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Abstract. High-resolution astronomical images can be reconstructed
from several blurred and noisy low-resolution images using a computa-
tional process known as superresolution reconstruction. Superresolution
reconstruction is closely related to image deconvolution, except that the
low-resolution images are not registered and their relative translations
and rotations must be estimated in the process. The novelty of our ap-
proach to the superresolution problem is the use of wavelets and related
multiresolution methods within an expectation-maximization reconstruc-
tion process to improve the accuracy and visual quality of the recon-
structed image. Simulations demonstrate the effectiveness of the proposed
method, including its ability to distinguish between tightly grouped stars
with a small set of observations.

1. Introduction

The physical resolution of astronomical imaging devices such as space telescopes
is limited by system parameters such as lens aperture and CCD array properties
and by physical effects such as the atmosphere and the interstellar/intergalactic
medium. However, such systems typically do not take a single snapshot of a
celestial body, but rather collect a series of images. Due to mechanical vibra-
tions of the instrument and movement of the satellite relative to the body being
images, the images collected are all slightly different observations of the same
scene. Superresolution image reconstruction refers to the process of reconstruct-
ing a new image with a higher resolution using this collection of low resolution,
shifted, rotated, and often noisy observations. This allows users to see image
detail and structures which are difficult if not impossible to detect in the raw
data.

Superresolution is a useful technique in a variety of applications (Schultz &
Stevenson, 1996; Hardie, Barnard, & Armstrong, 1997), and recently, researchers
have begun to investigate the use of wavelets for superresolution image recon-
struction (Nguyen, Milanfar, & Golub, 2001). We present a new method for
superresolution image reconstruction based on the wavelet transform in the pres-
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ence of Gaussian noise and on an analogous multiscale approach in the presence
of Poisson noise. To construct the superresolution image, we use an approach
based on maximum penalized likelihood estimation. The reconstructed image is
the argument (in our case the superresolution image) that maximizes the sum of
a log-likelihood function and a penalizing function. The penalizing function can
be specified by an ad hoc smoothness measure, a Bayesian prior distribution for
the image (Hebert & Leahy, 1989; Green, 1990), or a complexity measure (Liu
& Moulin, 2001). Smoothness measures include simple quadratic functions that
measure the similarity between the intensity values of neighboring pixels, as well
as non-quadratic measures that better preserve edges. Similar penalty functions
result from Markov Random Field (MRF) priors. Complexity measures are usu-
ally associated with an expansion of the intensity image with respect to a set of
basis functions (e.g. Fourier or wavelet) and count the number of terms retained
in a truncated or pruned series (Saito, 1994; Krim & Schick, 1999); the more
terms (basis functions) used to represent the image, the higher the complex-
ity measure. Many algorithms (e.g. Expectation-Maximization algorithms, the
Richardson Lucy algorithm, or close relatives) have been developed to compute
MPLEs under various observation models and penalization schemes.

Wavelets and multiresolution analysis are especially well-suited for astro-
nomical image processing because they are adept at providing accurate, sparse
representations of images consisting of smooth regions with isolated abrupt
changes or singularities (e.g. stars against a dark sky). Many investigators have
considered the use of wavelet representations for image denoising, deblurring,
and image reconstruction; for examples, see Mallat, 1998, and Starck, Murtagh,
& Bijaoui, 1998. The proposed approach uses an EM algorithm for superreso-
lution image reconstruction based on a penalized likelihood formulated in the
wavelet domain. Regularization is achieved by promoting a reconstruction with
low-complexity, expressed in terms of the wavelet coefficients, taking advantage
of the well known sparsity of wavelet representations.

The EM algorithm proposed here extends the work of Nowak & Kolaczyk,
2000, and Figueiredo & Nowak, 2002, which addressed image deconvolution with
a method that combines the efficient image representation offered by the discrete
wavelet transform (DWT) with the diagonalization of the convolution operator
obtained in the Fourier domain. The algorithm alternates between an E-step
based on the fast Fourier transform (FFT) and a DWT-based M-step, resulting
in an efficient iterative process requiring O(N log N) operations per iteration,
where N is the number of pixels in the superresolution image.

2. Problem Formulation

In the proposed method, each observation, yk, is modeled as a shifted, rotated,
blurred, downsampled, and noisy version of the superresolution x. The shift and
rotation is caused by the movement of the instrument, and the blur is caused
by the point spread function (PSF) of the instrument optics and the integration
done by the CCD array. The downsampling (subsampling) operator models the
change in resolution between the observations and the desired superresolution
image. If the noise can be modeled as additive white Gaussian noise, then we
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have the observation model

yk = DBSkx + nk, k = 1, . . . , n

where D is the downsampling operator, B is the blurring operator, Sk is the shift
and rotation operator for the kth observation, and nk is additive white Gaussian
noise with variance σ2. By collecting the series of observations into one array, y,
the noise observations into another array, n, and letting H be a block diagonal
matrix composed of the n matrixes DBSk for k = 1, . . . , n, then we have the
model

y = Hx + n. (1)

Similarly, if the noise is better modeled a Poisson, then we have the model

y ∼ Poisson(Hx). (2)

From the formulation above, it is clear that superresolution image recon-
struction is a type of inverse problem in which the operator to be inverted, H, is
partially unknown due to the unknown shifts and rotations of the observations.
The first step of our approach is to estimate these parameters by registering the
low-resolution observations to one another. Using these estimates, we recon-
struct an initial superresolution image estimate x̂. This estimate is used in the
third step, where we re-estimate the shift and rotation parameters by registering
each of the low resolution observations to the initial superresolution estimate.
Finally, we use a wavelet-based EM algorithm to solve for x̂ using the regis-
tration parameter estimates. We begin by describing a wavelet-based method
for the Gaussian noise model, and follow that by a discussion of a multiscale
technique for Poisson data. Each of these steps is detailed below.

3. Registration of the Observations

The first step in the proposed method is to register the observed low-resolution
images to one another using a Taylor series expansion. This was proposed by
Irani and Peleg, 1991. In particular, let f1 and f2 be the continuous images
underlying the sampled images y1 and y2, respectively. If f2 is equal to a shifted,
rotated version of f1, then we have the relation

f2(tx, ty) = f1(tx cos r − ty sin r + sx, ty cos r + tx sin r + sy).

where (sx, sy) is the shift and r is the rotation. A first order Taylor series
approximation of f2 is then

f̂2(tx, ty) = f1(tx, ty) +
(
sx − txr − tyr

2/2
) ∂f1

∂tx
+
(
sy − tyr − txr2/2

) ∂f1

∂ty
.

Let ŷ2 be a sampled version of f̂2; then y1 and y2 can be registered by finding the
sx, sy, and r which minimize ‖y1−ŷ2‖2

2, where ‖x‖2
2 =

∑
i x

2
i . This minimization

is calculated with an iterative procedure which ensures that the motion being
estimated at each iteration is small enough for the Taylor series approximation
to be accurate; see (Irani & Peleg, 1991) for details. This method was applied



4 Willett, Jermyn, Nowak, & Zerubia

-2 -1 0 1 2

-2

-1

5

-1.

-2.

5

-0. 5

0

0.5

1

1.5

2

2.5
Shift Estimates (units of HR pixels)

0 5 10 15
-4

-3

-2

-1

0

1

2

3

4
Rotation Estimates (degrees)

(a) (b)

Figure 1. Image registration results. (a) True shifts (black), initial
shift estimates (hollow), and final shift estimates (gray). (b) True ro-
tations (black), initial rotation estimates (hollow), and final rotation
estimates (gray).

to the earth image data in Figure 2. The sixteen true shifts and rotations are
displayed in black in Figure 1, and the results of this registration method are
displayed in hollow circles and bars.

After the registration parameters have been initially estimated using the
above method, we use these estimates to calculate an initial superresolution
image as described in Section 4.. This initial image estimate is then used to
refine the registration parameter estimates. The method is the same as above,
but instead of registering a low resolution estimate, y2, to another low resolution
estimate, y1, we instead register it to DBS1x̂. The results of this refinement
are displayed in gray in Figure 1. From these plots, it is clear that the Taylor
series based approach can produce highly accurate results. However, in low SNR
scenarios, where confidence in registration parameter estimates may be low, the
estimates can be further refined at each iteration of the proposed EM algorithm,
as discussed in the following sections.

Note that the motion model considered here encompasses only shift and
rotation movement. When recording still or relatively still objects distant from
the imaging device, this model is sufficient. More sophisticated models are an
area of open research.

4. Multiscale Expectation-Maximization

Maximization is facilitated within the EM framework through the introduction
of a particular “unobservable” or “missing” data space. The key idea in the
EM algorithm is that the indirect (inverse) problem can be broken into two
subproblems; one which involves computing the expectation of unobservable
data (as though no blurring or downsampling took place) and one which entails
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estimating the underlying image from this expectation. By carefully defining the
unobservable data for the superresolution problem, we derive an EM algorithm
which consists of linear filtering in the E-step and image denoising in the M-step.

The Gaussian observation model in (1) can be written with respect to the
DWT coefficients θ, where x = Wθ and W denotes the inverse DWT operator
(Mallat, 1998):

y = HWθ + n.

Clearly, if we had y = Wθ+n (i.e. if no subsampling or blurring had occurred),
we would have a pure image denoising problem with white noise, for which
wavelet-based denoising techniques are very fast and nearly optimal (Mallat,
1998). Next note that the noise in the observation model can be decomposed
into two different Gaussian noises (one of which is non-white):

n = αHn1 + n2

where α is a positive parameter, and n1 and n2 are independent zero-mean
Gaussian noises with covariances Σ1 = I and Σ2 = σ2I − α2HHT , respectively.
Using n1 and n2, we can rewrite the Gaussian observation model as

y = H (Wθ + αn1)︸ ︷︷ ︸
z

+n2.

This observation is the key to our approach since it suggests treating z as missing
data and using the EM algorithm to estimate θ.

An analogous formulation is possible for the Poisson noise model. In this
case, photon projections can be described statistically as follows. Photons are
emitted (from the emission space) according to a high resolution intensity x.
Those photons emitted from location m are detected (in the detection space)
at position n with transition probability Hm,n, where H is the superresolution
operator from (2). In such cases, the measured data are distributed according
to

yn ∼ Poisson

(∑
m

Hm,nxm

)
. (3)

In this formulation of the EM algorithm, the missing data is defined as z =
{zm,n}, where zm,n denotes the number of photons emitted from m and detected
at n. The complete data are Poisson distributed according to

zm,n ∼ Poisson(Hm,nxm).

Hence the observed data y in (3) are given by yn =
∑

m zm,n. Additionally,
were we able to observe z = {zm,n}, the direct emission data for each location
m is given by sums of the form

∑
n zm,n ∼ Poisson(xm). Therefore, if z were

known, we could avoid the inverse problem altogether and simply deal with the
issue of estimating a Poisson intensity given direct observations.

From these formulations of the problem for Gaussian and Poisson data,
the EM algorithm produces a sequence of estimates {x(t), t = 0, 1, 2, . . .} by
alternately applying two steps:
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E-Step: Updates the estimate of the missing data using the relation:

ẑ(t) = E
[
z|y, θ̂(t)

]
.

In the Gaussian case, this can be reduced to a Landweber iteration (Landwe-
ber, 1951):

ẑ(t) = x̂(t) +
α2

σ2
HT

(
y −Hx̂(t)

)
.

Here, computing ẑ(t) simply involves applications of the operator H. Re-
call that H consists of shifting, blurring, and rotation (which can be com-
puted rapidly with the 2D FFT) and downsampling (which can be com-
puted rapidly in the spatial domain). Thus the complexity of each E-Step
is O(N log N).

In the Poisson case, this step is reduced to

z(t)
n,m =

ynx̂
(t)
m Hn,m∑

` x̂
(t)
` Hn,`

,

which can also be computed in O(N log N) operations.

M-Step: Updates the estimate of the superresolution image x. In the Gaussian
case, this constitutes updating the wavelet coefficient vector θ according
to

θ̂(t+1) = arg min
θ

{
‖Wθ − ẑ(t)‖2

2

2α2
+ pen(θ)

}
and setting x̂(t+1) = W θ̂(t+1). This optimization can be preformed us-
ing any wavelet-based denoising procedure. For example, under an i.i.d.
Laplacian prior, pen(θ) = − log p(θ) ∝ τ‖θ‖1 (where ‖θ‖1 =

∑
i |θi| de-

notes the l1 norm), θ̂(t+1) is obtained by applying a soft-threshold function
to the wavelet coefficients of ẑ(t). For the simulations presented in this
paper, we applied a similar denoising method described in (Figueiredo &
Nowak, 2001), which requires O(N) operations.

In the Poisson case, the M-Step is equivalent to photon-limited image
denoising. In practice, this commonly consists of performing maximum
likelihood estimation, but these estimates are known to diverge from the
true image after several iterations. The denoising can also be accomplished
using the Haar-based maximum penalized likelihood estimation method we
developed in Willett & Nowak, 2003; the MPLE function employed here
is

L(x) ≡ log p(y |
∑
m

z(t)
m,n) − 1

2
pen(

∑
m

z(t)
m,n) log n, (4)

where p(y |x) is the Poisson likelihood of observing photon counts y given
intensities

∑
m z

(t)
m,n and pen(

∑
m z

(t)
m,n) is the number of non-zero coeffi-

cients in the Haar-based multiscale representation of
∑

m z
(t)
m,n and n is
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the total number of photons in the observation vector y. In maximizing
this function, the resulting reconstruction will be one that has a relatively
high likelihood value as well as a relatively low complexity Haar represen-
tation. This denoising procedure is a bottom-up tree pruning algorithm
which requires O(N log N) operations.

In both the Gaussian and Poisson noise cases, the proposed method has the
advantage that the M-step is a denoising procedure, and the multiscale methods
employed here are both near-minimax optimal.

In low SNR cases, where confidence in the initial estimates of the shift and
rotation parameters may be low, the proposed algorithm can be modified by
simply inserting an additional step in which the parameter estimates are updated
based on the current estimate of the superresolution image x̂(t), as described in
the previous section. Similarly, if the blurring operator is only partially known,
its parameters can also be updated at each iteration of the proposed algorithm.
The resulting scheme is not a standard EM algorithm, but it is guaranteed not
to decrease the penalized likelihood function.

5. Simulation Results

We reconstructed two superresolution images to demonstrate the practical ef-
fectiveness of the proposed algorithms. A sample low-resolution satellite image
of earth is displayed in Figure 2(a). Sixteen such 64× 64 images were generated
using an original 256 × 256 image (Figure 2(c), with values ranging from 0 to
255), which was shifted and rotated by a random, subpixel amount, distorted by
a 4×4 uniform blur, and contaminated with additive white Gaussian noise with
variance σ2 = 1/2. The superresolution image in Figure 2(b) was reconstructed
using the wavelet-based EM algorithm described above for α2 = σ2 = 1/2. In
the simulation, the estimate is initialized with a least-squares superresolution
estimate of relatively poor quality. While not presented here, experiments have
shown that the proposed approach is competitive with the state of the art in
superresolution image reconstruction.

In our second simulation, we studied the effect of the proposed method on
an image of stars. The original image is displayed in Figure 3(c). The data
for this simulation was generated using the same procedure as for the Earth
image. Note from the sample observation image in Figure 3(a) that several
stars are indistinguishable prior to superresolution image reconstruction, but
that after the application of the proposed method these stars are clearly visible
in Figure 3(b). The superresolution image in Figure 3(d) was generated using
the same procedure but with only two observation images. Clearly the quality
of this result is less than the quality achievable with more observations, but
significantly more stars are distinguishable in the output than in any one of
the observations. This implies that the proposed method may be useful even
for small sets of observations. Finally, Figure 3(e) displayed the output of our
multiscale method for Poisson noise. In the case, the mean photon count was
527. As in the Gaussian case, the improvement in resolution is significant.
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(a)

(b) (c)

Figure 2. Superresolution results for earth image. (a) One of 16
observation images (64× 64), contaminated with Gaussian noise, σ2 =
0.5 and a 4 × 4 uniform blur. (b) 256 × 256 result. (c) True high
resolution image.

6. Conclusions and Future Work

In this paper we present a multiscale approach for superresolution image recon-
struction in the presence of either Gaussian or Poisson noise. This approach uses
several shifted, rotated, blurred, noisy observations to construct a new image
with higher resolution than any of the observations. Because of the multiscale
complexity regularization used in the the EM reconstruction algorithm, our ap-
proach is robust to noise. This is demonstrated for several practical examples.
Notably, we demonstrated that stars which are irresolvable in any individual
observation can be clearly distinguished after superresolution image reconstruc-
tion, even when using only two observation images.

Future work includes speeding the convergence of the proposed method
using a new technique described in (Salakhutdinov & Roweis, 2003) and a more
Bayesian approach in which the shift and rotation parameters are integrated out
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of the problem formulation. In addition, there are several questions still to be
addressed, including: How does the blur radius impact reconstruction quality?
How much can resolution be recovered at what accuracy? How can the proposed
multiscale methods be extended to optimally process data collected by photon
detector cells with spatially varying sensitivities? Despite these open areas of
research, however, we feel that wavelet-based superresolution has the potential
to make a significant impact on astronomical imaging.
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(a)

(b) (c)

(d) (e)

Figure 3. Superresolution results for stars image. (a) One of 16
observation images (64× 64), contaminated with Gaussian noise, σ2 =
0.5 and a 4 × 4 uniform blur. (b) 256 × 256 result. (c) True high
resolution image. (d) 256 × 256 result obtained using only two 64 ×
64 observation images. (e) 256 × 256 result obtained using 16 64 ×
64 observation images contaminated with Poisson noise; mean photon
count per observation image = 527.


