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Abstract. We consider the problem of testing whether (a large part
of) a given string X of length n over some finite alphabet is covered by
multiple occurrences of some (unspecified) pattern Y of arbitrary length
in the combinatorial property testing model. Our algorithms randomly
query a sublinear number of positions of X, and run in sublinear time in
n. We first focus on finding patterns of a given length, and then discuss
finding patterns of unspecified length.

1 Introduction

The problem of finding frequent occurrences of patterns in a string comes up in
many areas such as telecommunications, e-commerce, and databases, where the
applications generate long data streams to be analyzed. An example from data
mining is efficient handling of iceberg queries, that is, identifying those objects in
a data stream which occur with frequency over a threshold. In property testing of
strings, testing whether a string consists of back-to-back repetitions of the same
patterns is called periodicity testing. Usually, the efforts to efficiently identify
such trends in data are hampered by the large size of the data, which can be too
large to fit into main memory and to be efficiently analyzable, even by a linear
time algorithm.

In this work, we are interested in detecting frequent repetitions of a pattern
(of any size) in a string of length n in time sublinear in n. In contrast to previ-
ous work, the pattern boundaries are unrestricted, which, while more realistic,
complicates matters. We explore this problem in the combinatorial property test-
ing model ([10, 3]), and first obtain an algorithm which distinguishes between
strings which are mostly covered with occurrences of one pattern of given size k
and those that do not contain a large number of repeated patterns in o(k) time.
We then generalize our result to detecting repetitions of patterns of unspecified
length, in o(n) time. In both cases, if a frequent pattern exists, the algorithm
can implicitly return a (likely approximate) copy of the pattern.

The fact that patterns can occur anywhere in the string means that there
can be a linear number of possible patterns of linear size in a given string,



and comparing them to one another can easily lead to inefficient algorithms.
To handle this, we represent each pattern as a short “sketch” or a “signature”.
However, there can still be a linear number of signatures sharing one location.
To deal with this, we use a sparse representation of our data which is based on
the few locations sampled. We show that this small amount of information is
sufficient to make conclusions about repeated trends in the input stream.

Our Results. We first present an algorithm which, given a string X and a length
k, tests in O(

√
kpolylogk) time if there exists a pattern Y of length k that covers

X (notice that Y is not given); allowing the occurrences of the pattern to overlap.
We say that Y approximately covers an α-fraction of X if there exists a set of
substrings Z = {Z1, . . . , Zj} of X (each of length k) where h(Zi, Y ) ≤ ǫk for
all Zi ∈ Z and at least αn locations of X are covered by some Zi ∈ Z. Here
h(Zi, Y ) is the Hamming distance between Y and Zi. If a pattern of length k
exists that covers all of X , with probability 1−o(1) our algorithm outputs Pass.
If there is no pattern Y of length k that covers an α-fraction of X , α, ǫ ∈ (0, 1),
it outputs Fail with probability 1 − o(1).

Next, we give an algorithm which, given X and k, tests in time O(
√

kpolylogk)
whether there is a string of a length ℓ ∈ [δk, . . . , k] covering an α-fraction of X ;
it outputs Fail if there is no pattern Y of length k that approximately covers
an (1 − β)α-fraction of X , with probability 3/4, with certain restrictions on
α, β and ǫ. We use this variant to test if there is a pattern of any length that
covers an α-fraction of X , or if no pattern exists that approximately covers a
(1 − β)α-fraction of X .

Related Work. Combinatorial property testing was first defined by [10, 3]. For an
overview of results see [9] and the references therein. Two recent related results
testing whether a string is close to periodic are [2, 7]. They assume that the size
of the period is fixed so that position in which the period (corresponding to
“patterns”) appear is fixed, too. This means that it is more or less clear which
positions should be sampled. In our case, since a pattern can be anywhere, we
need to make sure that we have samples in all possible places that a pattern
can be 4. Another related result tests in sublinear time whether two strings have
large edit distance ([1]).

There have also been sublinear space streaming results. Iceberg queries for
identifying objects that appear in more than a fraction of a string are explored
in [6]. Periodicity testing is investigated using sketches in [5] where the running
time is considered in terms of memory accesses. These techniques differ from
ours that they are not bound by sublinear time, but are expected to return more
accurate answers.

2 Preliminaries

Given string X of length n, let X [i] refer to the ith character of X . r = [i : j]
denotes {i, i + 1, . . . , j}, where i and j are called respectively the left and right

4 To achieve this, we use an extra stage of sampling where one of the stages makes
sure that two copies of the same pattern will be correctly aligned.



endpoints of r. X [i : j] denotes the substring of X starting at location i and
ending at j. [n] is short for [1 : n] = {1, . . . , n}.

Given a location i in X , we say that a length k substring (or pattern) Y
“covers”, “contains”, or “appears around” i if and only if Y = X [j : j + k − 1]
such that i ∈ [j : j+k−1]. Here Y only refers to the contents of the substring, and
thus, can be repeated elsewhere in X . We call each such repetition an occurrence.
h(X, Y ) denotes the Hamming distance between X and Y .

3 Finding frequent patterns of given length k

We first consider finding patterns of length exactly k.

3.1 Length exactly k

We now formally define the problem of testing for frequent patterns. Formally,
given a string X of length n and 1 ≤ k ≤ αn, we would like to have an algorithm
with the following behavior.
– If there is a pattern Y of length k which covers all locations of X , then the

algorithm returns Pass with probability 1 − o(1).
– If there is no pattern Y of length k such that a set of substrings Z =

{Z1, . . . , Zj} of X (of length k) exist where h(Zi, Y ) ≤ ǫk for all Zi ∈ Z and
at least αn locations of X are covered by some Zi ∈ Z, then the algorithm
returns Fail with probability 1− o(1).

Note that the occurrences of the pattern can overlap. For a visual intuition on
the Fail condition, consider a scheme to mark an X with respect to a pattern
Y of length k. For j = 1, . . . , n − k + 1, if h(Y, X [j : j + k − 1]) ≤ ǫk then mark
locations X [j], . . . , X [j + k − 1]. In the end, if some X [i] remains unmarked,
then there exists no substring Z of X of length k that covers location i such
that h(Z, Y ) ≤ ǫk. The Fail condition holds if and only if the marking of X
with respect to Y results in at least (1 − α)n unmarked locations for any Y of
of length k.

Consider X = abcabcaabcaabca. Y = abca covers X fully, where the a in
location 4 is covered by two overlapping copies of Y , thus the algorithm should
return Pass. Now let X ′ = abcdbaddacdedbcbe. Substrings abcd, dbad, dacd,
dbcb, cover all but two characters of X ′, and each has Hamming distance 1 to
Y = dbcd; thus the algorithm can return either Pass of Fail. Later, we will show
how our results translate into the non-overlapping case, where our definition of
distance will be equivalent to the usual one.

The approach of randomly choosing a few locations in X and checking
whether there is a pattern which covers all of these locations is not straightfor-
ward to implement in sublinear time, for two reasons. First, even if two random
locations i and j lie in two occurrences of the same pattern, they are likely to be
in different positions within the two occurrences, with k2 possible location pairs.
This hurdle is not present in periodicity testing where the pattern boundaries
are fixed. Second, the fact that locations p1 and p2, as well as p1 and p3 occur
within the same pattern does not imply that p2 and p3 do. Two patterns can
share Θ(k) many patterns of length k; thus, finding one shared by all of the
sample points in o(n) time is nontrivial.



A Three-Stage Sampling Approach We now present our approach which
tackles the above problems in time o(k). To do that, we will use sampling and
keep small summaries of our samples in “signatures”. Let ℓp = Θ(polylogn),

ℓs = Θ(
√

k log log k), ℓt = Θ(polylogn), with large enough constants hidden in
the Θ. Our sampling has three stages, where Stages 1 and 2 obtain primary and
secondary locations and Stage 3 the actual samples.
Stage 1: Construct set P = {p0, p1, . . . , pℓp

}, of primary locations, where each
pi is chosen independently and uniformly at random (i.u.r.) from [n].
Stage 2: For each pi ∈ P , construct set Si of secondary locations, said to be
owned by pi, of the form Si = {si,0, si,1, . . . , si,ls}, 5 where each si,j ∈ Si is
chosen i.u.r. from [pi − k : pi + k]. 6

Stage 3: Construct a sorted list of locations T = t1t2 . . . tℓt
where the ti are

picked i.u.r. from [−2k : 2k] and are in ascending order. Now consider any
secondary location si,j ∈ Si. Obtain samples Ti,j = si,j+t1, si,j +t2, . . . , si,j +tℓt

;
these will be owned by si,j . The elements of Tij are uniformly distributed in
[si,j − 2k : si,j + 2k]; furthermore, the locations of the samples relative to any
secondary location s that owns them is identical across all s (Fig. 1).

string X

3.

distributed around s5,1

T5,2 T5,3 T5,4

“real samples”T5,1, samples owned by s5,1 ∈ S5

according to T ; |T5,1| = ℓt

primary location (say) p5 ∈ P , |P | = ℓp + 1

1.

2. secondary locations s5,j ∈ S5 owned by p5, |S5| = ℓs, i.u.r. from [p5 − k, p5 + k]

Fig. 1. Example for primary location p5; steps (1,2,3) indicate order of selection

Templates and Signatures. We will represent each substring of length k of X with
a short signature. To do this, decompose T into sublists which we call templates,
each of which contains the offsets to obtain samples to form a signature.

Definition 1. A list τ is said to be a template (of T) if for some −2k < i ≤ k+1,
τ , τ is the maximal sublist of T whose elements are in the range [i : i + k − 1].

The following lemma shows templates are large enough.

Lemma 1. Let ℓt = 24c̄ log k for some large enough constant c. With probability
at least 1 − o(1/k) every template consists of at least c̄ log k characters.

Proof. Consider the probability that there exists a j ∈ [−2k : 2k − j + 1] such
that there are fewer than c̄ log k elements in T whose values are in [j : j + k− 1].
To do this, partition the interval [−2k : 2k] into 12 subintervals of length k/3.

5 We will drop subscripts later when they are obvious.
6 If pi < k (pi > n − k) then the area [1 : pi + k] ([pi − k : n]) is sampled.



Any interval [j : j + k − 1] will fully contain such subinterval. The expected
number of elements of T in a subinterval is 2c̄ log k, which is a lower bound
on the expected length of a signature. Using Chernoff bounds (see e.g. [4]) the
probability that a particular subinterval will have fewer than c̄ log k samples is
at most e−c̄ log k = o(1/k). Thus, the probability that at least one subinterval
will have fewer than that many elements is also at most o(1/k).

The next observation holds by symmetry, showing that the sample points are
uniformly distributed over a template.

Observation 1 For an interval r = [i : i + k − 1] for −2k ≤ i ≤ k + 1, given
that the template representing r contains p locations, the set consisting of these
p locations is uniformly distributed in the subsets of size p of {i, . . . , i + k − 1}.

Using the elements of a template as offsets with respect to a secondary loca-
tion to obtain actual samples, we obtain a signature:

Definition 2. Let s = sl,m be a secondary location and τ = ti, ti+1, . . . , tj be a
template representing some interval [u : u + k − 1] for −2k ≤ u < k + 1. The
signature corresponding to τ with respect to sl,m is sigτ (l, m) = X [s + ti], X [s +
ti+1], . . . , X [s + tj ], representing the interval [s + u : s + u + k − 1].

Let T = τ1, τ2, . . . denote the list of all templates of T . Below we show that
there are not too many distinct templates. This imposes an O(

√
k · polylogk)

bound on the total number of signatures generated. The proof is omitted.

Lemma 2. |T | ≤ 2ℓt. Furthermore, the total number of signatures generated
from X from the locations and samples obtained as above is at most 2ℓtℓs(ℓp+1).

Since there are many more intervals of length k than templates, we now build
a succinct representation of their correspondance.

Definition 3. Let τ be a template. Let Q = {i | − 2k ≤ i ≤ k and interval [i :
i + k − 1]induces τ}. The range of τ , r(τ), is [a : b], with a and b as the left and
right endpoints of Q.

The notion of the range of a template extends naturally to the range of a
signature. Let si,j be any secondary location and [a : b] be the range of some
template τ . Then the range of sg = sigτ (i, j), denoted r(sg), is [a+si,j : b+si,j ].
We observe below how to compute the range of a template (the range of a
signature is computed similarly). Let t0 = −2k − 1 and tlt+1 = 2k + 1.

Observation 2 Let τ = ti, ti+1, . . . , tj be a template. Then, r(τ) = [max{ti−1+
1, tj − k + 1} : min{ti, tj+1 − k}].

The Basic Sampling Algorithm Our algorithm consists of two phases. In
the initialization phase we construct data structure D with signatures related to
the first primary location, p0. In the next phase we compare signatures of other
primary locations, to those already considered. If we identify a pattern which
occurs around all our primary locations, we return Pass. In what follows, let c
be a sufficiently large constant.



Initialization Phase:

Obtain sets P, S of primary, secondary locations, T of offsets, and T of templates
If there exists a template τ ∈ T with less than c log k sample points return Fail

Set D = φ; G = φ;
For each secondary location s0,i for 1 ≤ i ≤ ℓs and each template τ ∈ T

sg = sigτ (0, i)
let r = r(τ ) ∩ [p0 − s0,i − k + 1 : p0 − s0,i]
R = {r}
if sg does not exist in D, insert < sg,R > in D;
otherwise let R′ be the range of the entry found in D for sg

change the range of the entry for sg in D to R′ ∪ R

G = G ∪ R

The operation taking intersection of the ranges ensures that substrings which do
not intersect with p0 are not considered7.

Iterative Phase:

For m = 1 to ℓp do
D′ = φ; G′ = φ;
Fill out D′ with signatures around pm as D was filled above for p0

For each signature sg in D′ with range R

If sg exists in D with range R′, G′ = G′ ∪ R

G = G ∩ G′

Output: If D 6= φ return Pass, otherwise return Fail.

Data Stuctures. Data structures D and D′ store modified signatures and their
ranges. A modified signature is obtained (from, say, sg = sigτ(i, j)) tagging
sg with a prefix, namely the smallest index in τ . This ensures two matching
(modified) signatures will come from the same template. Each node contains
a signature and its current range set R, representing the (candidate) frequent
substrings which have this signature. Both D, D′ and R can be implemented
by using any standard data structure that supports linear time construction
and logarithmic time search and updates, as well as constant time prev and
next operations. G and G′ store ranges in a similar way. Inserting a range into
R can take linear time due to the deletions of small ranges during merging.
The deletion of a range can be charged to its insertion, maintaining logarithmic
amortized insertion and deletion times. The union and intersection operations
all are performed in logarithmic time per range.

Analysis of the Algorithm

Theorem 3. Let X be a string of length n and parameter k be such that 1 ≤
k ≤ αn. Let ℓp = c · log k, ℓs = c′

√
k log k and let ℓt = 24c̄ log k with sufficiently

large constants c, c′, c̄.

(a) If there is a pattern Y of length k that covers 100% of X, then the algorithm
returns Pass with probability at least 1 − o(1).

7 When we take a union of ranges, ranges which touch or overlap are merged.



(b) If there is no pattern Y of length k such that at least αn characters of X
can be covered by substrings Z1, . . . , Zw (of length |Y |) where h(Zi, Y ) ≤ ǫk
then the algorithm returns Fail with probability at least 1 − o(1).

The algorithm runs in O(
√

kpolylogk) time and space.

Proof. We start with the proof of Part a. The runtime analysis is submitted in
this short version.

(a): If the Pass condition is satisfied, we can get an outcome of Fail if one the
two following cases happens.
(i) For some pi, we do not have a pair of “well aligned” secondary samples s, s′

belonging to p0 and pi respectively. By assumption, we have a copy of a string
Y covering p0 and one covering pi. To detect that these two copies are identi-
cal, we need to get identical signatures from them, for which we need to have
secondary locations s, s′ with identical relative locations w.r.t. the first and the
second copy of Y respectively. By the birthday paradox (see [8], Page 45), the
probability that we will not have such a “well aligned” pair of secondary loca-

tions for one particular pi is at most e−ℓs(ℓs−1)/2k = e−(c′2k log k−
√

c′k log k)/2k ≤
e−(c′2k log k)/4k ≤ k−(c′)2/4 for c′ ≥ 2

√
c + 1. Using the union bound, the proba-

bility that this situation might arise for some pj is 1/k.

(ii) We get a Fail answer due to a signature which is smaller than the thresh-
old. By Lemma 1 this can only happen with a probability of o(1). Thus, the
probability of an incorrect Fail answer is at most o(1).

(b): If the Fail condition is satisfied, a Pass can be returned as as a result of
two events, analyzed below.
(i) Choice of primary locations: Call two substrings of size k Z1 and Z2 similar if
h(Z1, Z2) ≤ ǫk. With the Fail condition, a small number of the primary locations
p1, . . . , pℓp

may be covered by substrings which are similar to one particular
substring around p0. p0 is covered by at most k different substrings of length k;
WLOG consider Y = X [p0 − k + 1 : p0]. Due to the Fail assumption, marking
X w.r.t. Y will leave at least (1−α)n positions unmarked. The probability that
a fixed primary location will fall on a marked position for a fixed string Y then
is at most 1 − α.
(ii) Unlucky choice of templates: The signatures for two substrings Y and Y ′

can be identical even if Y and Y ′ differ in more that ǫk locations. This is a
problem only if the signatures are at least c̄ log k characters long, since otherwise
the algorithm automatically returns Fail. (Note that for a match of signatures
to be found, the two signatures must be generated from the same template,
which guarantees that the two substrings are being compared at corresponding
locations.)

Note that, due to how the signature of Y has been picked, the second state-
ment of Lemma 1 and the bound on the size of a signature, the samples in the
signature of Y correspond to a uniformly chosen subset of c̄ log k samples from
Y . Assume that the signature for Y ′ has been obtained from the same tem-
plate as that of Y (the opposite of this only helps us). For the two signatures



to match, none of the samples in the signatures must be from locations where
Y and Y ′ differ. Since Y and Y ′ are not similar, the probability of this is at
most ǫc̄ log k ≤ 1/k3 . For any pair of primary locations p0 and pi we compare
at most ℓ2

s · 2ℓt signatures with each other (see Lemma 2). The probability to
find identical signatures for a pair of primary locations p0 and pi is at most
(ℓ2

s · 2ℓt) · 1
k3 ≤ 1

k . Since, given p0, there are at most k possible choices for Y , the

probability of a false negative/false positive is at most k ·
(

(1 − α) + 1
k

)ℓp ≤ o(1).

We now present a lemma relating the result with overlapping patterns to
non-overlapping patterns. The proof is omitted.

Lemma 3. If αn characters of a string X of length n are covered by overlapping
patterns of length k, then at least αn/2 characters are covered by non-overlapping
patterns.

3.2 Length approximately k

In this section we show how to test if any pattern of length in the range [δk : k]
for constant δ < 1 occurs over a large fraction of a given string X . We first
develop a high level algorithm similar to that in Section 3.1. Later, we will use
this algorithm to find out if there is any pattern (of any size) which occurs
frequently in X .

We define our modified algorithm in terms of its differences from the algo-
rithm in Section 3.1. First, a template is now defined as the maximal sublist of T
whose elements represent a range [i : i+ δk−1] (see Definition 1). Consequently,
a signature now spans an area of size δk.

The second change is in our data structures. In our previous algorithm, to
identify a pattern as frequent, we confirmed that it occurred around all our pri-
mary locations. Here, we will check that a pattern occurs around a large number
of primary locations. To count the occurrences of patterns around primary loca-
tions, we replace D with DR, described below. In the new algorithm, at the end
of the iterative section, rather than taking an intersection of the ranges (along
with signatures) found for the new pm with the existing candidates ranges in
D, we now simply add the new ranges found to DR. (Which keeps track of how
many times a range has been added). At the end, if there is a particular pattern
that occurs around many of the primary locations, it will be witnessed by DR
that the signature and range representing the pattern have a large count (one
for each occurrence around a primary location).

The algorithm outputs Pass if there is a signature and corresponding range
(thus, a pattern) found around at least αδℓp primary locations, for some con-
stants α, δ < 1, according to the count obtained from DR.

Data Structure for the Modified Algorithm. We use a data structure DR to store
ranges in terms of their endpoints. DR is, like D, a standard data structure. Each
node contains three fields: a value for an endpoint of a range, a count tracking
the times that an endpoint has been encountered, and a one bit field containing
the values left or right to qualify an endpoint. Here one can insert a range in



logarithmic time, output how many times each (sub)range has been inserted in
linear time for all of the ranges. For instance, if [2 : 8] and [6 : 14] have been
inserted, DR has value 1 for [2 : 5] and [9 : 14], and 2 for the intersection, [6 : 8].

To insert a range [a, b], we first look for a in DR. If it is not found, we insert
(a, left, 1) into DR. If a exists and the endpoint bit shows left, we increment
the count field for that entry; if the endpoint bit shows right we decrement the
count. We treat b similarly: if the value is not found, we insert (b, right, 1). If an
entry exists and the endpoint is right, we increment the count; if the endpoint is
left, we decrement the count. If at any point the count at a node reaches zero,
we delete the node.

To obtain a count of the ranges, we use a range counter (initially set to 0),
starting from the smallest value in DR and following the next pointers. For every
node we see with endpoint left the we increment the range counter by the count
in that node; for every node with endpoint right we decrement by the count
in that node. The value of the counter between two nodes in DR represents
how many times the range delimited by the values in those two nodes has been
inserted.

Analysis of the Algorithm In this section we will prove that the algorithm
works correctly. First we show that whenever there is a pattern of length k
covering an α-fraction of the string, then there is a pattern of length δk covering
an αδ-fraction. The proof is omitted.

Lemma 4. Let α ∈ (0, 1). Let X be a string of length n. Let δ ∈ (0, 1).

(a) Whenever there exists a pattern of length ℓ with δk ≤ ℓ ≤ k that covers at
least an α-fraction of C, then there also exists a pattern of length δk that
covers at least an (αδ)-fraction of the string.

(b) Whenever there exists a pattern Y of length ℓ with δk ≤ ℓ ≤ k such that at
least an α-fraction of X can be approximately covered by substrings Z1, . . . , Zj

(of length |Y |) where h(Zi, Y ) ≤ ǫk, then there also exist a pattern Y ′ of
length δk and substrings Z ′

1, . . . , Z
′
j, such that least an (αδ)-fraction of the

string can be covered by the Z ′
1, . . . , Z

′
j with h(Z ′

i, Y
′) ≤ ǫ′δk where ǫ′ = ǫ/δ.

Theorem 4. Let k ≥ 100. Let α ∈ [45 , 1), β ∈ (0, 1) with α(1 − β) ≤ 2
3 . Let

δ = 40
41 . Let X be a string of length n. Let ℓp = c · log k, ℓs = c′

√
k log k and let

ℓt = c̄ log k for large enough constants c, c′, c̄.

(a) If there is a pattern Y of length ℓ with δk ≤ ℓ ≤ k that covers an α-fraction
of X, then the algorithm returns Pass with probability at least 3/4.

(b) If there is no pattern Y of length ℓ with δk ≤ ℓ ≤ k such that at least an
α(1−β)-fraction of X can be covered by substrings Z1, . . . , Zj (of length |Y |)
where h(Zi, Y ) ≤ ǫk then the algorithm returns Fail with probability at least
3/4.

The algorithm runs in O(
√

kpolylog k) time and space.

Proof. (a) We can get a Fail answer if one of the following three cases happen.
(i) For some pi, we do not have a pair of “well aligned” secondary samples s and
s′ belonging to p0 and pi respectively. Using the birthday paradox we can show



that the probability that there exists a primary location that we can not align
to p0 is 1 − o(1).

(ii) We get a Fail due to a signature which is too small. Lemma 1 shows that
this will only happen with a probability of o(1).

(iii) We get a Fail because not sufficiently many of our primary location posi-
tions fall into the pattern. Using Lemma 4, the probability that a fixed primary
location does hit the occurrence of the pattern is at least αδ, thus p0 will not
be in the pattern with a probability of 1 − αδ. From the remaining ℓp primary
locations, expected αδℓp samples will fall into an occurrence of the pattern. Us-
ing Chernoff bounds from [4], we can show that the probability that fewer than
(1−γ)·αδℓp of p1, . . . , pℓp

fall within an occurrence of the pattern is at most 1/k.
We can make γ a constant as close to zero as we wish by making the constant c
(the coefficient of log k in ℓp) large enough.

Putting things together, the probability that the algorithm outputs Fail in
the Pass case is is most o(1) + (1 − αδ) + 1/k = o(1) + (1 − (40/41)α) + 1/k =
o(1) + (1/41)α + 1/k ≤ 1/4 for k a large enough constant.

(b) We now consider the probability of a Pass answer if the Fail condition is
satisfied. Notice that our algorithm now allows for finding patterns (of length
between δk and k) that actually do not contain primary locations. As we choose
secondary locations within a ±k radius around primary locations, a primary
location may have a distance of up to (1−δ)k from an endpoint of an occurrence
of the pattern, and still be able to identify the pattern as such. We refer to these
regions of size (1 − δ)k to the left and to the right of an occurrence as extra
regions.

Consider the modification of the marking game from Section 3.1, that marks
all locations that allow for identifying occurrences of the pattern Y , by marking
both the occurrences of Y itself, as well as all the corresponding extra regions.
It is easy to see that if there does not exist a pattern of length ℓ with δk ≤ ℓ ≤ k
that covers an α(1 − β)-fraction of X , the modified marking scheme will mark
at most α(1 − β)n + (α(1 − β)n/δk) · 2(1− δ)k = α(1 − β)n · (2/(40/41)− 1) =
α(1−β)n·(1+1/20) locations. The first term, α(1−β)n, is an upper bound on how
much the actual pattern can cover, whereas the second term is an upper bound
on the number of occurrences of the pattern, multiplied with the size of the extra
regions (of which there are two for every occurrence). Let µ = α(1−β)

(

1 + 1
20

)

,
i.e., the coefficient of n in the above expression.

Fix an occurrence Y of length δk that is identifiable by p0, i.e., p0 is contained
in either Y itself, or in one of the two extra regions around Y . Notice that there
are k + 2(1 − δ)k = (3 − 2δ)k many choices for Y . There are two cases that let
the algorithm find a pattern between p0 and some pi

(i) Unlucky choice of primary locations: too many of the primary locations
p1, . . . , pℓp

may be covered by substrings which are similar to Y . Hence, the prob-
ability that a primary location is close enough to an occurrence of the pattern
Y is at most µ (as defined above).

(ii) Unlucky choice of templates: The signatures for two substrings Y and Y ′

can be identical even if Y and Y ′ differ in more that ǫ′k locations (see Lemma



4, part (b)). Similar to Theorem 3, we can show that in this case the probability
to find identical signatures for a pair of primary locations p0 and pi for i ∈
{1, . . . , ℓp} is at most 1/k.

Similar to the proof of Theorem 3 we can argue that the probability to
find identical signatures for a pair of primary locations p0 and pi is at most
µ + 1/k for a fixed pattern Y . Hence, the expected value for the counter of Y is
(µ + 1/k) · ℓp. Using Chernoff bounds [4], it is easy to show that the probability
that the algorithm finds more than (1 + γ′)(µ + 1/k)ℓp copies of Y , is at most
1/k3. Again, we can obtain a (constant) γ′ as close to zero as we wish by choosing
a sufficiently large value of c.

For the Pass and Fail case to be distinguishable, we need (1 + γ′)(µ +
1/k) = (1 + γ′)(α(1− β)(1 + 1/20)+ 1/k)+ λ ≤ (1− γ) ·αδ for some (constant)
λ > 0. Choose c large enough such that (1 + γ′) ≤ 100

99 . Since k ≥ 100, (1 +
γ′)(α(1−β)(1+1/20)+1/k) ≤ 71/99. Furthermore, we can choose (1−γ) ≥ 41

42 ,
and thus (1 − γ)αδ ≥ 41·4·40

42·5·41 = 32
42 = 16

21 . Therefore, we indeed have a gap of
λ = 16

21 − 71
99 = 31

693 .
Since there are at most k + (1 − δ)k = (2 − δ)k possible choices for Y , the

probability of a false negative/false positive is at most (2 − δ)k · 1
k3 = o(1).

Using several runs of the algorithm together with simple majority vote it is
easy to strengthen the results such that the algorithm gives the right answers
with a polynomial small probability. In the following we refer to this algorithm
as the reliable version of the algorithm that finds variable length patterns. The
runtime is still O(

√
kpolylogk).

Note that the algorithm can be easily modified to answer Pass if, say, x
percent of the string is covered with a pattern, and Fail if less than x − α
percent of the string are covered with a pattern.

4 Finding frequent patterns of unspecified length

In this part we will use the reliable version of the algorithm that finds variable
length patterns in order to search for all patterns that cover most parts of the
string. The new algorithm works in log1/δ n rounds. In round i (1 ≤ i ≤ log1/δ n),

we search for patterns of length ℓ with δin ≤ ℓ ≤ δi+1n.
The algorithm works on an output table which has an entry for every i with

1 ≤ i ≤ log1/δ n. It writes Pass (Fail) in position i of the array if the algorithm
outputs Pass (Fail) in round i. We can prove the following Theorem.

Theorem 5. Use the same definitions as in Theorem 4 and run the modified
algorithm for Θ(log n) times per round. Furthermore, fix δ < 1 and choose r
such that δr ≥ 100.

(a) For every i ≤ r such there exists a pattern Y of length ℓ with δi+1n ≤ ℓ ≤ δin
that covers an α-fraction of X, the algorithm writes a Pass into position i
of the output array with a probability of 1 − n−1.

(b) For every i ≤ r such there exists no pattern Y of length ℓ with δin ≤ ℓ ≤
δi+1n such that at least an α(1−β)-fraction of X can be covered by substrings



Z1, . . . , Zj (of length |Y |) where h(Zi, Y ) ≤ ǫk the algorithm writes a Fail

into position i of the output array with a probability of 1 − n−1.

The algorithm runs in O(
√

kpolylogk) time and space.

Proof. The proof follows directly from Theorem 4. The array has o(n) entries
and for every i the algorithm answers Pass (Fail) correctly with a probability
of 1 − n−2.

5 Conclusions

It is also possible to define an algorithm for which a constant number of primary
locations is sufficient, rather than O(log k) as in the previous sections. However,
since “nothing is for free” there is a bigger gap in the pattern length between
the Pass and Fail cases. Notice that for our algorithms a constant number of
primary locations is not enough since we essentially search for the k possible
patterns of length k that contain the primary location p0. This means that, for
a fixed pattern Y which includes p0, the probability that all primary locations
are contained in the same pattern has to be at most 1/k for the Fail case. Since
the probability that a fixed primary location is contained in a fixed pattern
(not a fixed occurrence of a pattern) is constant, we need log k many primary
locations. This algorithm will be presented in the full version. Unfortunately,
it is in general not possible to determine the longest pattern occurring in the
string, whilst guaranteeing a probability for correctness of the answer, using our
model. See the full version of this paper for a more detailed discussion
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