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ABSTRACT

Probabilistic adaptive wavelet packet models of texture pro-
vide new insight into texture structure and statistics by focus-
ing the analysis on significant structure in frequency space.
In very adapted subbands, they have revealed new bimodal
statistics, corresponding to the structure inherent to a tex-
ture, and strong dependencies between such bimodal sub-
bands, related to phase coherence in a texture. Existing mod-
els can capture the former but not the latter. As a first step to-
wards modelling the joint statistics, and in order to simplify
earlier approaches, we introduce a new parametric family
of models capable of modelling both bimodal and unimodal
subbands, and of being generalized to capture the joint sta-
tistics. We show how to compute MAP estimates for the adap-
tive basis and model parameters, and apply the models to
Brodatz textures to illustrate their performance.

1. INTRODUCTION

The ability to describe, analyse, and classify textures is an
integral part of image processing due to the frequent asso-
ciation of particular textures with particular entities in the
scene. For example, in remote sensing, which is our tar-
get application, satellite sensor resolutions of the order of
a metre mean that some entities (forest, fields,. . . ) can be
characterized by their texture, something that was not pos-
sible with lower resolutions. The result is a large body of
work on texture analysis, modelling, and classification. De-
spite this attention, however, it cannot be said that texture
is fully understood. For example, as will be discussed later,
many probabilistic models of texture in the literature describe
ensembles in which the most probable images are constant,
rather than textured.

In [4], Brady et al. studied probabilistic adaptive wavelet
packet models of texture. The notion of adapting wavelet
packet bases to the data was introduced at the same time as
wavelet packets themselves [7], and the idea was swiftly ap-
plied to texture classification [5, 14]. Brady et al. embedded
the idea in a Bayesian probabilistic framework in which the
adapted basis and model parameters were simultaneously es-
timated. This justifies the criterion used for adaptivity, makes
underlying assumptions explicit, and provides as output an
image model that can be used for any subsequent purpose.
Probabilistic adaptive wavelet packet models are parameter-
ized by a dyadic division of (one quadrant of) the Fourier do-
main (given a mother wavelet, this defines a wavelet packet
basis) and, for each subband, a set of parameters defining the
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probability distribution for the coefficients in that subband.
(The mother wavelet can also be included as a parameter,
and estimated [1].) This type of model presents several ad-
vantages for texture modelling. All wavelet approaches [15]
have the advantage that they are easily adapted to regions of
different shapes, at least approximately, unlike the Fourier
basis. However, like the pixel basis, the assumption of inde-
pendence between all wavelet coefficients is not sufficient
to capture the structure present in textures. In particular,
the standard wavelet basis only captures long range depen-
dencies at low frequency, whereas typical dependencies in
textures exist at medium frequencies also. In the pixel ba-
sis, this problem is addressed using Markov random fields,
and there is a great deal of work on using such distributions
to model texture [9]. However, the range of the dependen-
cies present in many textures make such an approach com-
putationally difficult. Using wavelet bases, Markov [3] and
hidden Markov tree [6] models have been used to introduce
dependencies between different scales. Originally designed
to capture the structure of edges in the image, these mod-
els are not particularly well adapted to the type of within-
scale dependencies necessary to represent strong periodici-
ties, for example. Such within-scale dependencies turn each
level of the wavelet decomposition into a Markov random
field, thus again making the problem computationally hard.
Adaptive wavelet packet bases capture long-range dependen-
cies while maintaining computational tractability by incor-
porating the dependencies into the structure of the basis it-
self, while maintaining independence between coefficients.
Highly adapted subbands effectively link together nearby
wavelets, thus incorporating dependencies, while the fall-off
of dependence with distance means that the wavelet packet
coefficients can more reasonably be supposed to be indepen-
dent. This is similar to the approach taken with ‘geometric’
wavelets (curvelets, ridgelets, etc.), where a different basis is
used to capture the dependencies implied, for example, by an
edge.

In [4], Brady et al. used Gaussian distributions for the
subbands. They discovered, however, that in the subbands
most closely adapted to the texture, the statistics, far from be-
ing Gaussian, or even generalized Gaussian, were bimodal.
A posteriori, the reason for this is clear. The standard lep-
tokurtic statistics for wavelet coefficients arise because the
wavelet filters respond weakly in smooth parts of an image,
responding strongly only at high image gradients. In the case
of a wavelet packet basis adapted to a texture, however, the
most highly adapted wavelet filters respond strongly almost
everywhere, giving few zeros and many reasonably large val-
ues. The bimodal statistics mean that samples from the adap-



tive wavelet packet histograms are very likely to contain non-
zero values of the wavelet packet coefficients in bimodal sub-
bands. This is as it should be: models of texture should de-
scribe textured images. This observation points out a prob-
lem with many texture models in the literature: because the
subband distributions are peaked at zero, the most probable
images under these distributions are nearly constant, rather
than textured. The different widths of these distributions may
enable one texture to be distinguished from another, but the
resolving power of a model is greatly increased when it is re-
alized that for some subbands, there are likely to be very few
zero coefficients; these are the coefficients that characterize
the structure of the texture. This allows bimodal subbands to
be used on their own to classify textures, corresponding to a
large reduction in description length.

The bimodal statistics perform a function similar to the
deterministic component in the Wold decomposition [11].
There, the almost-certain presence of certain frequencies is
indicated by a delta function in the (diagonal) covariance: the
variance of these Fourier components is infinite. However,
very large variance is not required for deterministic presence.
Indeed it has the disadvantage that the entropy of the distrib-
ution is thereby greatly increased, thus decreasing the accu-
racy of the description. Bimodal statistics represent the same
behaviour by assigning a much higher probability to a finite
value than to zero, and they do this without drastically in-
creasing the entropy of the distribution with respect to other
subbands.

In [8], Cossu et al. introduced models for these new bi-
modal statistics based on mixtures of Gaussians. These mod-
els are very effective, for example, allowing successful seg-
mentations based on single bimodal subbands. They suf-
fer from some drawbacks however. First, they require a
choice of model for each subband: generalized Gaussian or
Gaussian mixture. This introduces some arbitrariness into
the parameter estimation procedure. The second drawback
relates to the joint statistics of wavelet subbands. Joint sta-
tistics are essential for accurate texture description because
they are related to correlations between Fourier components,
which define the structure of the texture, as opposed to its
main periodicities. Cossu et al. studied the joint statistics
of bimodal subbands, and discovered that in many cases
the subbands were far from independent, instead exhibiting
strong and organized dependencies. An example is shown in
figure 1, which shows a scatterplot of pairs (wα,i,wα ′,i) of
undecimated wavelet packet coefficients from two subbands,
bimodal for one texture (dark grey or red points) and uni-
modal for another (light grey or green points). Notice how
well separated the clusters are. Modelling these dependen-
cies using the mixture of Gaussian model developed for the
one-point statistics is unwieldy, and so a different approach
is needed.

We begin this task by introducing a new model for the
bimodal subbands. Instead of a model choice for each sub-
band, a parametric model that interpolates between bimodal
and Gaussian statistics is used. In this paper, we use this
model to capture the one-point statistics of subbands, but the
utility of the approach is that the same family of models can
be used to capture the observed joint statistics also. The fam-
ily has other advantages too; we discuss these further in the
conclusion.

In the next section, section 2, we define the parametric
model that we will use. In section 3, we discuss the pa-

Figure 1: Scatterplot of adaptive wavelet packet coefficients
from two bimodal subbands, for the texture on which the ba-
sis was trained (red points) and for another texture (green
points).

rameter estimation problem and how we solve it. Then in
section 4, we present the results of applying the new model
to various textures. Finally, in section 5, we conclude and
discuss how the models can be extended to capture joint sta-
tistics and other properties of textures.

2. MODEL DEFINITION

Adaptive wavelet packet models take the following form:

P(I|θ ,T ) = ∏
α∈T

P(wα |θα ,α) , (2.1)

where: I : Ω → R is the image on some domain Ω; T is
a dyadic partition of one quadrant of the Fourier domain; α
labels the elements of the partition, the subbands; θ : T →R

n

gives the parameters for each subband α; and wα are the
wavelet packet coefficients of I in subband α . We will further
assume that the coefficients in each subband are independent:

P(wα |θα ,α) = ∏
i∈α

P(wα,i|θα ,α) . (2.2)

To define the model, it therefore suffices to give the dis-
tribution for a single wavelet packet coefficient in each sub-
band. In order to model the bimodal statistics of the wavelet
packet coefficients of textures, we choose the following para-
metric family:

P(wα,i| fα ,gα) ∝ exp
{

−
(

fα w2
α,i +gα w4

α,i

)}

, (2.3)

where θα = ( fα ,gα) are the parameters associated with sub-
band α .

For gα = 0, the distribution is Gaussian, and on using
equations (2.1) and (2.2), we recover the family of adaptive
wavelet packet basis distributions used by Brady et al. in [4].
When fα ,gα > 0, the distribution has a flattened form. More
interestingly, when gα > 0 and fα < 0, the distribution is bi-
modal. Thus different parameters in different subbands allow
us to interpolate between these types of distribution. Figure 2
shows some examples.

3. PARAMETER ESTIMATION

In order to use the models, we must be able to estimate their
parameters given sample data corresponding to the class of
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Figure 2: Equation (2.3). Top left: f = 1, g = 0; Top right:
f = 1, g = 20; Bottom left: f = −1, g = 1; Bottom right:
f = −2, g = 0.5.

textures we wish to model, for example, images of forest.
The posterior probability for the parameters f , g, and T is

P( f ,g,T |I,K) ∝ P(I| f ,g,T )P( f ,g|T,K)P(T |K) ,

where we use K to indicate any other prior knowledge or pa-
rameters that may exist. We will take P( f ,g|T,K) to be Jef-
frey’s prior. Invariant MAP estimation [13] will then result in
this prior being cancelled by an underlying density, and we
can ignore it. We will take P(T |K) ∝ exp−β |T |, where |T |
is the number of elements in the partition T . This penalizes
complex partitions. The forms of P(I| f ,g,T ) and P(T |K)
both factorize over the elements of the partition, meaning that
we can estimate the parameters using the standard depth-first
search procedure over the tree of partitions used in [4, 8]. The
decision as to whether to decompose a given node of the tree
depends only on the data and parameters for the correspond-
ing subband—the parameters in turn depending only on the
data in the subband—and the optimal choices for the child
nodes. Thus, on returning to the root of the tree, the opti-
mal partition and corresponding parameters are known. The
only missing step is the estimation of the subband parameters
from the data in a given subband.

In order to estimate these parameters, we first need to
know the normalization constant Z( f ,g) for equation (2.3).
This takes different forms for different ranges of f and g.
The expressions are shown in equation (3.1) (we define h =
f 2/8g):

Z( f ,g) =
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(3.1)

where I and K are modified Bessel functions of the first
and second kinds respectively. To avoid numerical problems
when h ≫ 1, we use an expansion in powers of g when h is

large:

∫ ∞

∞
dx e− f x2−gx4 ≃

∫ ∞

∞
dx e− f x2

(1−gx4 +
1

2
g2x8 + · · ·) .

This results in the following approximate expression for Z:

Z( f ,g) =

√

π

f

(

1− 3g

4 f 2
+

105g2

32 f 4
+ · · ·

)

.

The optimization problem involves only the log likeli-
hood Lα for each subband (we drop the subscript α for ease
of reading):

L(w| f ,g) = −n lnZ( f ,g)− f ∑
i

w2
i −g∑

i

w4
i .

where n is the number of coefficients in the subband. The
optimization problem is then to maximize Lα over f and g
given the constraint g ≥ 0. Thus we wish to solve the equa-
tions

L f = 0 = −n
Z f

Z
−∑

i

w2
i

Lg = 0 = −n
Zg

Z
−∑

i

w4
i ,

where subscripts indicate differentiation. To perform this op-
timization, we use a quasi-Newton algorithm [12] with the
DFP updating method [10]. Standard Newton-Raphson opti-
mization does not work because it frequently overshoots the
barrier g = 0, creating negative values of g and an undefined
normalization constant. The quasi-Newton algorithm takes
the following steps to find a zero of a function F : R

n → R
n

(note that the derivatives of L form a function from R
2 to

itself):

• Choose an initial point x0 ∈ R
n and a positive semidefi-

nite matrix H0 (typically, H0 = I, the identity matrix);

• At step k:

1. Define a direction dk = −HkF(xk);
2. Find tk > 0 such that F(xk + tkdk) < F(xk);
3. Set xk+1 = xk + tkdk;

4. If F(xk+1) 6= 0, compute Hk+1.

The DFP update method takes the following form (where
δxk = xk+1 − xk and δFk = F(xk+1)−F(xk)):

Hk+1 = Hk +
δxkδxT

k

δxT
k δFk

− (HkδFk)(HkδFk)
T

δFT
k HkδFk

,

where superscript T denotes transpose. For further explana-
tion, we refer the reader to the references cited above.

We note that the kurtosis of the distribution in equa-
tion (2.3) is always less than 3, which is the kurtosis of a
Gaussian distribution. If the sample kurtosis of the coeffi-
cients in the subband is greater than 3, we avoid the above
optimization and simply set g = 0, leaving the trivial prob-
lem of estimating the variance of a Gaussian distribution.

The choice of initialization point is important. We use a
rather naive but in practice effective device: we set f0 and g0

equal to their estimated values if the other were set to zero:

f0 =
n

2∑i w2
i

g0 =
n

4∑i w4
i

(3.2)



This leaves open the sign of f . To set this, we note that the
kurtosis of the distribution in equation (2.3) is a monotoni-
cally increasing function of f . The threshold value at f = 0
is easily computed to be

κ∗ =
Γ( 5

4
)Γ( 1

4
)

Γ2( 3
4
)

≃ 2.18 .

We set f ≷ 0 if κ(w) ≷ κ∗, where κ(w) is the sample kurto-
sis.

4. RESULTS

We present here the results on Brodatz textures. More results
are available in [2]. Figure 3 shows the decomposition for the
D84 Brodatz texture for β = 220. Frequency increases from
top to bottom and from left to right. The black subbands are
Gaussian (g = 0), the grey subbands have f ,g > 0, while the
white subbands are bimodal ( f < 0, g > 0).
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Figure 3: The D84 texture, and its adaptive wavelet decom-
position for β = 220. Black indicates a Gaussian subband,
gray f ,g > 0, white a bimodal subband.

Figure 4 shows the histograms of the adaptive wavelet
packet coefficients taken from two bimodal subbands. The
curves display the fitted models.
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Figure 4: Histograms of the adaptive wavelet packet coeffi-
cients of D84 in two bimodal subbands, for β = 220, together
with the fitted models.

Figure 5 shows the decomposition for the D104 Brodatz
texture obtained with β = 280, while figure 6 shows his-
tograms of two bimodal subbands and the fitted models.

5. CONCLUSION

The models described here work well, enabling the diverse
observed behaviours of the wavelet packet coefficients to be
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Figure 5: The D104 texture, and its adaptive wavelet decom-
position for β = 280. Black indicates a Gaussian subband,
gray f ,g > 0, white a bimodal subband.
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Figure 6: Histograms of the adaptive wavelet packet coeffi-
cients of D104 in two bimodal subbands, for β = 280, to-
gether with the fitted models.

captured by a single two parameter model. The resulting im-
age probability distributions can be used, for example, for
segmentation. Several points need to be addressed, however,
before the potential of the models is fully realized. First,
the models are not rotation invariant. While this can be ad-
dressed in the usual way using mixture models over rota-
tions via alignment of the texture with the model, this is far
from ideal. Intrinsically invariant models would be better.
Unfortunately, imposing rotation invariance on a Gaussian
distribution leads to a limited class of models that describe
unoriented textures. While these have their uses, in many
cases they are not sufficient. One of the advantages of the
quartic models presented here is that they can be general-
ized to given rotationally invariant models that nevertheless
can describe oriented textures. Second, although capturing
the bimodality is a good start in terms of modelling a tex-
ture, it does not take into account the relationship between
subbands. These dependencies can be complex, as we have
seen. Again, the quartic models can be generalized to model
these joint statistics. Finally, a further generalization can also
capture the phase relationships between Fourier components
that are critical to distinguishing certain textures.
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