplace to
find the required service’s components.

2. Composition time: the estimated time spent on assembling the combination of
selected components. Composition can be defined as the binding of many services
into new service that is expected to satisfy the user requirements and be ready to run.
Based on that, the composition phase of producing service-based software could be
seen as equivalent to the design phase in traditional software engineering.

In our current composition model, the selection of a service’s components will
depend on the behaviour or functions required while the form or style of the
composition will rely on the communication. Thus, the style of the composition which
will be carried out will consider only the communication (interface, connectors, data
and the relationships) specified between the service’s components. No knowledge of
the internal structure of the service’s components is used to derive the composition.

5.4 Comprehending Service-based Systems

Another aspect of our work is looking at mechanisms, information, and processes for
handling software failure in a service-oriented architecture. This work is at an early
stage but thus far we have only theoretical discussions of how such a failure might be
comprehended.

6 Conclusion

We have described the first stage of an implementation of a service based solution to
integrating heterogeneous independent databases, using a broker architecture. The
IBM Websphere and J2EE systems have been used as the testbed. We have been able
to draw wider conclusions about the appropriateness of our approach for larger scale
systems which include both data and functional services. In terms of the three
research questions posed in 1.1, we have implemented a solution to the first two used
web services. We have not yet addressed the third issue (evolution) and this is now
the focus of our research.

Acknowledgements

The authors would like to thank all members of the IBHIS project and the Pennine
Group for their valuable contributions to this paper. The financial support of EPSRC
through the DIM programme is acknowledged.

A Broker Architecture for Integrating Data Using a Web Services Environment

References

1. Widom, J., Research problems in data warehousing, Proceedings of 4th International
Conference on Information and Knowledge Management, (1995)

2. Kashyap, V. and Sheth, A., Information brokering across heterogeneous digital data: a
metadata-based approach. Boston; London: Kluwer Academic (2000)

3. Paton, N.W., Goble, C.A., and Bechhofer, S., Knowledge based information integration
systems, Information and Software Technology, Vol. 42, No. 5 (2000) 299-312

4. Bouguettaya, A., Benatallah, B., Ouzzani, M., and Hendra, L., WEBFINDIT: An
architecture and system for querying web databases, IEEE Internet Computing, vol. 3, No.
4 (1999) 30-41

5. Grimson, J., Stephens, G., Jung, B., Grimson, W., Berry, D., and Pardon, S., Sharing
health-care records over the Internet, IEEE Internet Computing, Vol. 5, No. 3 (2001) 49-
58

6. Shirky, C., Web services and context horizons. IEEE Computer, September, Vol.35, No. 9
(2002) 98 – 100

7. Layzell, P. J. and A. Elfatatry, Negotiating in Service Oriented Environments. Comm.
ACM. (to appear).

8. Bennett, K. H., Gold, N. E., Munro, M., Xu, J., Layzell, P. J., Budgen, D., Brereton, O. P.
and Mehandjiev, N. Prototype Implementations of an Architectural Model for Service-
Based Flexible Software. Proc. Thirty-Fifth Hawaii International Conference on System
Sciences (HICSS-35), edited by Ralph H. Sprague, Jr. Published by IEEE Computer
Society, CA, ISBN 0-7695-1435-9 (2002)

9. Bennett, K. H., Layzell, P. J., Budgen, D., Brereton, O. P., Macaulay, L., Munro, M.,
Service-Based Software: The Future for Flexible Software, IEEE APSEC2000, The Asia-
Pacific Software Engineering Conference, 5-8 December 2000, Singapore, IEEE
Computer Society Press (2000)

10. Brereton, P., Budgen, D., Bennett, K.H., Munro, M., Layzell, P.J., and Macaulay, L.A.,
The Future of Software: Defining the Research Agenda, Communications of the ACM,
Vol. 42, No. 12 (1999)

11. Yang, E.Y., Xu, J., and Bennett, K.H., A fault-tolerant approach to secure information
retrieval, in Proc. 21st IEEE International Symposium on Reliable Distributed Systems,
Osaka, Oct. (2002)

12. Yang, E.Y., Xu, J., and Bennett, K.H., Private information retrieval in the presence of
malicious faults, in Proc. 26th IEEE International Conference on Computer Software and
Applications (COMPSAC2002), Oxford, Aug. (2002)

13. Vinoski, S., Web services interaction models, part 1: Current practice, IEEE Internet
Computing, vol. 6, No. 3, (2002) 89-91

14. IBM, Microsoft, BEA, SAP, Web Services Policy Framework, http://www-
106.ibm.com/developerworks/library/ws-polfram/, 10 March (2003)

15. Bachman, F., Bass, L., Buhman, C., Comella-Dorda, S., Long. F., Robert, J., Seacord. R,
and Wallnau, K., Volume II: Technical Concepts of Component-Based Software
Engineering, Technical Report, May, Software Engineering Institute, Carnegie Mellon
University (2003) (CMU/SEI-2000-TR-008)

16. Iribarne, L.; Troya, J.M.; Vallecillo, A., Trading for COTS components in open
environments, Euromicro Conference, 2001. Proceedings. 27th, 4-6 Sept (2001) 30-37

17. Ncube, C. and Maiden, N.A., Acquiring COTS software selection requirements, IEEE
Software, Vol. 15, No. 2, Mar-Apr (1998) 46-56

18. Seacord, R., Mundie, D., and Boonsiri, S., K-BACEE: A Knowledge-Based Automated
Component Ensemble Evaluation Tool, Technical Note, Software Engineering Institute,
Carnegie Mellon, December (2000) (CMU/SEI-2000-TN-015)

 K. H. Bennett1, N.E. Gold2, P.J. Layzell2, F. Zhu1, O.P. Brereton3, D. Budgen3, J.
Keane2, I. Kotsiopoulos2, M. Turner3, J. Xu1, O. Almilaji2, J.C. Chen2, and A. Owrak2

19. Elfatary, Ahmed, Service Oriented Software: A Negotiation Perspective, PhD thesis,
Department of Computation, UMIST, UK (2003)

20. Akao, Yoji, Quality Function Deployment: Integrating Customer Requirements into
Product Design, translated by Mazur, G..H. and Japan Business Consultants, Cambridge,
MA. (1990)

21. ISO/IEC 9126-1 Information Technology – Software Product Quality Part 1: Quality
Model, International Standards Organisation (1998)

