
Mimicking morphogenesis for robust behaviour of
cellular architectures

David Jones, Richard McWilliam, Alan Purvis

Abstract—Morphogenesis is the process that underpins the self-
organised development and regeneration of biological systems. The
ability to mimick morphogenesis in artificial systems has great
potential for many engineering applications, including production
of biological tissue, design of robust electronic systems and the
co-ordination of parallel computing. Previous attempts to mimick
these complex dynamics within artificial systems have relied upon
the use of evolutionary algorithms that have limited their size and
complexity. This paper will present some insight into the underlying
dynamics of morphogenesis, then show how to, without the assistance
of evolutionary algorithms, design cellular architectures that converge
to complex patterns.

Keywords—Morphogenesis, Regeneration, Robustness, Conver-
gence, Cellular automata

I. INTRODUCTION

Morphogenesis provides biological systems with a robust
framework for the differentiation of undeveloped or partially
developed cells. Remarkable examples of biological systems
that utilize morphogenesis include:

1) The human liver: This organ is capable of withstanding
and repairing damage to up to two-thirds of its con-
stituent cells.

2) The Salamander: If bissected from its tail, the tail will
often grow back.

3) Ascidians (marine filter feeders), whose blood cells
alone have been reported to give rise to a fully functional
organism[1].

Morphogens are soluble proteins that diffuse about source
cells within developing tissue. These chemical messages co-
ordinate the differentiation of cells, determining what type of
cell belongs where in the tissue. Alan Turing, in his seminal
paper “The Chemical basis of Morphogenesis” [3] showed
that systems of multiple chemicals that diffuse and interact
can create some of the irregular patterns found in biological
systems.

Wolpert[4] compared morphogenesis to the formation of
a simple pattern representing the French flag. This pattern
has served as the benchmark for those seeking to mimic
morphogenesis. Miller et al presented an evolved solution to
Wolpert’s French Flag on a cellular architecture[2], that proved
to be capable of repairing damage incurred to up to 25% of
its cells. That Miller et. al’s work was constrained to simple
patterns and limited reliability is because the relationship
between the rules obeyed by each cell and the resulting pattern
is unknown. Researchers in this field have used a supervised

d.h.jones2@dur.ac.uk, r.p.mcwilliam@dur.ac.uk, alan.purvis@dur.ac.uk
University of Durham, School of Engineering , South Road, Durham, DH1

2PQ

evolutionary algorithm to evolve local rules against a cost
function that is defined as the difference between the desired
pattern and the pattern that results from the execution of the
system.

This paper will first show that cellular automata can be
constrained to form robust patterns that perpetually repair
themselves in the event of corruption, then present a mecha-
nism for designing cellular automata to form arbitrary patterns
that does not require the use of an evolutionary algorithm.

II. A CELLULAR AUTOMATA MODEL OF MORPHOGENESIS

A two-dimensional cellular automata of identical cells can
be used to mimick morphogenesis. Each cell of the automaton
receives inputs from its four immediate neighbours, those to
the north, south, east and west of itself. These inputs are
“morphogens” that, via a set of rules determine both the state
of the cell and the form of the output morphogen from the
cell. The set of rules obeyed by each cell is identical for each
cell. The biological analogue of the output of an automata
cell would be the proteins it forms respective of its location
within the body. Within the model, the organ will be a pattern
of colours and each cell output will be a colour. Each cell will
communicate an integer state with its immediate neighbours.

At each discrete time-step every cell computes its next state.
Let us index each cell with the tuple (i, j), then describe the
state of each cell at time t with an integer, ci,j,t and the pattern
of the entire array as a matrix, Ct (see figure 1a).

III. A FRAMEWORK FOR THE DESIGN OF ROBUST
CELLULAR AUTOMATA

If C0 is the initial pattern of Ct, f(C0) is its subsequent
pattern after one time step, and f(f(C0)) or f2(C0) is its
pattern at t = 2; where the function f() describes the transition
function. The matrix Ct is first transcribed into a row-major
vector, Ct (figure 1b) in order for f() to be a linear function
of matrix algebra.

Let us now define a simple transition function from one
time step to the next:

ci,j,t+1 = nci,j−1,t+wci−1,j,t+eci+1,j,t+sci,j+1,t+xci,j,t+k
(1)

Where n, e, s, w and x are coefficents of the state of neigh-
bours of each cell, and of the state of the cell itself.

A transition function for the entire array can be formed from
(1) such that f(Ct) = TCt + K where K is a constant and
the transtion matrix (for a 3 by 3 CA), T, takes the form:



(a) (b)
Fig. 1. Index of CA elements, and a row-major vector equivalent

T =



x e 0 s 0 0 0 0 0
w x e 0 s 0 0 0 0
0 w x 0 0 s 0 0 0
n 0 0 x e 0 s 0 0
0 n 0 w x e 0 s 0
0 0 n 0 w x 0 0 s
0 0 0 n 0 0 x e 0
0 0 0 0 n 0 w x e
0 0 0 0 0 n 0 w x


(2)

The spacing of the coefficients n, e, s, w and x within T
depend on the size of the CA.

By the repeated application of f(), the transition from C0

to Ct (where t > 1) becomes a non-linear function:

f2(C0) = T(TC0 + K) + K

f3(C0) = T(T(TC0 + K) + K) + K

f3(C0) = T3C0 + T2K + TK + K

This can be expanded to form:

f t(C0) = TtC0 + Tt−1K + Kt−2K + ... + TK + K

Using the geometric series equation this can be simplified to
form:

f t(C0) = TtC0 + (
I−Tt−1

I−T
)K

Equation (III) determines the pattern formed after t itera-
tions of the transition function (1) have been applied to every
cell synchronously.

Given a sufficiently large t, in order for the dynamic non-
linear system to converge, the final pattern, Ct, must be
independent of the initial pattern, C0. Thus no matter what
the starting pattern (where t = 0 refers to the initial pattern
or any pattern that might be the result of system corruption),
the pattern of cell states will always return to the same stable
pattern.

To satisfy this constraint Tt, the coefficient of C0, must
equal zero. For this to be so, referring to the coefficients of
the states of the cells above, below, left and right and of the
cell itself respectively, the following three constraints must
hold:

1) Either n or s must equal zero
2) Either e or w must equal zero

3) x must equal zero.
This tells us that each cell must determine its next input

according to the state of one neighbouring cell per axis.
By expanding this analysis to an alternative sum-of-products

modulo-two transition function it can be shown that this con-
clusion also holds true for combinatorial transition functions.

IV. DESIGNING ROBUST CELLULAR ARCHITECTURES TO
FORM SPECIFIC PATTERNS

Let us consider the requirements on the implementation of
robust cellular architectures. In a two-dimensional automata
each cell with have at most two inputs, one nearest-neighbour
from each axis. Each cell will obey the same transition
function. We require that this architecture should be able to
converge upon any specified pattern.

If a combinatorial transition function (a function formed
using simple logic operators) is used, certain patterns will exist
that cannot be formed. This is because the same two-input
combination cannot be mapped to many different outputs.
Thus if the pattern we desire the automata to converge to
requires two cells to have the same inputs, but have different
outputs, a more elaborate solution is required.

Instead we could use two combinatorial functions imple-
mented using look-up tables (LUT). The first function, g(),
determines the next-state of the cell based on the current state
of two of its neighbours, one to its left or right, the other
above or below the cell. The second function, h(), will use
the current state of the cell to determine its output in a many-
to-one mapping. Figure 2 shows one possible implementation
of the transition function defined by the LUTs.

Fig. 2. An implementation of the cell transition function using LUTs

To determine the entries to be stored in each LUT we need
a design algorithm. At each time-step, every cell determines
its next state. Having reached the desired final state, the cell
transition rules of the automata must ensure that the next-state
of the automata is the same as the current state. Therefore
the necessary LUT entries can be derived from the final state
by determining the two-inputs of each cell and its next-state
output whilst in its correct state.

A further complication exists because the output of each
cell is not necessarily the same as its current state. Hence
we need some means of assigning a final state to each cell.
During execution the pattern emerges from one corner of the
automata (henceforth referred to as the origin) and progresses
towards the opposite corner of Ct (See figures 3 and 4). If we
progress through the cells in the same direction, assigning each
cell a state that, where possible, has already been assigned to
previous cells, it won’t be necessary to re-solve portions of the
pattern as the algorithm progresses. Listing 1 shows a pseudo-
code implementation of this design algorithm.



Listing 1. Design algorithm pseudo-code
For each of 4 r e f l e c t i o n s a b o u t t h e c e n t r e o f t h e p a t t e r n :

For each c e l l in t h e p a t t e r n , in o r d e r from top−l e f t t o bottom−r i g h t :
C e l l s t a t e = 0
While no s o l u t i o n has been found :

De te rmine t h e i n p u t s t o t h e c e l l
T e s t t h e s t a t e−to−o u t p u t mapping a g a i n s t p r e v i o u s l y

d e t e r m i n e d mappings . I f t h e r e i s a c o n f l i c t i n c r e a s e
t h e c e l l s t a t e by 1

T e s t t h e two−i n p u t t o c e l l−s t a t e mapping a g a i n s t p r e v i o u s l y
d e t e r m i n e d mappings . I f t h e r e i s a c o n f l i c t

i n c r e a s e t h e s t a t e by 1

Thus each feature of the desired pattern must have its
position in the pattern determined from another feature closer
to the origin, or the origin itself. Since each cell can only
communicate with its immediate neighbours, each position
must be determined by a non-repeating sequence of state
values. By progressing through the cells from the corner
opposite the origin towards the origin, and attempting to
assign each cell with previously used assignments first, these
position-determining sequences will use a minimal number of
states.

V. RESULTS - A ROBUST VENETIAN DRAGON PATTERN

The design framework we have presented is not limited by
the same constraints and is thus capable of forming much
more complicated patterns. Thus, rather than form the simple
French flag pattern we have chosen to create a robust pattern
of the dragon from the Venetian flag.

Using the algorithm describd in section four, a solution
to the Venetian dragon pattern on a 75 by 50 array of cells
was found using 2457 states and 3627 rules. Note that there
are fewer states than would be required to index each cell
uniquely. Figures 3 and 4 show the Venetian dragon pattern
developing from a null and a corrupt state.

Fig. 3. A Venetian dragon pattern forming from null initial conditions

VI. CONCLUSIONS

This report has sought to introduce a mathematical analysis
of an artificial cellular system inspired by the biological
process of morphogenesis. The results of this analysis include:

Fig. 4. A Venetian dragon pattern forming from partially corrupted initial
conditions

1) That to ensure the final pattern is completely robust, it
is necessary that the transition rules stored by each cell
are independent of the current cell state. In addition the
rules can only depend upon the state of one cell per axis,
either the cell to the left or to the right, either the cell
above or the cell below.

2) That it is possible to find a mapping from the automata
patterns to a set of transition rules using the algorithm
proposed in section four.

Morphogenesis has been demonstrated as an effective tool
for forming patterns on cellular arrays. Thus remains the
question, where else is it applicable? A sufficiently complex
self-assembling robot will require a morphogenesis algorithm
to co-ordinate the assembly process. The distribution and co-
ordination of processes across large computing farms may
benefit from this self-organising technique. Systems that can-
not afford failure could benefit from an architecture that is
intrinsically robust. More generally the approach should be of
use to others in the field of bio-mimicry, in particular those
working to imitate self-replicating systems.

REFERENCES

[1] N. J. Berrill and A. Cohen. Regeneration in clavellina
lepadiformis. Journal of experimental biology, 13, 1936.

[2] J. Miller and W. Banzhaf. Evolving the program for a cell:
From french flags to boolean circuits. On Growh, Form
and Computers, 2003.

[3] A. Turing. The chemical basis of morphogenesis. Philos,
Trans. Roy. Soc., Ser. B 237, 37, 1950.

[4] L. Wolpert. Positional information and the spatial pattern
of cellular differentiation. J Theor. Biol., 25:1-47, 1969.


