
Reducing Regression Test Size by Exclusion

Keith Gallagher Tracy Hall Sue Black
Centre for Software Maintenance School of Computer Science Harrow School

and Evolution of Computer Science
Durham University University of Hertfordshire University of Westminster

South Road College Lane Watford Road
Durham DH1 3LE Hertfordshire AL10 9AB Harrow HA1 3TP
United Kingdom United Kingdom United Kingdom

k.b.gallagher@durham.ac.uk t.hall@herts.ac.uk s.black3@westminster.ac.uk

Abstract

Operational software is constantly evolving. Regres-
sion testing is used to identify the unintended conse-
quences of evolutionary changes. As most changes af-
fect only a small proportion of the system, the chal-
lenge is to ensure that the regression test set is both
safe (all relevant tests are used) and inclusive (only
relevant tests are used). Previous approaches to re-
ducing test sets struggle to find safe and inclusive tests
by looking only at the changed code. We use decom-
position program slicing to safely reduce the size of
regression test sets by identifying those parts of a sys-
tem that could not have been affected by a change; this
information will then direct the selection of regression
tests by eliminating tests that are not relevant to the
change. The technique properly accounts for additions
and deletions of code.

We extend and use Rothermel and Harrold’s frame-
work for measuring the safety of regression test sets
and introduce a new safety and precision measures that
do not require a priori knowledge of the exact number
of modification revealing tests. We then analytically
evaluate and compare our techniques for producing re-
duced regression test sets.

1 Introduction

Michael Cusumano, writing in the July 2006 issue
of Communications of the ACM regarding Microsoft’s
March 2006 announcement that the delivery of the
new Vista operating system (known internally in Mi-
crosoft as “Longhorn”) would be (again) delayed to
early 2007, notes:

Making even small changes in one part of the

product led to unpredictable and destabiliz-
ing consequences in other parts since most of
the components were tied together in com-
plex and unpredictable ways. Even 4,000
or so software developers and an equivalent
number of testers was not enough to get
Longhorn working [3].

Making a change to existing software, whether
in production or development, system generates two
problems. The first is validating that the change cor-
rect. The second and more difficult problem is de-
termining that no error has been inadvertently intro-
duced. Ostrand, et al., found a 50-80% probably of in-
troducing an error while making a change to code [9].
Regression testing is the method to uncover the un-
intended side effects of making changes to software.
Regression testing can uncover the unintended side ef-
fects of making changes to software. It demonstrates,
insofar as any testing method can, that no changes
have rippled into other parts of the system.

The main difficulty of regression testing is deter-
mining test sets are both safe and inclusive. Inclusive
means that only tests that could possibly uncover an
error are used. Safe means to include all tests that
could possibly uncover an error. (Simply running all
tests would clearly be safe, but not inclusive.) A good
set of regression tests is inclusive and safe: the suite
covers all parts of the system that may have been af-
fected by a change, but does not cover parts of the sys-
tem that could not have been affected by that change.

We are interested in finding safe and inclusive re-
gression tests. Moreover, most changes are relatively
small with respect to the size of the entire system, so
while the test set to determine that the change is cor-
rect could be quite small, the number of regression test

required could be relatively large. In an informal ap-
plication of Amdahl’s Law that small improvements in
large efforts may surpass large improvements in small
efforts, we aim to turn the problem of inclusion and
safety on its head by finding tests that could be ex-
cluded, and excluded in such a way that running the
excluded test would not show any detectable change
in the program’s behaviour.

This approach has the decided advantage of always
being safe. The cost is a loss of precision; some inef-
fectual tests may be run. There is always a cost asso-
ciated with selecting regression tests. It is not difficult
to imagine that in some cases the the cost of finding
the regression tests may exceed the cost of merely re-
running all the tests. Our technique proposes, that in
the larger scheme, running a few unnecessary tests is
a small price to pay. It is certainly better to run a few
unnecessary tests than to miss a necessary one.

1.1 Contribution and Impact

We demonstrate how decomposition slicing [7, 8]
can enable the reduction of regression test set size by
test elimination. Decomposition slicing is a program
slicing technique that identifies all lines of code that
are related to a variable of interest and thus provides
a technique to identify unchanged parts of the system.
The technique can be compared to other regression
test set inclusion techniques by extending an exist-
ing framework for the comparison of inclusion tech-
niques [10]. There are two contributions to reducing
regression test set size. The first is alluded to in the
Cusumano quotation above: change testing is expen-
sive and any help in reducing the effort is significant.
The second effect subtle: an a priori estimate of the
size of regression tests needed could direct the style of
the change (even, perhaps, changing the priority of a
change request due to regression test cost).

1.2 Outline

After this introductory section, the paper is orga-
nized as follows. Section 2 give the background, dis-
cussing the conceptual framework for the subsequent
presentation previous work that we build on. Section
3 re-frames the conceptual framework in what we be-
lieve is a more coherent way; the new-found coherency
allows an easy extension to the framework. Section 4
describes our new technique and analyzes in the re-
vised framework. Section 5 gives some examples and
Section 6 summarizes the contribution and details fu-
ture directions.

2 Background

The aim of regression testing is to validate un-
modified parts of software systems, to make sure that
the modification process does not introduce any new
errors and provide confidence that the modifications
are correct. Regression testing is a very necessary,
but very expensive, software development and main-
tenance activity. Ensuring that an accurate regression
test suite is chosen is of critical importance in reducing
the cost of software engineering activities.

Regression test selection techniques attempt to re-
duce the amount of time needed to retest a modi-
fied program by selecting a subset of the existing test
suite. Techniques such as path analysis, program de-
pendence, cluster identification and program slicing
are used to varying effect to reduce the amount of
tests that need to be run thus reducing the amount of
effort and therefore cost.

Regression testing is not about validating that the
change is correct; that the change is correct is the baili-
wick of the maintenance engineer and not in the scope
of this paper. However, in subsequent versions of a
system, tests that were created to validate a change
in the system become part of the regression test suite.
A new feature that is added to a system must also be
protected against unintended change.

2.1 Regression Test Selection Analysis

Rothermel and Harrold [10] (hereafter referred to as
“RH96”) describe a framework for evaluating regres-
sion test selection techniques in terms of inclusiveness,
precision, efficiency and generality. Table 1 summa-
rizes their framework.

The analysis framework described in RH96 is func-
tional. Tests for code fragments that are syntacti-
cally changed, but not semantically changed, would
be classified as non-modification-revealing. Thus any
regression test selection technique that would select
the tests for such a code fragment would be consid-
ered as imprecise. For instance, consider the example
of Figure 1, taken from RH96. While it is a bit con-
trived, it does show a technical side of the definition
of precision. Since the code is functionally equivalent,
any regression technique that selects tests for this code
is imprecise.

In RH96, a modification-revealing test (hereafter
“mr-test”) is one upon which P and P′ differ. Inclu-
siveness is the measure of the number of modification-
revealing tests that regression test selection technique
M finds, relative to the total number of modification-
revealing tests. (Our emphasis.) The selection tech-

Measure Description
Inclusiveness The measure of the extent to which a technique chooses the tests that will cause

the modified program to produce different output than the original program and thereby
expose faults caused by modifications

Safety is a property of inclusiveness.
Precision The measure of the ability of a technique to avoid choosing tests that will not cause

the modified program to produce different output than the original program.

No property of precision is given in [10].
Efficiency The computational cost, and thus, practicality, of a technique.
Generality The ability of a technique to handle realistic and diverse language constructs,

arbitrarily complex code modifications, and realistic testing applications

Table 1: Summary of Rothermel and Harrold Terminology. Efficiency and generality are shown for completeness,
but are not a focus of this work.

read (x) read (x)
if (x <= 0) if (x <= 0)

if (x == 0) if (x == 0)
print (x + 2) print (x + 2)
exit exit

end else
print (x + 3)
exit

end
end end
print (x + 3) print (x + 3)
exit exit

Figure 1: Semantically Equivalent Code Fragments.

nique is safe when inclusiveness is exactly 1. Note
that since safety measures only modification-revealing
tests, that it is bounded above by 1.

A non-modification-revealing test (hereafter “nmr-
test”), where P and P′ are the same, for a given
test. In RH96, precision is the measure of the num-
ber of nmr-tests that regression test selection tech-
nique N excludes, relative to the total number of non-
modification-revealing tests. (Our emphasis.) The se-
lection technique is precise when the ratio is 1, and
like safety, bounded above by 1.

In RH96, inclusiveness and precision are comple-
mentary measures, and safety is a property of the mea-
sure inclusiveness. When investigating these ideas, we
applied some simple software metric analysis. “Mea-
surement is the process by which numbers . . . are as-
signed to attributes of entities . . . ” [5]. (Our empha-

sis.) We found the following adjustments in the ter-
minology helpful. The entities that we will measure
will be techniques for obtaining regression tests. The
attribute that we will measure will be inclusiveness
/ exclusiveness. The measure will be safety (for in-
clusiveness) and precision (for exclusiveness). Table 2
summarizes our changes. A singular advantage to this
re-casting is that now we can apply safety measures to
exclusive techniques and precision measures to inclu-
sive techniques. More discussion of this idea follows,
but at this point we note that one implication is that
precision and safety are no longer bounded above by
1.

Our definition of precision is different from RH96;
they use precision to measure what we call the at-
tribute of exclusion and have no term analogous to
safety. We use safety to measure inclusion; and we use
precision to measure exclusion. The change in termi-
nology from RH96 is so that there are pairs of comple-
mentary terms: inclusion and exclusion as attributes;
and safety and precision as measures. RH96 has in-
clusion and precision as complementary measurement
terms, and no complementary term for safety.

RH96 defines inclusiveness, etc, in terms of mr-
tests. They point out that other definitions may be
appropriate. For instance, data-flow techniques can
be used to define definition-use-inclusiveness.

2.2 Regression Test Selection Techniques

This subsection surveys a two techniques for select-
ing regression tests. It is by no means complete; it
does however, relate to the technique we present. Both
techniques are used for selections. The reason that

Attribute Description
Inclusiveness The extent to which a technique chooses the tests that will cause the modified

program to produce different output than the original program and thereby
expose faults caused by modifications

Inclusiveness is measured by safety.
Exclusiveness The ability of a technique to avoid choosing tests that will not cause the modified

program to produce different output than the original program.

Exclusiveness is measured by precision.

Table 2: Our Changes to the Rothermel and Harrold Terminology

these were chosen is that the first uses dynamic infor-
mation that is in turn attached to the static source.
The second uses program slicing.

2.2.1 Textual Differencing

Vokolos and Frankl [11] use textual differencing, which
compares program sources. Source statements are
mapped to the basic block in which they are contained;
the basic blocks are mapped to the test cases which
execute them. When a textual difference is observed
in a basic block, the tests that execute that block are
selected. The textual differencing technique is robust
enough to observe changes in basic block structure;
in this case, a basic block at a shallower nesting level
than execute the changed code is used to determine
which tests to select.

The empirical evidence reported by Vokolos and
Frankl is promising. The reductions are significant
and easily obtained. The tool used to construct the
test set reduction, Pythia, was a straightforward cob-
bling of Unix tools, a decided advantage. They do not
report, and evidently had no way of determining, if
any regression tests were missed.

Chen, et al., [2] use a similar technique in Test-
Tube. Instead of using basic blocks, à la Vokolos and
Frankl, they identify which macros, functions, types
and variables are covered by a test, then select tests
that correspond to a changed entity.

It is interesting to note that these techniques are
considered imprecise in the RH96 framework. The test
for the changed code illustrated in Figure 1 would be
selected. It seems that this is exactly what a tester
wants to know. It may be that function of code frag-
ment has not changed, but many software evolution
activities do not require, and in some instances, do
not permit a changed functionality. However, non-
functional changes have to be tested, too.

2.2.2 Semantics Guided Selection

Binkley [1] uses a semantics-guided selection tech-
nique. Semantics in this case is the sequence of states
of computation through which a program passes. The
program must be “rolled out” (all procedure calls ap-
propriately substituted in-line). Once the semantics
is clarified, the differences between a certified and
a modified variant of a program can be determined.
The technique then selects tests that exercise compo-
nents of certified that have similar semantics (state
traces) in modified. Some care must be exercised in
defining “similar semantics.” The test set selection
is guided by calling context slicing, a technique for
calculating precise interprocedural slices. The calling
context slices are used to find common execution pat-
terns, which in turn are used to find the similar se-
mantics. The outcome is that tests which are possibly
modification revealing are selected.

2.3 Decomposition Slicing

Program slicing is a software analysis technique
that extracts program statements relevant to a par-
ticular computation. Informally, a slice provides the
answer to the question “what program statements po-
tentially affect the computation of variable v at state-
ment s?” While conventional slices capture the value
of a variable at a particular program point, a decom-
position slice captures all computations of a variable
and is independent of program location [7, 8]. Decom-
position slicing can be used to partition a program
into three parts as described in the Table 3:

For software testing, only independent and depen-
dent statements i.e., the decomposition slice taken
with respect to v are of interest. The complement
statements cannot be affected by the change. While
a program has as many decomposition slices as it has
variables, many of the decomposition slices on differ-

Program parts Includes statements which are . . .
Independent in the decomposition slice taken with respect to v that are

not in any other decomposition slice.
Dependent in the decomposition slice taken with respect to v that

are in another decomposition slice.
Complement not independent, i.e., statements in some other decomposition slice, (but not v’s).

Table 3: Classification of Decomposition Slice Variables. Assume the computation of variable v is the variable of
interest

ent variables are exactly the same [6]. Empirical anal-
ysis showed that reductions by equivalent decomposi-
tion slices range from 9-87% with a mean percentage
between 50% and 60% (p < 0.005 with 95% confi-
dence). This means that any test that exercises any
variable in a cluster will satisfy every variable in that
cluster and a tester may be assured that all the vari-
ables in the cluster are covered by one test. Test se-
lection is tremendously simplified by this clustering
feature of decomposition slicing.

Figure 1.5 illustrates the reductions that are possi-
ble. The graphs in Figure 1.5 are decomposition slice
graphs of a differencing program. The nodes are par-
tially ordered by set inclusion. A lower node is prop-
erly contained in any node above it that is is con-
nected to. The graph on the left has 77 nodes and
271 edges, from a source size of about 700 lines. The
graph quickly grows into unwieldy proportions. The
graph on the right of Figure 1.5 is the reduced graph
showing only computationally equivalent nodes, with
only 34 nodes and 43 edges. Another advantage to the
(visual) reduction is the easy estimate of the size do
the change and regression test effort. Any node that
has a change must have all the nodes that contain it
(i.e., are above it and connected in the graph) tested
also [8].

Unlike decomposition slicing, other slicing ap-
proaches do not identify all additional statements (i.e.
the dependent part) of the slice that is related to the
original change. Consequently these other slicing ap-
proaches are all unsafe as inclusion techniques. Using
slicing as an exclusion technique is automatically safe.
The advantage of a decomposition slicing based ap-
proach for test exclusion is two-fold: any variable that
is in the complement part is automatically excluded,
as are all the variables in its computationally equiva-
lent set.

3 Extension

Changes are typically small with respect to the size
of the entire system. The natural inference is that the
mr-test set is also proportionally small. As the set of
nmr-tests is thus proportionally large, even small ad-
ditions to its size will have a large payoff. Reducing
the number of regression tests, by excluding ones that
will show no change, can have immediate practical im-
pact.

3.1 Example

We start with an example. Suppose we have two
ways of obtaining regression tests. Technique M se-
lects tests to be run and so is an inclusive technique.
Technique N omits tests that do not need to be run
and so is an exclusive technique.

Now suppose test suite T contains 1000 tests; for
change from P to P′, suppose there are 200 mr-tests
and 800 nmr-tests. If regression test selection tech-
nique M selects 150 of the 200 mr-tests, its inclu-
siveness has a safety measure of 150/200 = 0.75; if
a regression test selection technique excludes N 700
nmr-tests, it has a precision measure of 700/800 =
0.875.

It is safe to run the 300 tests that are not excluded
by N. It is not inclusive in the RH96 measurement
sense; in this case the RH96 inclusive measure cannot
be applied because we do not actually know that there
are 200 mr tests. If we somehow has the knowledge of
the actual number of mr tests the ratio would be > 1,
not possible in the RH96 framework. The true cost is
running the 100 extra tests that we know to be nmr.
A cost / benefit calculation will determine whether or
not this is suitable.

Suppose each technique is increased by 10%. We
now have 165 mr-tests and 770 nmr-tests. The safety
of M is 165/200 = 0.825. this safety measure is still
unknown to us, for the exact number of mr-tests is not
known. With 770 nmr-tests, the precision measure of
N is given by 770/800 = 0.9625. If we now use the

Figure 1.5.

safe 230 test not excluded by N as a regression test
suite, our cost drops significantly, but we still don’t
know exactly how much.

In general, let t be total number of tests, n be the
number of mr-tests, s be the number of nmr-tests; let m
be the number of mr-tests found by inclusive technique
M and let r be the number of nmr-tests found by
technique exclusive technique N. While mr- and nmr-
tests are always arithmetically complementary, safety
and precision are precisely related only when they are
equal to 1. When a selection technique is safe, m = n;
when an exclusion technique is precise, r = s. That
is, a safe selection technique is precise and a precise
selection technique is safe. Also note that when n and
s are known, the regression testing problem is solved.
Indeed, the problem is finding that partition.

3.2 New Measures

Figure 2 shows a simplified diagram of the RH96
framework. Figure 2 shows all possible regression tests
are decomposed into all modification revealing (MR)
and all non-modification revealing (NMR) tests. An
inclusive selection technique (M) identifies a sub-set
of modification revealing tests (mr). Inclusiveness is
calculated as mr / MR and safe inclusive test sets
are when mr = MR. Similarly a exclusion-based se-
lection technique (N) will find a sub-set of all non-
modification revealing tests (nmr). RH96 identifies
only modification revealing test sets they do not fur-
ther decompose the measurement of precision.

The premise of the measures and crucial to the ex-
ample above is the a priori knowledge of m and n, the
actual number of mr- and nmr-tests. If these values
are not known, how can the precision and safety be
estimated?

�

�

�

�

�

�

�

�

�

�

�

	

MR NMR

mr nmr

ALL TESTS

�
�
�
�
�
�
�
��

�
�
�
�
�
��

Included by technique M

Excluded by technique N

Figure 2: The set of all tests is partitioned into MR
and NMR sets. A particular inclusion or exclusion
technique does not find all the tests that should be
included / excluded.

To estimate safety and precision when m and n are
not known, we propose using exclusion to measure an
inclusive technique’s safety, and inclusion to measure
an exclusive technique’s precision.

Thus we define the safety of inclusive technique M
with respect to exclusive technique N as the ratio of the
number of tests found by inclusive technique M to the
number of tests that exclusive technique N does not
find. We call this e-safety(M,N).

In the example above, inclusive technique M se-
lects 150 tests; exclusive technique N misses 300 tests.
Thus e-safety(M,N) is 150/300 = 0.5

Similarly, we define i-precision(N,M) as the ratio of
the number of tests found by exclusive technique N to
the number of tests that inclusive technique M does
not find. In the example, i-precision(N,M) is 700/850
= 0.82. An e-safe technique is safe when N is precise;
an i-precise technique is precise when M is safe.

Continuing with the example, when inclusive tech-
nique M finds 10% more (15) mr-tests e-safety(M,N)
is 165/300 = 0.55; and i-precision(N,M) is 700/815 =
0.86. When exclusive technique N finds 10% more
70 nmr-tests e-safety(M,N) is 150/230 = 0.65,; i-
precision(N,M) is 770/850 = 0.91.

The examples show an application of Amdahl’s law.
By improving the actual value of nmr, the number of
non-modification-revealing tests, we can have an com-
putable upper bound on MR, the (unknown) number
of modification-revealing tests. What we have is a
practical way, an engineering way, a way to work safely
in the presence of unknown data. Referring back to
Figure 2, the technique and the associated measures,
are trying to enlarge the “bubble” that is labeled nmr.

4 A New Technique

An exclusion-based approach is likely to be more ef-
fective than an inclusion-based approach in two ways.
First, in terms of safety, as it is possible to more con-
fidently identify all non-modification revealing tests
where it is not possible to confidently identify all mod-
ification revealing tests. Second, in terms of the im-
pact of this approach, as changes are typically small
with respect to the size of the entire system, conse-
quently the modification revealing test set is also pro-
portionally small. As the set of non-modification re-
vealing tests is thus proportionally large, even small
additions to its size will have a large payoff. Reducing
the number of regression tests, by excluding ones that
will show no change, can have immediate practical im-
pact. Thus, determining ways to exclude tests should
have a large payoff.

The technique is reasonably straight-forward:

1. Decompose and Reduce System Version n. Con-
struct the decomposition slices for the system un-
der consideration. Note that the decomposition
slice graph does not need to be constructed (al-
though it would be nice to have); we only need the
decomposition slices and the slices equivalences.

2. Match Tests with Code. Use techniques like those
of Vokolos and Chen to connect test cases to de-
composition slices. Note that this yields both and
decomposition of the test cases, just as the slices
form a decomposition; an amalgamation of of
equivalent test cases are also obtained by match-
ing the test cases with the equivalent decomposi-
tion slice cluster.

3. Decompose and Reduce System Version n+1. As
in step 1. The systems will readily compare. Ob-
tain the tests for decomposition slice clusters that
remain unchanged.

4. Use tests that remain after removing those ob-
tained in step 3. Any tests for unchanged code
are not needed.

The advantage to the tester of partitioning both the
code and the tests should not be underestimated. A
test that satisfies any testing criteria for one element
in the decomposition slice cluster will satisfy the same
criteria em for every slice in the cluster.

What we have done is similar to Vokolos in that we
match test to code, but in our case, we use the compu-
tational element embodied in the decomposition slice.
The advantage of slicing is a clear win here. A code
block may be changed that has a ripple effect out into
the computation contained in another file. Slicing will
locate the affect. The same argument applies to the
techniques of Chen.

We use slicing in a much simpler way than Bink-
ley. We do not need to roll-out the code and look for
semantic differences. We can statically examine the
code (Binkley also does his analysis statically), per-
form some elementary set operations, and have the
result.

4.1 Measuring

Using this method to obtain regression meshes
nicely with measurement concepts presented is Sec-
tion 3.2. We know how many test we have; we can
count the size of the set of tests that we do not use;
this set is nmr in Figure 2. We can measure the e-
safety of any other selection technique with respect to

while (++x < 0) while (++x < 0)
{ {
while (++x < 0) while (++x < 0)
{ {}
while (++x < 0) while (++x < 0)
{} {}

while (++x < 0)
{}

} }
} }
print (x) print (x)

Figure 3: “Pathological” while statements.

that number of nmr-tests. In the technique we have
presented, we do not even bother to look for mr-tests.
We just use what is left as an approximation to MR.
However, with an approximation of MR in hand, we
can compare empirically the various regression test se-
lection techniques.

Our technique can also be “inverted.” Instead of
locating the tests for the unchanged decomposition
slice cluster and tossing those out of the regression test
suite, we can locate the tests for the changed clusters
and investigate the idea that they are sufficient as a
regression test suite.

Essentially, we have invented another kind of inclu-
siveness, exclusiveness. As RH96 pointed out and we
noted at the end of Section 2.1.

5 Examples

RH96 has some examples: some revolve around
statement deletion which is a singularly difficult prob-
lem in regression test selection; others are pathological
in the sense that they help clarify the technical def-
initions. We go through these examples in turn to
demonstrate our technique.

We begin by noting that the change in noted in
Figure 1 would have its tests included in the regression
suite, because the code has changed. This is just as
the techniques of Vokolos and Chen.

A similar argument applies to the code of Figure 3.
RH96 notes that both fragments output 1 on input
0, while on input -2, the left fragment outputs 1 and
the right fragment outputs 3. A functional regression
test method would be imprecise if the first test were
selected. Our slice and test method appropriately se-
lects all tests for this fragment.

if P then if P then
a = 2 a = 2

b = 3
end end

Figure 4: Adding Code

call PutTermGFX()
call DrawLine(x,y) call DrawLine(x,y)

Figure 5: Deleted Function Call

The code of Figure 4 nicley illustrates our tech-
nique. In the (unlikely) scenario that the is the only
change to the system is the addition of the assignment
b = 3, the tests that exercise the fragment on the right
would be eliminated, as they can have no effect on b.
In decomposition slicing terminology, the fragment on
the right properly extend the decomposition slice on
P; the decompositin slice on a is not involved in the
change. It is the maintainers job to see that the new
code is correct according to its new specification; this
task is not part of regression testing.

The code of Figure 5 is interesting. From its evident
context, the pair of decomposition slices for the two
function calls do not interfere. The tests that exer-
cise the call to PutTermGFX() would not be excluded,
and therefore run; the tests that exercise the (evi-
dently) unmodified function DrawLine(x,y)would be
excluded, and not used. This is a strict application of
the technique; in reality, one can presume that the
DrawLine(x,y) function accesses information that is
processed by PutTermGFX(). (It’s hard to image a
drawing function not accessing the terminal.) Because
the the decomposition slices would show the computa-
tional relationship between these functions, our tech-
nique would succeed.

The example of Figure 6 is a modication to the
decomposition slice on a. Tests that exercise the re-
maining code on the right are included, as the decom-
position slice on a was modified.

6 Summary and Future Work

There are five main areas of novelty in this presen-
tation:

1. Exclusion. Previous work in the area has used
test inclusion rather than test exclusion as a basis
for reducing regression test sets. We believe that
our novel approach is significantly more effective

if P then if P then
do_something do_something
a = 2

end end
if Q then if Q then
do_something do_something
print a

end end

Figure 6: Changed Decompositin Slice

at reducing the size of regression test sets than
previous approaches.

2. Decomposition slicing. No previous work has
used decomposition to direct regression testing.
Decomposition slicing uniquely exploits compu-
tational equivalence to safely identify reduced
testable components. This means that a decom-
position slicing directed approach to determining
excluded test sets allows more precision in test set
reduction than previous approaches.

3. Additions and deletions. Both Additions and
deletions are correctly accounted for.

4. Extended analysis framework. Our work extends
the measurement framework proposed originally
by Rothermel and Harrold in RH96.

5. New practical metrics. We are able to establish
an empirical baseline for the comparison of re-
gression test seletion technique

This approach can be used very quickly and easily
by commercial companies to reduce their regression
test sets.

6.1 Continuing Work

The Software-artifact Infrastructure Repository
(SIR) [4] is a repository of software-related artifacts
designed to support rigorous, controlled experimenta-
tion with program analysis and software testing tech-
niques. It was created to support the understanding
and assessment of software testing and regression test-
ing techniques and as such is an invaluable resource for
our continuing work. The repository contains many
Java and C software systems in multiple versions, to-
gether with supporting artifacts such as test suites,
fault data, and scripts. It also includes documenta-
tion on how to use these objects in experimentation,
supporting tools that facilitate experimentation, and

information on the processes used to select, organize,
and enhance the artifacts, and supporting tools that
help with these processes. We will use the SIR as an
empirical test-bed.

References

[1] D. Binkley. Semantics guided regression test cost
reduction. IEEE Transactions on Software Engi-
neering, 23(8):498–516, 1997.

[2] Y.-F. Chen, D. Rosenblum, and K.-P. Vo. Test-
tube: A system for selective regression testing. In
16th International Conference on Software Engi-
neering, pages 211–220, 1994.

[3] M. Cusumano. What road ahead for Microsoft
and Windows? Commun. ACM, 49(7):21–23,
2006.

[4] H. Do, S. G. Elbaum, and G. Rothermel. Sup-
porting controlled experimentation with testing
techniques: An infrastructure and its potential
impact. Empirical Software Engineering: An In-
ternational Journal, 10(4):405–435, 2005.

[5] N. Fenton and S. L. Pfleeger. Software Metrics:
a rigorous and practical approach. PWC, Second
edition, 1997.

[6] K. Gallagher and D. Binkley. An empirical study
of computation equivalence as determined by de-
composition slice equivalence. In Proceedings of
the 10th Working Conference on Reverse Engi-
neering, WCRE–03, pages 316 – 322, 2003. ISBN:
0-7965-2087-8.

[7] K. Gallagher, M. Harman, and S. Danicic. Guar-
anteed inconsistency avoidance during software
evolution. Journal of Software Maintenance and
Evolution: Research and Practice, 15(6):393–415,
2003. ISSN: 1532-060X.

[8] K. B. Gallagher and J. R. Lyle. Using program
slicing in software maintenance. IEEE Trans-
actions on Software Engineering, 17(8), August
1991.

[9] T. Ostrand, E. Weyuker, and R. M. Bell. Pre-
dicting the location and number of faults in large
software systems. IEEE Transactions on Software
Engineering, 31(4):340–355, 2005.

[10] G. Rothermel and M. J. Harrold. Analyzing re-
gression test selection techniques. IEEE Trans-
actions on Software Engineering, 22(8):529–551,
1996.

[11] F. Vokolos and P. Frankl. Empirical evaluations
of the textual differencing regression testing tech-
nique. In IEEE Conference on Software Mainte-
nance, 1998, pages 44–53, 1998.

