

Listening to Program Slices

Lewis I. Berman

University of Durham
Durham, DH1 3LE, UK
l.i.berman@dur.ac.uk

Keith B. Gallagher

University of Durham
Durham, DH1 3LE, UK

k.b.gallagher@dur.ac.uk

Abstract

Comprehending a computer program can be a daunting task. There is much to

understand, including the interaction among different parts of the code. Program slicing is

a vehicle that can help one understand this interaction. Because present-day visual

development environments tend to become cluttered, and because a program slice may

involve the interaction among a number of sections of code, the authors have explored

the sonification of program slices. This investigation has produced an understanding of

how to sonify slices in a manner appropriate for the software developer as program

comprehender. Secondarily, the investigation has produced a better understanding of

musical sonification techniques that are non-melodic and non-harmonic. This exploration

is a proof-of-concept and pilot for further research.

Background

The dependence among different lines or sections of code is useful knowledge in

program comprehension. If a critical variable is found to be incorrect at the execution of a

given line of code, the maintainer would like to know which other code impacts that line.

mailto:l.i.berman@dur.ac.uk

Programmers can gain this understanding by running the program in a debugger under

different sets of constraints, which can be time consuming. Program slicing is another

tool that can aid such understanding.

Slices are computed with respect to a selected slice point, that is, a program point and

variable(s) of interest. A static backward program slice is the subset of computation in the

program upon which the selection is dependent [Weiser 1984].The slice at one program

point may vary radically from the slice at a nearby program point. A given execution of

the program up to the slice point is equivalent to one possible path through the slice.

To gain an impression of impact to a program point, it is desirable to explore whether a

separate object or method is in a slice, the amount of code in each object or method that‟s

in the slice, how far removed the statement, object, or method is from the slice point, fan-

out from the slice point, and the homogeneity of slice versus non-slice code. At a detailed

level, it is desirable to know exactly which variables and local statements impact those at

the slice point.

A high percentage of modern programmers use integrated development environments

(IDE‟s) such as Visual Studio and Eclipse. Typically, these environments are visually

cluttered, containing numerous overlapping and paneled windows and controls. A notable

disadvantage of the contemporary IDE is the necessity to locate and load multiple

windows in order to understand relationships among different sections of code. Unless

the display area of each window containing program code is severely restricted, the

interface becomes modal as the developer is forced to switch between views. Whilst the

visual capacity of such IDE‟s is stressed, their auditory capacity is exploited only trivially

if at all. The number of information channels available to the developer can be increased

through use of sonification.

Sonification techniques have been applied to problems in software comprehension.

Sounds representing run-time events in algorithm animation have been successfully used

to find bugs [Baecker, 1997]. The LISTEN tool [Boardman 2001] provided an

environment to hear run time behavior. Vickers and Alty sonified nested program

constructs, such as loops, at run time via musical sonification, using tonal, triadic note

patterns [Vickers 2003]. Finlayson has used a similar technique to provide a static

“audioview” of Java source code [Finlayson, 2005].

It has been shown that non-speech, interactive sonification is useful in gaining an

overview of data in an exploration mode, both for sighted and non-sighted users.

Recently, Kildal sonified data tables [Kildal 2005]. Each table cell‟s data maps to a pitch

realized in a fixed, piano-like timbre. A row or column can be played quickly enough that

it sounds like a distinct pitch cluster.

Sonifying Program Slices

Program slices have been visualized [Gallagher VIA], but they can also be sonified. In

performing program comprehension, much time and effort is spent textually reading

code. The IDE‟s visual field for this activity primarily contains a tree-structured explorer

providing navigation to objects and methods, along with an active window showing the

code for the selected object or method. To understand the impact of one object or method

to another, one would typically navigate between them. This paradigm promotes linear

detail at the expense of overview and exploration. The ability to hear characteristics of

selected or hovered-over objects and methods provides an added data dimension without

cluttering the screen, reducing effective area for existing display, or requiring modal

changes and bookmarking in back-and-forth visual navigation.

Three program sonification techniques were developed on a stand-alone basis, with the

intent of integrating them into an IDE. Each technique sonifies a slice at a different

observational level: (1) hearing actual slice versus non-slice lines of code within a

method, (2) hearing a quick impression of a method with respect to the slice, and (3)

hearing an impression of the amount of the object with respect to the slice. #3 could be

heard simultaneously, if desired, with #1 or #2.

All three slice sonification techniques are intended to be employed by a developer while

examining source code using the IDE. An explorer showing the program‟s objects (or

source files) and methods is visible, as is an editor containing a particular method under

examination. In the course of examining the code, the developer would select variable(s)

in a source statement as the slice point, then select or mouse over a second object,

method, or source line to hear its relationship to the slice point. In a step toward this goa,

slices are obtained at present using the CodeSurfer standalone slicing tool [Grammatech],

and the three types of sonifications are derived from each slice so obtained. The sound is

realized using Csound, a sophisticated software sound generator and processor [Csound].

A consistent sound universe is employed: the timbral space consists of actual and

synthesized plucked instruments, and the tonal space consists of consecutive diatonic or

chromatic pitches. The mappings are neither triadic nor musical phrases; instead, they are

simply mappings to pitches in defined ranges, allowing the listener‟s focus to be directed

to timbre and range whilst reducing the risk of interference by extra-musical tonal and

melodic associations.

An example program, the open-source ACCT, has been sonified and placed online

[online demo]. ACCT has been chosen because of its low number of slices that are

equivalent to one another. [Binkley ??].

The first technique is intended to allow source statements to be heard as the developer

passes the mouse over them, possibly quite quickly in succession, as in the table

sonification referenced above. Each statement is heard as a single note produced by a

plucked instrument. Statements within the slice are heard within a bounded pitch range,

and statements outside the slice are heard in a lower range, as shown in Figure 1a. To

help differentiate consecutive statements, the sequence of pitches rises and falls within

the range. Higher range pitches, those in the slice, are sustained to leave the aural

impression, when scanning statements quickly, that statements were indeed in the slice.

Stereo separation helps differentiate pitches in each range. The number of consecutive

pitches in the same range, along with the succession of segments within each range,

indicates homogeneity. The beginning of ACCT‟s main method maps as shown in Figure

1b. There are three statements in the slice, followed by one out of the slice, followed

similarly by 6, 1, 1, 3, and 2.

Figure 1. Beginning of ACCT‟s main method.

The second technique depicts methods rather than individual statements. Its objective is

to leave an impression of each method‟s size and how much of it is in the slice. One hears

an event as one mouses over each method in the explorer. Again, this may be done

quickly or slowly. Each event consists of zero or more higher-pitched notes followed by

zero or more lower-pitched notes, all in very rapid succession. Each note represents up to

ten source statements. A method that has five statements within the slice and twenty-five

statements outside the slice will result in one higher-pitched pluck followed by a cluster

of three lower-pitched plucks. Table 1 shows some methods in AC‟s file ac.c. Figure 2

shows the corresponding realization in sound.

Method Statements in slice Statements not in slice

strtol 1 1

atoll 1 1

main 47 51

give_usage 0 1

update_system_time 7 1

log_everyone_out 13 11

Table 1. Some methods in the file ac.c.

Figure 2. Realization of methods in ac.c.

The third technique operates at the highest level, comparing different objects. Its goals

are to differentiate the objects, leave an impression of the size of the object, and leave an

impression of the percent of the object‟s code within the slice. This technique makes use

of sound clouds generated through granular synthesis [Dodge]. The object‟s size

corresponds to the overall pitch range of the cloud, and the percentage of the object‟s

code within the slice corresponds to the cloud‟s density.

The third technique differs radically from the others so that it can be heard as background

along with the others. It is intended to change as one progresses between objects while

hovering over the methods in an explorer. Thus, the objects are differentiated in time

through unique signatures even if the listener is not actively listening to the clouds.

As a preliminary, informal evaluation, a small group of sighted, software-aware listeners

were able to “hear” and describe the characteristics of a slice. Most of the listeners were

not highly trained musically. Techniques #1 and #3 were found to be intuitive after a few

sentences of explanation. Technique #2 required greater explanation. The one-to-ten

mapping of source statements to discrete notes was somewhat troublesome, requiring

some training.

Discussion and Future Direction

The preliminary evaluation suggests that slice sonification merits further investigation.

The chosen techniques appear to be effective. Questions abound concerning utilization of

slice sonification in the IDE, wider use of sonification in program comprehension, and

the sonification techniques themselves.

The interactive nature of slice sonification in the IDE has yet to be explored. The next

step is to integrate the CSound sonification mechanism with Eclipse, along with an

embedded slicing component, and evaluate actual usage scenarios. The ability to hear and

rapidly compare multiple slices is of particular interest. Differences in slice profiles of

several programs should be detectable to the user. A typical calculator program, for

instance, has a low number of large, equivalent slices, differing from the ACCT program

mentioned above. This should be readily hearable. One dimension that can be added to

the existing sonification is the distance within the slice, i.e. number of nodes of the graph,

to each object or method. Audio distance is a possible mapping.

More generally, slice sonification is seen as part of an effort to offload information from

the IDE to the audio realm and evaluate its effectiveness. The information that can be

heard during active debugging is one candidate for exploration.

The chosen timbral and non-harmonic techniques differ from previous software

sonification techniques exploiting harmony, melody, and to a lesser extent, rhythm. The

question of which techniques are more appropriate for which comprehension tasks

therefore arises. A combination may be appropriate, raising the question of the number of

simultaneous audio that the user can process, especially given foreground versus

background events. Conversely, it may be possible to maximize information flow via the

chosen combination of techniques. Another area of evaluation is clarity. For example,

changing the attack times between near-simultaneous notes may help the user to

discriminate them.

Summary
The authors have explored the sonification of program slices, with encouraging early

results. Three techniques were developed, two involving musical but non-thematic, non-

triadic realizations, and the third involving granular synthesis. Future steps include

refinement of the sonifications, integration with an IDE, and empirical study of both the

interactive and sonic natures of the realizations.

References
Weiser 1984 Weiser, M. Program slicing. IEEE Transactions on Software

Engineering, 10(4):332-357, 1984.

Gallagher ? ??

Vickers 2003 Vickers, P. and Alty, J. Siren songs and swan songs: debugging with

music. Communications of the ACM, 46(7):87-92, July, 2003.

Csound http://www.csounds.com

Online demo TBD

 Binkley ?? Binkley, D. and Harman, M. Locating dependence clusters and

dependence pollution. TBD, TBD.

Dodge Dodge, C. and Jerse, T. Computer Music: Synthesis, Composition, and

Performance, second edition. Schirmer, 1997, pp. 262-271.

Boardman

2001

Boardman, D., Khandelwal, V., Greene, G., and Mathur, A. LISTEN: a

tool to investigate the use of sound for the analysis of program

behavior.

Kildal 2005 Kildal, J. and Brewster, S. Explore the matrix: browsing numerical data

tables using sound. Proceedings of ICAD, July, 2005.

Gallagher VIA Gallagher, K. Visual impact analysis. ?? ??

Baecker 1997 Baecker, R., DiGiano, C., and Marcus, A. Software vi for debugging.

Communications of the ACM, 40(4):44-54, April, 1997.

Finlayson 2005 Finlayson, J. and Mellish, C. The „audioview‟ – providing a glance at

java source code.

Grammatech Grammatech, Inc., http://www.grammatech.com

http://www.grammatech.com/

