
Tree Resolution proofs of the Weak Pigeon-Hole Principle 

Stefan Dantchev 1)2 Sgren Riis2 
~BRICS * 

University of Aarhus 
2Dept. of Computer Science 

Queen Mary, University of London 
dantchev @dcs.qmw.ac.uk smriis @ dcs.qmw.ac.uk 

Abstract 

We prove that any optimal tree resolution proof of 
PHP," is of size 2R(n'ogn),  independently from m, even 
if it is in3tzity. So fac only a 2n(n)  lower bound has been 
known, in the general case. We also show that an): not 
necessarily optimal, regular tree resolution proof PHP," 
is bounded by 2°(n10g ml .  To best of our knowledge, this is 
for the first time, the worst case proof complexity is consid- 
ered. Finally, we discuss possible connections of our result 
to Riis' complexity gap theorem for  tree resolution. 

1 Introduction 

Pigeon-Hole Principle ( P H P )  is probably the simplest 
and at the same time the most widely used combinatorial 
principle. In its classical formulations, i t  states that there is 
no injective map from a finite m-element set to a finite n- 
element set if 711 > n. PHPA" is very intuitive for the hu- 
man way of thinking, and it  is also easily provable within set 
theory.'This is however not the case for some propositional 
proofsystems. In his seminal paper [6], Haken showed that 
any resolution proof of PHPc+' is of size 2"("). His proof 
has been simplified and generalised in [ 161, [4], [ 2 ] ,  [I]. For 
quite a while, the best known result had been a 2R(n2/m) 
lower bound on any resolution proof of PHP,", thus hav- 
ing left the case m = R (n2/ log n )  as an important open 
problem in resolution proof complexity. A partial progress 
had been made in [4], [9], [13], where lower bounds for 
some restricted kind of resolution have been proven. Re- 
cently, a 2"(7L') lower bound on any regular resolution proof 
of PHPF has appeared in [9]. Shortly after that, the prob- 
lem has finally been solved in [ 121 , where the latter result 
has been extended to general, DAG, resolution. 

In the paper, we consider tree resolution. Even though 
it  is one of the weakest propositional proof system, studied, 

'Basic Research I n  Computer Science, Centre of the Danish National 
Research Foundation 

the exact complexity of tree resolution proofs of PHP," 
has not been known so far. A 2"(n) lower bound was 
shown in [3], whereas one can construct only a 2°("'09n) 

tree proof by "unfolding" the 2O(") DAG resolution proof 
given in the same paper. A 2°("'0gn) lower bound has been 
proved in [7 ] ,  but only for ordinary pigeon-hole principle, 
i.e. PHP;+l. 

The first contribution (section 3) of our paper is closing 
the gap. We prove a 2"(n'ogn) lower bound on any tree 
resolution proof of PHP,", independently from m, even 
if it is infinity. It is tight up to a constant factor in the ex- 
ponent or, in other words, up to a polynomial transforma- 
tion. As a consequence, we get a super-polynomial separa- 
tion between DAG and tree resolution. We should however 
note that much stronger, almost optimal, such separation is 
known for another kind of tautologies. 

The second contribution (section 4) of the paper is con- 
sidering the worst-case tree regular resolution proofs of 
PHP,"". To best of our knowledge, this is for the first time, 
the worst case proof complexity is considered. We prove 
an upper bound of 2°("109m), which is non-trivial, as there 
are mn variables, and one can therefore expect the worst 
case to be as bad as 2mn (we consider of course only proofs 
which do not contain vacuous weakening of axioms). This 
has the following very interesting consequence. Consider 
P H P Z ,  where m is polynomially bounded by n, and de- 
note it  by PHPEo'y(n). The optimal and the worst-case tree 
regular resolution proofs of P H P , ~ ' Y ( ~ )  are polynomially 
related, and so are any two random tree regular resolution 
proofs. This has an interesting consequence for automated 
theorem proving, as it shows that there are natural problems 
for which any DLL-proof search heuristic is as good as any 
other. 

Finally (section 5), we discuss some possible refine- 
ments of Riis' complexity gap theorem for tree resolution, 
motivated by our results. 

1093-0159/01 $10.00 0 2001 IEEE 
69 

mailto:dcs.qmw.ac.uk
http://dcs.qmw.ac.uk


2 Preliminaries that tree resolution refutations are equivalent to boolean de- 
cision trees. More precisely, given a refutation of the set 
of clauses, it can be viewed as a decision tree, solving the 
search problem and vice versa. The same result holds for 
regular resolution refutations and read-once branching pro- 
grams. In contrast to these, general resolution proofs are 
not equivalent to branching programs. As a matter of fact, 
there is a polynomial-size branching program, solving the 
search problem corresponding to PHPz+’ while all reso- 
lution refutations are of exponential size. 

Everywhere in the paper, we use the equivalence be- 
tween a tree resolution proof and a boolean decision tree. 
All the proofs are, in fact, for decision trees, whereas the 
results are stated in terms of tree resolution proofs. We only 
consider tree resolution proofs that are regular. This is not a 
restriction at all as in a decision tree, it does not make sense 
to query any variable more than once. On the other hand, if 
we do not set this restriction, we would not be able to prove 
any upper bounds, as any given proof can be extended by 
(unbounded) number of “meaningless” applications of the 
resolution rule. Thus, from now on, every time we say “tree 
resolution”, we really mean “tree regular resolution”. As al- 
ready mentioned we do not allow proofs to contain vacuous 
weakening of axioms. In terms of decision trees a branch 
terminates as soon as a contradiction is reached. 

A very important technique, we use to prove lower 
bounds on proofs, is considering a proof as a Prover- 
Adversary game. It is first introduced in [ 1 13 and developed 
further in [lo] for general resolution. For tree resolution, 
it can be simplified, as done in [ 5 ] .  Adversary claims that 
there is a satisfying assignment. Prover’s task is to expose 
him. In order to do that, Prover asks questions about vari- 
ables according to a decision tree, she holds. Clearly, there 
is no way for Adversary to win the game. His task is there- 
fore to enforce a big enough subtree, contained in Prover’s 
decision tree. If he has a strategy, enforcing that, n o  matter 
what strategy Prover uses, we have a lower bound on the 
tree resolution refutations of the given set of clauses. 

We first give some definitions. A literal is either a propo- 
sitional variable or the negation of a propositional variable. 
A clause is a set of literals. It is satisfied by a truth assign- 
ment if at least one of its literals is true under this assign- 
ment. A set of clauses is satisjiable if there exists a truth 
assignment satisfying all the clauses. 

As we have already said, by PHP,” we denote the claim 
that there is no injective map from a set of size m to a set 
of size n ,  where m > n. We encode its negation as the 
following set of clauses 

1. (pil,piz, . . . p i n )  f o r 1  < i < m  

2. {pij,pik} for 1 5 i 5 m, 1 5 j < k 5 n 

We allow m to be infinity. In this case, we have an infinite 
set of clauses, but all the clauses themselves are finite. Al- 
though we consider the injective PHP, all the results and 
proofs from the paper remain valid for the bijective PHP,  
too. 

Resolution is a proof system designed to refute given set 
of clauses i.e. to prove that it is unsatisfiable. This is done 
by means of the resolution rule 

Thus, we can derive a new clause from two other clauses 
that contain a variable and its negation respectively. The 
goal is to derive the empty clause from the initial ones. Any- 
where we say we prove some proposition, we mean that first 
we take its negation in a clausal form and then resolution is 
used to refute these clauses. 

There is an obvious way to represent every resolution 
refutation as a directed acyclic graph whose nodes are la- 
belled by clauses. The sources, i.e. the vertices with no in- 
coming edges, are the initial clauses. The only sink, i.e. the 
vertex with no outgoing edges, is the empty clause. Every- 
where in the paper, we say “the size of a proof ”, we really 
mean the number of vertices in the corresponding graph. 

We can now define two important restricted versions of 
resolution. First one is tree resolution when the graph is a 
tree or, in other words, we are not allowed to reuse any pre- 
viously derived clauses. The other one is regular resolution 
when every variable is resolved at most once along any path 
from a source to the sink. 

For an unsatisfiable set of clause, we can consider the 
following search problem: given a truth assignment, find a 
clause which is falsified under it. There is a close connec- 
tion between refuting an unsatisfiable set of clauses by some 
proof system and solving the corresponding search prob- 
lem within some model of computation. In [8], it is proven 

3 Optimal proofs 

We first construct a 2 0 ( n ’ o g n )  tree resolution proof (in 
fact, boolean decision tree, as we have already mentioned), 
and we prove the corresponding lower bound. 

Here we fix some notations that we will use in both this 
and the next section. We denote the bigger, m-element set 
by M ,  and the other, n-element set by N .  We consider 
M and N as the two parts of the complete bipartite graph 
K,,,, and then there is 1-1 correspondence between the 
edges of the graph and variables p .  Thus we can speak about 
a partial matching in Km,n instead of a partial function form 
M to N .  All the queries/questions, from the decision tree, 
are about the edges. We can however say that a question is 

70 



about a vertex, too if the corresponding edge is incident to 
that vertex. 

Upper bound 

The sketch of the construction is as follows. Obviously, 
Prover can restrict herself to the first n + 1 elements of M .  
She asks consecutively all the questions about the first ele- 
ment from M ,  namely p l l ,  p l z ,  . . . p l , .  If all the answers 
are "no", a contradiction is found. Otherwise, suppose p l j  

is the first question with a positive answer. Prover then asks 
all the remaining questions about the j- th element of N, 
namely p 2 j ,  p3 j ,  . . . p,+l, ,. If at least one answer is "yes", 
a contradiction is found. If not, we can safely remove the 
first element from M and the j- th element from N, and then 
look for a contradiction on a 

The boolean decision tree is given on the figure 1 below. 
The internal nodes are labelled with the queried variables, 

instance. 

Figure 1. An optimal decision tree for PHP," 

and the edges are marked with the corresponding answer. 
Every external node (leave) is labelled by the found contra- 
diction, i.e. a clause falsified under the (partial) truth assign- 
ment corresponding to the path from the root to this node. 
The nodes marked by PHPRY1 are, in fact, subtrees. 

What remains is to estimate the size. The decision tree 
for PHP,C" consists of n copies of the decision tree for 
PHPZY1 plus a quadratic in n overhead. More precisely 

where S (n)  is the size of the decision tree for P H P Z .  
It is now easy to prove by induction that S ( n )  5 

6 (n + l)!. Finally, an application of Stirling's approxima- 
tion of the factorial gives the desired upper bound. 

Lower Bound 

The main idea in our proof is to define a function on 
the nodes of the decision tree. The value of the function at 
any node should be a lower bound of the size of the subtree 

rooted by that node. After having done that, it suffices to 
compute the function value on the root. The result is a lower 
bound on the size of any decision tree, solving the search 
problem for PHP,". 

We assume, w.l.o.g., that n is even. W.l.0.g. we can also 
assume that Prover's decision tree is read-once, i.e. along 
every path any question is asked at most once. Now, we can 
explain Adversary's strategy. 

An important concept, we introduce here, are counters. 
A counter is attached to every vertex in M which is not 
matched yet to any vertex in N. In addition, there is one 
special counter that will be explained later on. Initially 
all the counters are set to zero. During the game, every 
counter is an upper bound of the number of vertices in N 
that are "forbidden" for the corresponding vertex in M. 
When some counter reaches the value n, Adversary "gives 
up", although it might be possible to continue the game a 
few more rounds. 

We can now classify all the questions that can appear in 
the decision tree and show how to maintain the counters. 
Let IC be the size of the partial matching obtained so far, i.e. 
the number of "yes" answers along the path from the root to 
the current node. There are three kinds of queries: 

1 .  Free-choice. Neither of the two vertices involved is in 
the current partial matching and the counter of the ver- 
tex from M is less than $ + IC. Adversary chooses ei- 
ther "yes" or "no" answer with some probability. The 
actual probability does not matter, the important point 
is that the free choice forces Prover to branch the deci- 
sion tree at that point. If the answer is "no", only the 
counter of the element form M increases by one. If 
the answer is "yes" this counter is cancelled, i.e. not 
maintained any more, but the counters of all the other 
elements in M are increased by one. 

2. Critical. Neither of the two vertices involved is in the 
current partial matching but the counter of the vertex 
from M is equal to 5 + I C .  Adversary answers "yes", 
he current counter is cancelled, and the counters of all 
the other elements in M are increased by one. 

3 .  Forced. Some of the vertices involved (or both) is al- 
ready in the matching. Adversary answers "no" and 
does not change any of the counters attached to the el- 
ements in M .  He however increases by one the special 
counter, which counts the forced questions. 

First of all, i t  is easy to see that for a given element in M, 
its counter is an upper bound on the number of elements in 
N that cannot be matched to that element. There are also 
some other simple observations to be made. First one says 
that Adversary always "survives" certain number of rounds. 

71 



Lemma 1 A contradiction can be found only when some 
counter reaches the value n. In this case, at least 5 ‘j1es” 
answers must be present on the path from the root to the 
current node. 

Proof A simple induction on k proves the following asser- 
tion: All the counters are bounded from above by f + k 
along any path from a node, where the partial matching is 
of size k ,  to the node, where that size becomes k + 1. The 
lemma then follows.0 

The next lemma shows that there must be a very long 
branch in any decision tree. Together with the main result, 
i t  implies that every such tree is unbalanced. 

Lemma 2 In every decision tree for  PHPZ,  there is a path 
of length 52 (n‘). 

Proof Consider the path, where Adversary answers “no” to 
every free-choice question. It is now easy to observe that 
when k-th critical questions asked, the corresponding ver- 
tex from M has a counter value equal to : + k - 1. That 
counter has been increased k - 1 times because of the pre- 
vious k - 1 critical question. The remaining 5 increases 
are result of ‘ho” answers to free-choice question about the 
corresponding vertex. Thus, along the particular path, we 
consider, any “yes” answer is preceded by 5 negative an- 
swers about the same vertex. 

The lemma 1 claims that every path contains at least 5 
“yes” answers. Therefore our path contains at least 5 “no” 
answers.0 

We can now prove the main result. 

Theorem 1 Every tree resolution proof of PHP,” is of size 
2Q(n 1% 4. 

Proof First we define an appropriate function as it has been 
explained in the beginning of the section. 

Let us denote by k the size of the partial matching at the 
current node U ,  i.e. the number of “yes” answers along the 
path from the root to U .  Let us also sort the m-k unmatched 
vertices from M in decreasing order of their counters, and 
denote the values of the counters themselves by p l  2 p2 2 
. . . 2 pm-k.  The forced question counter is denoted by P O .  
The value of the function at the node is then defined by 

E-k 

i=l 

5 + k - i - pi if it is positive 
elsewhere 

where qi = 

On the root, T ,  we have f ( T )  = (F - l)!, SO that f ( r )  = 
2 n ( n 1 0 g n ) .  It only remains to prove that at any node the 

function value is a lower bound for the size of the subtree 
rooted by the node. 

The proof is by induction on the tuples of the form 

We order them as follows. The shorter a tuple, the smaller 
it is. If two tuples have equal length, the lexicographically 
bigger one is the smaller. Clearly, this ordering makes the 
induction work from the leaves to the root of the decision 
tree, as the tuple on any node is strictly bigger than the tu- 
ples on its successors in the tree. 

The basis case is then Ic = $, where f ( U )  = 1, as the 
product is empty. Obviously, the function value at the node. 
is a lower bound of the corresponding subtree, no matter 
what the only element of the tuple is. 

To prove the induction steep, we need to consider all pos- 
sible kind of questions that can appear at the current node 
U .  

1. Forced. We consider the “no” branch only. Denoting 
its root (the “no” successor of U )  by U ,  we have f (u)  = 
f (v), as only po increases by one when going from U 

to v and f does not depend from P O .  By the induction 
hypothesis, we are done. 

2. Critical. W.l.0.g. we assume that the question is about 
the element, having pl as a counter. It is so, because 
a critical question always involves the biggest counter 
(Even if there are many counters with the biggest value 

+ I C ,  we can always consider p l ,  as two elements, 
having the same counter value are indistinguishable to 
Adversary’s strategy). We consider the “yes” branch 
only. Denoting the “yes” successor of u by U ,  we have 
again f(u) = f ( v ) .  That is the case, because all the 
counters p z , . .  . , p ~ k  increase by one when going 
from U to v, but so does k, therefore the contributions 
q 2 , .  . . , q g - k  do not change. q1 vanishes at U ,  but its 
value at U is one, as pl = + k .  By the induction 
hypothesis, we are done. 

3. Free-choice. There are three sub-cases: 

(a) The index involved, j ,  is greater than - k .  
W.l.0.g. we can also assume p 5 - k  > p j  since 
if they were equal Adversary could behave as the 
question were about 5 - Ic-th element (again, any 
two vertices having the same counter value are 
indistinguishable to Adversary’s strategy). The 
“no” answer then does not change anything ex- 
cept the last element of the tuple, but f does not 
depend on it . ,  So, f (u)  = f(v), where v is the 

successor of U .  By the induction hypothe- 
sis, we are done. 



(b) The index involved, j ,  is between 1 and 5 - IC ,  
but the contribution, q j ,  of that element to the 
function f is one. That is similar to the previ- 
ous sub-case, as the “no” answer leaves the value 
o f f  unchanged when going from from U to to its 
“no” successor U. 

(c) The index j is between 1 and f - IC and the con- 
tribution, q j ,  of that element to the function f 
is greater than one. This is the only non-trivial 
case, in the sense that we need consider both sub- 
trees of the current node U .  Note that if there 
are many counters, having the same value equal 
to p j ,  w.1.o.g. we can think that j is the mini- 
mum such index, so that the “no” answer does 
not change the order of the counters. 
The “no” subtree gives the tuple 

and the value 

tree resolution proofs. We also show the same upper bound, 
i.e. any such proof cannot be worse than that. It is very 
important to now note that “worst case”, in our context, has 
a conipletely different meaning than the usual one, used in 
Complexity Theory or Analysis of Algorithms. 

Lower bound 

The sketch of the construction is as follows. Prover ask 
all the questions about the first element from N ,  namely 
p l l ,  pal, . . . pml .  If all the answers are “no”, we can remove 
the first element from N ,  and thus get an PHPF-,’  Instance. 
Otherwise, suppose pi1 is the first question with a positive 
answer. Prover then asks all the remaining questions about 
the first element of N ,  namely pi+l1, pi+2 1 ,  . . . pml . If at 
least one answer is “yes”, a contradiction is found. If not, 
we can safely remove the first element from N and the i -  
th element from M ,  and then look for a contradiction on a 
PHPAT;’ instance. 

The boolean decision tree is given on the figure 2 below. 

The “yes” subtree gives 

(pl + 1,. . .pj-1 f l ,pj+l + 1 . .  . 3pg-k + 1, 
Figure 2. A worst-case decision tree for 
PHP,” 

m--k n 
What remains is to estimate the size. The decision tree 

for PHP.?‘ consists of m copies of the decision tree for 
and the value 

The induction hypothesis then applies to both 
subtrees, so the size of the current subtree is at 
least 

1 + f (U) + f ( U )  = 1 + f ( U )  > f ( U )  ‘ 

This completes the proof.0 

4 Worst case proofs 

PHPP-Y’, one decision tree for PHPC-,  plus a quadratic 
in m overhead. More precisely 

mS (m - 1, n - 1) + if n > 1 { 5 i f n  = 1 
S ( m , n ) =  S ( m , n - l ) + m i  > 

where S (m, n) denotes the size of the decision tree for 
P H P Z .  

We have 

S ( m , n )  > mS (m - 1,n - 1) 
> m. (m - 1) S (m - 2, n - 2) 

Therefore, for every m > n > 2, we get 

We first construct a 2°(n log m, boolean decision tree for 
PHP,” which is a lower bound for the worst-case regular 

73 



Upper bound 

The main idea is the same as in the proof of the lower 
bound on the optimal refutation. This time however, we 
introduce the counters to the elements of the set N .  Ev- 
ery counter p j  equals to m minus the number of questions 
about the j- th element of N that have already been asked. 
In other words, the counter contains exactly the number of 
possible questions about the element to be asked in the fu- 
ture. There is also one global counter po that is the sum of 
all the counterspj, 1 5 j 5 n. 

We can now prove the main result of this section. 

Theorem 2 Every regular tree resolution proof of PHP? 
is of size 2*(” log m).  

Proof Again we define an appropriate function on the nodes 
of the read-once decision tree. At any node the value of the 
function will be an upper bound on the size of the subtree 
rooted at that node. 

Let us denote by U the current node, and by P ,  P C N ,  
the set of all the vertices from N that are not yet matched to 
any vertex in M .  The function f is the defined as 

f ( U )  = 2 (Po + 1) r-J ( P j  + 1) - 1. 
j € P  

On the root of the tree, T ,  we have f ( T )  = 
2 (mn + 1) (m + l)n - 1, so that f ( T )  = 2°(R10gn).  It 
only remains to prove that at any node the function value 
is an upper bound for the size of the subtree rooted by the 
node. 

The proof is by induction on the global counter po . 
The basis case is then po = 0, so that all other p’s are 

zeros and therefore f ( U )  = 1. In this case all variables have 
already been queried, as there are no possible questions left. 
Therefore a contradiction has already been found and f ( U )  

is an upper bound. 
To prove the induction steep, we consider the following 

two cases. 

1. The question at the current node, U ,  is about the i-th 
element from N ,  and i $! P. This means that ele- 
ment has already been matched to some element in M ,  
so that the current question is forced. Therefore, the 
“yes” subtree consists of a single vertex, labelled by 
the contradiction found. Let us denote by w the “no” 
successor of U .  The induction hypothesis applies at w, 
as po decreases by one there, so the size of any subtree 
rooted at U is at most 

2. 

5 

The question at the current node, U ,  is about the i-th 
element from N ,  and i E P.  The induction hypothesis 
then applies to both ‘‘yes’’ and “no” successors of U .  

Denoting them by U and w respectively, we have that 
the size of any subtree rooted at U is at most 

1 + f (w) + f (w) = 1 + 2po (P,  + 1) - 1 + 
JEP\{ZI  

2PoPz n (PJ + 1) - 1 

= 2Po rI (P, + 1) - 1 

< 2 (Po + 1) n (PJ + 1) - 1 

P\{Z) 

,EP 

J E P  

= f ( U )  ’ 

This completes the proof.0 

Link to Complexity Gap theorem 

In this section, we discuss possible refinements and ex- 
tensions of Riis’ complexity gap theorem for tree resolution. 
They are motivated by our results presented in the previous 
two sections. 

We first need to state the complexity gap theorem itself. 
We give here a slightly different version than the one from 
the original paper [ 141 

We are given a first order sentence $ of predicate 
logic that fails in all finite models. There is a proce- 
dure which translates the sequence of sentences A,  :=” 
$ has no models of size n” into an unsatisfiable set CQ,, of 
clauses. The sequence C$,” is uniformly generated (in the 
sense of [15])and its size is bound by a polynomial in n. 
The complexity gap theorem states that either 1 or 2 holds: 

1 .  The sequence C+,n have polynomial size in n tree res- 
olution refutations. 

2. There exists X > 0 such that each tree resolution refu- 
tation of C+,, must contain at least 2’” clauses. 

Furthermore 2 holds if and only if $ has an infinite model. 
So, the gap is between polynomial and exponential size 

proofs and shows that no super-polynomial (e.g. 2 ’ ( l o g p  n, 

for some p > 1) and sub-exponential (e.g. 2’(”“) for some 
0 < E < 1) optimal proofs can appear. 

We will concentrate on the sentences falling in the sec- 
ond case, i.e. requiring exponential size tree resolution refu- 
tations. Let us denote the class of all such sentences by 
Exp. 

Let us first consider the following encoding of PHP,”+l 
as a first order sentence (given also in [14]) 

74 



The complexity gap theorem gives only a 2"(") lower 
bound, whereas we have shown that its real complexity is 
2'("logn). Going further, let us encode P H P , n ,  where 
p ,  q E Z+ and p > q,  as a first order sentence 

Here ?i? = ( ~ 1 ~ ~ 2 , .  . . x p )  and $ (3) = 
(fi (2)  fi (2) , . . . f, (3)). Our result shows that 
the exact complexity is 2°(nq10gn)  for any arbitrary free 
regular resolution proof. 

On the other hand, let us consider the minimum element 
principle, saying that if R is a total order, it has a minimal 
element. Its negation can be encoded as 

(V'.., Y (z # Y) -+ ( R  (x, Y) a3 R (Y, x ) ) )  A 
@> Y, z ( R  (5 ,  Y) A R (V> 2 ) )  -+ R (Z> 2 ) )  A 

PX3Y R (Y, x)) . 

Here R (z, 9) stands for z < 9. It can easily be proven 
that the optimal tree resolution proofs of it  are of size 2'(n) ,  
whereas the worst-case proofs are of size 2'("'). Clearly, 
if we replace the singletons by p-tuples, the corresponding 
optimal and worst-case proofs are 2'("') and 2'("'') re- 
spectively. 

Let us now denote by Size  ( t  (n ) )  the class of first order 
sentences of propositional logic that have their optimal tree 
resolution proofs of size t (n) ,  and by Opt - the class for 
which any arbitrary tree regular resolution proof is poly- 
nomialy related to the optimal one. 

To summarise, our two examples show 

1. The classes S i z e  (2'("')), p E Z+ and 
Size  ( z ' ( ~ '  logn)), q E Z+ are nonempty. 

2. The classes Opt S i z e  (2e(n' l o g n )  ), q E Z+ and 
S i z e  (2'("')) \ Opt, p E Z+ are nonempty. 

At the same time, the following three interesting open ques- 
tions arise 

- 1. Is it the case that Exp - 
Up,zt Size  ( 2 ' ( n P ) )  U uQEZ+ S i z e  (2'("' l o g n )  ) .  7 

That IS to ask whether the exponential side of 
Complexity-Gap Theorem can be further refined, 
so that each complexity subclass inside it  is either 
S i z e  (2'("')) or S i z e  ( 2 ' ( n q 1 0 g n ) )  for some positive 
integer plq. 

2. Is it the case that Opt 5 U,,z+ Size  ( 2 e ( n q ' o g n ) ) ?  
That is to ask whether all trivially automatisable prob- 
lems belong to this particular family of optimal-proof- 
size classes. Alternatively (and equivalently, assuming 

3. 

a positive answer to the previous question), we can ask 
whether Opt n S i z e  ( 2 ' ( n p ) )  = 8 for every positive 
integer p.  

Is it  the case that if s E S i z e  (2'("')) for some 
p E Z+, the worst-case complexity of the s is at least 
2 W P )  ? 

References 

P. Beame and T. Pitassi. Simplified and improved resolu- 
tion lower bounds. In Proceedings of the 37th annual IEEE 
symposium on Foundation Of Computer Science, pages 274- 
282, 1996. 
E. Ben-Sasson and A. Wigderson. Short proofs are narrow - 
resolution made simple. Technical Report 22, ECCC, 1999. 
S. Buss and T. Pitassi. Resolution and the weak pigeonhole 
principle. In Computer science logic (Aarhus, 1997), pages 
149-156. Springer, 1998. 
S. Buss and G. Turin. Resolution proofs of general- 
ized pigeonhole principles. Theoretical Computer Science, 

S. Dantchev and S. Riis. A tough nut for tree resolution. 
Technical Report 20, BRICS, May 2000. 
A. Haken. The intractability of resolution. Theoretical Com- 
puter Science, 39:297-308, 1985. 
K. Iwama and S. Miyazaki. Tree-like resolution is super- 
polynomially slower than DAG-like resolution for the pi- 
geonhole principle. In Algorithms ana' computation (Chen- 
nai, 1999), pages 133-142. Springer, Berlin, 1999. 
J. Krajitek. Bounded Arithmetic, Propositional Logic, and 
Complexity Theop. Cambridge University Press, 1995. 
T. Pitassi and R. Raz. Regular resolution lower bounds for 
the weak pigeonhole principle. 2000. 
P. Pudlik. Proofs as games. American Mathematical 
Monthly, to appear. 
P. Pudlik and S. Buss. How to lie without being (easily) 
convicted and the lengths of proofs in propositional calcu- 
lus. In Pacholski and Tiuryn, editors, Computer Science 
Logic'94, volume 993 of LNCS, pages 151-162. Springer- 
Verlag, 1995. 
R. Raz. Resolution lower bounds for the weak pigeonhole 
principle. Technical report, ECCC, 2001. 
A. Razborov, A. Wigderson, and A. Yao. Read-once branc- 
ing programs, rectangular proofs of the pigeonhole principle 
and transversal calculus. ln Syniposiurn on Theop of Corn- 
puting, pages 739-748, 1997. 
S. Riis. A complexity gap for tree-resolution, Technical 
Report RS-99-29, BRICS, September 1999. 
S. Riis and M. Sitharam. Generating hard tautologies us- 
ing predicate logic and the symmetric group. Technical Re- 
port 19, BRICS, 1998. 
A. Urquhart. Resolution proofs of matching principles. 
1998. 

62:311-317, 1988. 


