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ABSTRACT

Using the framework of higher-order active contours, we present

a new quadratic continuation energy for the extraction of line net-

works (e.g. road, hydrographic, vascular) in the presence of occlu-

sions. Occlusions create gaps in the data that frequently translate

to gaps in the extracted network. The new energy penalizes nearby

opposing extremities of the network, and thus favours the closure

of the gaps created by occlusions. Nearby opposing extremities are

identified using a sophisticated interaction between pairs of points

on the contour. This new model allows the extraction of fully con-

nected networks, even though occlusions violate common assump-

tions about the homogeneity of the interior, and high contrast with

the exterior, of the network. We present experimental results on

real aerial images that demonstrate the effectiveness of the new

model for network extraction tasks.

1. INTRODUCTION

The automatic extraction of line networks, e.g. road, hydro-

graphic, and vascular networks, from images is an impor-

tant problem in many applications. It is also very challeng-

ing, because such networks often cannot be reliably distin-

guished from other entities by local measurements such as

intensity or texture. On the other hand, by their very nature

we have a great deal of prior information about the shape of

networks, prior information that is clearly critical for suc-

cessful extraction. This information is, however, hard to

model: networks are not mere variations around a ‘mean’

shape, and can possess complicated topologies. In order to

describe this type of sophisticated prior geometric knowl-

edge, and to provide a general framework for shape mod-

elling, [1] introduced ‘higher-order active contours’. The

energies defining these models incorporate long-range in-

teractions between tuples of contour points, and can thus

describe complex families of shapes. This is in contrast to

classical energies, where the interactions are local, being

mediated by contour derivatives. Using a specific quadratic

instance of this new class of model, [1] showed results ex-

tracting road networks. The results were good, and used
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a generic, hence automatic initialization, but a problem re-

mained. One of the strongest pieces of prior geometric knowl-

edge about networks is ‘continuation’. That is, arms of the

network do not simply stop, and then continue a little further

on in roughly the same direction. If this is how they appear

in an image, then there must be an occlusion that explains

the interruption. The models of [1] did not directly incor-

porate this prior knowledge, and in consequence the results

showed gaps where the real network was occluded in the

image, e.g. by cast shadows or directly by trees and build-

ings. The data in the presence of such occlusions directly

supports the idea of a gap because the assumptions of homo-

geneity in the interior, and high contrast with the exterior, of

the network are violated, as can be seen in figure 1. The sit-

uation was worsened by the model in [1], because nearby

points of the network repelled one another, thus making gap

closure even less likely.

Previous work has dealt with this issue in different ways,

often without addressing it explicitly. Some semi-automatic

methods require user-defined endpoints, which must be con-

nected. These include methods minimizing the optimal path

between endpoints [2, 3], and active contour models such as

‘ribbon snakes’ [4, 5] and ‘ziplock snakes’ [6]. In this case,

the topology is fixed and occlusions are not an issue, but

these models cannot succeed when the network has a more

complicated topology. One road tracking method [7] uses

an ‘inertia’ term that allows the estimated road to extend

a short distance into a gap. Methods using marked point

processes [8] penalize isolated extremities, and thus do pe-

nalize gaps implicitly, if not directly.

In a preliminary attempt to address this problem, [9]

added a nonlocal ‘gap closure’ force to the gradient descent

equation. This term could not be derived from an energy,

however, and thus lay outside the framework of higher-order

active contours, complicating analysis, and meaning that

convergence to an energy minimum could not be guaran-

teed. In this paper, we present a solution to the gap clo-

sure problem within the framework of higher-order active

contours by introducing a novel quadratic continuation en-

ergy. This energy is added to the model used in [1], which

is briefly summarized at the beginning of section 2. In order



to close gaps, we first identify them; we equate gaps with

‘nearby opposing extremities’ of the network, and then con-

struct a quadratic energy that penalizes such configurations

while simultaneously annulling the repulsive effects of the

model in [1]. The identification of gaps and the continu-

ation energy are described in sections 2.1 and 2.2 respec-

tively. The resulting continuation energy presents a tough

challenge numerically due to the presence of first and sec-

ond derivatives of the contour curvature in its gradient de-

scent equation. We describe how we deal with this chal-

lenge in section 3. In section 4, we show the benefits of the

new energy via geometric experiments and the extraction of

road networks.

Fig. 1. Aerial images with occlusions.

2. A NEW MODEL

The new continuation energy will be added to the energy

used in [1], which we now briefly summarize. Let I : Ω →

R be an image, where Ω ⊂ R
2. Define a region by its

boundary, denoted C, and called a contour. We define a

functional on the space of boundaries in Ω of the following

form:

E(C) = Eg(C) + λEi(C; I) , (1)

where λ ∈ R. The geometric part Eg is

Eg(C) = L(C) + αA(C)

− β

∫∫
dp dp′ (~t ·~t′) Ψ(R(p, p′)) , (2)

where L is the contour length, and A the interior area; ~t

is the tangent vector to the contour; Ψ is a function with

the form of a smoothed hard-core potential (Ψ(x) is 1 if

x < d−ǫ, 0 if x > d+ǫ, and 1
2
(1− x−d

ǫ
−

1
π

sin(π x−d
ǫ

)) oth-

erwise; d and ǫ are two positive parameters); and R(p, p′)
is the Euclidean distance from C(p) to C(p′). Primed vari-

ables are evaluated at p′ or C(p′).
The image part Ei is composed of three terms:

Ei(C; I) =

∫
dp n̂ · ∇I − λ1

∫
dp G[I](p)

− λ2

∫∫
dp dp′ (~t ·~t′) (∇I · ∇I ′) Ψ(R(p, p′)) , (3)

where n̂ is the unit outward normal to the contour. The first,

linear term favours situations in which the outward normal

is opposed to a large image gradient. The second, linear

term incorporates a simple line detector filter measurement.

The third, quadratic term favours situations in which pairs

of points that are not too distant, and whose tangent vectors

are antiparallel, lie on large image gradients that point in

opposite directions. Note that the model describes not just

the 1D network topology, but the region occupied by the

network in the image.

2.1. Identification of gaps

In order to develop a continuation energy, we identify situ-

ations in which continuation is violated, and penalize them.

We equate a failure of continuation with configurations in

which there are ‘nearby opposing extremities’ in the net-

work, a situation illustrated in the leftmost part of figure 4.

We define three ‘switch’ functions, which correspond to

‘nearby’, ‘opposing’, and ‘extremities’, and use their prod-

uct to ensure that only these configurations contribute to the

new continuation energy:

Sn(p, p′) = Φ(R(p, p′)) ,

So(p, p′) = H(R̂ · n̂(p)) ,

Se(p) = H(κ(p) − ǫ) ,

S(p, p′) = Sn(p, p′)So(p, p′)So(p
′, p)Se(p)Se(p

′) .

Here H is a smoothed Heaviside function, κ is the signed

curvature, ǫ is a fixed positive threshold, and R̂ is the unit

vector pointing from C(p) to C(p′). The function Φ, shown

in figure 2.1, is minimum for R(p, p′) = 0 and increasing.

Thus Sn will ensure that the new energy increases with gap

size up to a certain point, after which it is constant. The

definition of ‘nearby’ is given by the range of Φ, which is

∼ 30 pixels. This should be contrasted with the range of the

function Ψ in equation (2) (∼ 3 pixels).
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0 otherwise (r is a positive parameter).

Switch So is non-zero when p′ lies roughly along the

outward pointing normal direction from p, which corresponds

to the fact that points on ‘opposing’ extremities lie outside

the contour with respect to one another and are roughly



aligned. This is illustrated in figure 2.1. Switch Se is non-

zero when the curvature at p is greater than ǫ. This cor-

responds to the fact that ‘extremities’ have large, positive

curvature (the rest of the network has curvatures close to

zero or negative).
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Fig. 3. A pair of ‘opposing extremities’.

The product switch, S(p, p′), will thus be non-zero only

when both p and p′ have curvatures greater than ǫ, and when

they are mutually exterior and roughly aligned. Due to Sn,

the value of S decreases as the separation between C(p) and

C(p′) decreases.

2.2. Continuation energy

The new continuation energy Econ is built using the prod-

uct switch function S(p, p′) described above. It takes the

form Econ(C) = Ecan(C)+Epen(C). The first term, Ecan,

cancels the third term of equation (2) for nearby opposing

extremities, while the second, Epen, penalizes the gap be-

tween such extremities:

Ecan(C) = β

∫∫
dp dp′ (~t ·~t′)Ψ(R(p, p′))S(p, p′) (5a)

Epen(C) = −β2

∫∫
dp dp′ (~t ·~t′)Φ(R)S(p, p′) (5b)

Note that equation (5a) is of the same form as equation (2),

but of the opposite sign, and with the integrand multiplied

by the product switch that identifies nearby opposing ex-

tremities. Its effect is thus simply to annul the third term of

equation (2) for nearby opposing extremities. Equation (5b)

again takes a similar form, but differs in using the func-

tion Φ rather than Ψ. The result is that the interaction ex-

pressed by this term is of much longer range than that of

the third term of equation (2), and is of the opposite sign,

thus favouring the absence of gaps between nearby oppos-

ing extremities. As with the third term of equation 2, and all

higher-order terms, the force due to Econ is nonlocal, being

given at each point by an integral over the contour.

3. CONTOUR EVOLUTION

We solve the minimization problem for the new energy us-

ing the extended level set techniques necessary for dealing

with the nonlocal forces generated by higher-order active

contour energies. These techniques are described in de-

tail in [10]. The new energy introduces its own compli-

cations, however. The functional derivative of Econ con-

tains many terms (which space restrictions prevent us from

including here), all of them nonlocal. Some of these con-

tain both first and second derivatives of the contour curva-

ture, which translate into third and fourth derivatives of the

level set function, and first, second, and third derivatives

of the smoothed Heaviside function H . We adopt specific

measures to ameliorate the numerical difficulties that these

terms could cause.

First, we adjust the function H so that its derivatives

have a similar magnitude to the function itself. Failure to

do this results in the derivatives of H having very large

magnitudes that slow down the evolution (we use an adap-

tive time step inversely proportional to the maximum force

on the contour), and if sufficiently exaggerated, destabilize

it. Note that this is not an approximation, but a choice

of interaction. Second, before computing geometric quan-

tities such as the curvature and its derivatives, we apply

Gaussian smoothing with σx = σy = 1 to the level set

function. In particular, this smooths the contour curvature,

and leads to better recognition of extremities. Third, to im-

prove accuracy, all derivatives are computed from the re-

sulting level set function using fourth order finite differ-

ences. Finally, as in [1, 9], in order to compute the nonlocal

forces, we have to approximate integrals over the contour by

sums over extracted contour points. Because we are dealing

with periodic functions, we can improve the precision of

this approximation to fourth order by using points separated

by equal contour lengths. Thus, in order to compute the

force at a point p, we first redistribute the extracted contour

points around p so that they are equidistant; we then com-

pute the necessary geometric quantities at these points using

the techniques of [1]; and finally perform the numerical in-

tegration.

4. EXPERIMENTAL RESULTS

The first experiments we show are purely geometric, i.e. the

terms in equation (3) are absent, and demonstrate the behav-

iour of the new quadratic energy term Econ(C). We present

the results in figure 4. In the absence of Econ, two nearby

opposing extremities repel, and develop into two separated

networks. This effect is clearly undesirable, since it is more

probable that the arms should be connected. Adding Econ,

the arms extend towards one another and join to produce a

network with continuation.

We now show experiments on real images. We start with

the simple image in figure 4. The result of extraction using

only the model E(C) fails to continue the network across

the gap. Adding Econ(C), we find that the contour now

continues the network across the gap, thus producing the

correct result.

Another result is shown in figure 4. Despite the trees

obscuring the network, the road is reconstructed correctly.

Note that in both cases, we took as an initial contour a



Fig. 4. Two purely geometric evolutions, one without (top)

and one with (bottom) the new continuation energy Econ.

Fig. 5. Top: aerial image and extraction with E(C); bottom:

generic initialization and extraction with Econ added.

rounded rectangle filling the image domain, as shown in the

bottom left of figure 4. This is very far from the solution,

and the fact that the model still manages to find the cor-

rect result demonstrates the robustness resulting from the

inclusion of the sophisticated prior geometric information

described by the higher-order terms.

5. CONCLUSION

In this paper, we have tackled the problem generated by

occlusions in the extraction of line networks, and in par-

ticular, road networks, from images. It often happens that

entities such trees, buildings or their shadows obscure the

network. Using the framework of higher-order active con-

tours, we can identify situations where pairs of network ex-

tremities should be connected, and we have described a new

quadratic energy term that favours such continuation. Gra-

dient descent using this new energy is a delicate matter due

to the presence of numerous force terms containing higher

derivatives, which require special attention. Experiments on

remote sensing images demonstrate the efficacy of the new

continuation energy, but the model is not limited to road net-

work extraction. It could be applied, for example to medical

or biological network extraction.

Fig. 6. Aerial image and result of extraction.
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