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Abstract. A central task in image processing is to find the region in the image

corresponding to an entity. In a number of problems, the region takes the form of

a collection of circles, e.g. tree crowns in remote sensing imagery; cells in bio-

logical and medical imagery. In [1], a model of such regions, the ‘gas of circles’

model, was developed based on higher-order active contours, a recently devel-

oped framework for the inclusion of prior knowledge in active contour energies.

However, the model suffers from a defect. In [1], the model parameters were ad-

justed so that the circles were local energy minima. Gradient descent can become

stuck in these minima, producing phantom circles even with no supporting data.

We solve this problem by calculating, via a Taylor expansion of the energy, para-

meter values that make circles into energy inflection points rather than minima.

As a bonus, the constraint halves the number of model parameters, and severely

constrains one of the two that remain, a major advantage for an energy-based

model. We use the model for tree crown extraction from aerial images. Experi-

ments show that despite the lack of parametric freedom, the new model performs

better than the old, and much better than a classical active contour.

1 Introduction

A central problem in image understanding is to find the region R in the image domain

corresponding to a particular entity. The crucial quantity is P(R|I,K), the probability

that region R corresponds to the entity given the image data I and any prior knowledge

K we may choose to include. Typically, to solve such problems automatically, a signif-

icant amount of prior knowledge specific to the entity must be included, in particular

about region geometry. Generic assumptions, e.g. about boundary smoothness, do not

suffice.

The tree crown extraction problem provides an example. Submetre resolution re-

mote sensing images in principle permit the automatic extraction of the region R cor-

responding to tree crowns, and the subsequent evaluation of various parameters of im-

portance in forestry and conservation. Particularly in plantations, R takes the form of
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a collection of approximately circular connected components of similar size. We thus

have a great deal of prior knowledge about R, without which trees that are close to-

gether or that do not differ much in intensity from the background cannot be extracted

correctly. The question is then how to incorporate such prior knowledge into a model

for R?

We focus on ‘active contour’ models [2]. In this context, a region R is represented

by its boundary ∂R. P(R|I,K) is constructed implicitly, via an energy functional

E(∂R) = Eg(∂R) + Ei(∂R, I), where Eg and Ei correspond to prior and likelihood.

In classical active contours, prior energies Eg are constructed from single integrals over

the contour. Eg includes only local, differential interactions between boundary points,

and thus only very simple prior knowledge, e.g. boundary smoothness.

To include more complex prior knowledge, longer-range interactions are needed.

There is a large body of work that does this implicitly, via a template region or re-

gions to which R is compared, e.g. [3–6]. However, such energies effectively limit R
to a bounded subset of region space close to the template(s), which excludes, inter

alia, cases like tree crown extraction in which R has an unknown number of connected

components. ‘Higher-order active contours’ (HOACs) [7] provide a complementary ap-

proach. HOACs generalize classical active contours to include multiple integrals over

∂R. Thus HOAC energies explicitly model long-range interactions between boundary

points without using a template. This allows the inclusion of complex prior knowledge

while permitting the region to have an arbitrary number of connected components,

which furthermore may interact amongst themselves. The approach is very general:

classical energies are linear functionals on the space of regions; HOACs include all

polynomial functionals.

In [1], a HOAC energy Eg was used for tree crown extraction. In this ‘gas of circles’

model, collections of mutually repelling circles of given radius r0 are local minima of

Eg. The model has many potential applications in varied domains, but it suffers from a

drawback: such local minima can trap the gradient descent algorithm used to minimize

the energy, thus producing phantom circles even with no supporting data. The model

as such is not at fault: an algorithm capable of finding the global minimum would not

produce phantom circles. This suggests two approaches to tackling the difficulty. One

is to find a better algorithm. The other is to compromise with the existing algorithm

by changing the model to avoid the creation of local minima, while keeping intact the

prior knowledge contained in the model. In this paper, we take this second approach.

We solve the problem of phantom circles in [1]’s model by calculating, via a Taylor

expansion of the energy, parameter values that make the circles into inflection points

rather than minima. In addition, we find that this constraint halves the number of model

parameters, and severely constrains one of the two that remain, while improving the

empirical success of the model.

In section 2 we present the ‘gas of circles’ model Eg. In section 3, we introduce the

inflection point constraint and show how it fixes some of the parameters. In section 4, we

apply the model to tree crown extraction. We briefly review previous work, describe our

likelihood energy Ei and the gradient descent algorithm used to minimize E = Ei +Eg,

and present experimental results. In section 5, we sum up.



2 The ‘gas of circles’ HOAC model

A region boundary3, ∂R, is a map γ : S1 → R
2 modulo orientation-preserving diffeo-

morphisms of S1. The HOAC energy Eg used by [1] is then given by4

Eg(∂R) = λL(∂R) + αA(R) −
β

2

∫∫

dp dp′ t(p) · t(p′) Ψ(r(p, p′)) , (2.1)

where p is a coordinate on S1; L is the boundary length functional; A is the region area

functional; r(p, p′) = |γ(p) − γ(p′)|; t = ∂pγ; and Ψ is an interaction function that

determines the geometric content of the model. In [1],

Ψ(z) =

{

1
2

(

2 − z
d

+ 1
π

sin πz
d

)

z < 2d ,

0 z ≥ 2d .
(2.2)

With this Ψ , the last term in (2.1) creates a repulsion between antiparallel tangent vec-

tors. This has two effects. First, for particular ranges of α, β, and d (λ = 1 wlog),

circular structures, with a radius r0 dependent on the parameter values, are stable to

perturbations of their boundary. Second, such circles repel one another if they approach

closer than 2d. Regions consisting of collections of circles of radius r0 separated by

distances greater than 2d are thus local energy minima. In [1], this was called the ‘gas

of circles’ model.

In order to determine parameter values so that a circle of radius r0 be an energy

minimum, [1] conducted a stability analysis. The energy was Taylor expanded around

a circle, and the result was expressed in the Fourier basis. This is the natural basis to

use because it diagonalizes (2.1): Fourier components do not interact. The parameters

were chosen so that, for a circle of radius r0, the first derivative of the functional (2.1)

was zero (energy extremum) and the second derivative of (2.1) was positive definite

(energy minimum). The first constraint determines β in terms of α and d, while the

second places constraints on the ranges of the latter two parameters. The values of α
and d can further be adjusted so that the energy of the circle is positive (to avoid circle

creation everywhere), but not too high. In more detail: if γr is a circle of radius r, and

δγ is a small variation of the circle with Fourier components ak, the energy to second

order is

Eg(γr + δγ) = E0(r) + a0E1(r) +
1

2

∑

k

|ak|
2E2(k, r) ,

where

E0(r) = 2πλr + παr2 − πβG00(r) , (2.3a)

E1(r) = 2πλ + 2παr − 2πβG10(r) , (2.3b)

E2(k, r) = 2πλrk2 + 2πα

− 2πβ

[

2G20(r) + G21(k, r) + 2irkG23(k, r) + k2r2G24(k, r)

]

. (2.3c)

3 We describe the case of one simply-connected connected component. The generalization to

multiple multiply-connected connected components is trivial.
4 The same HOAC energy was first used, but with different parameter values, by Rochery et

al. [7], to model network shapes.



The Gij are also functions of d. Note that E1 = ∂rE0 and E2(0, r) = ∂rE1.

Equations (2.3) have the following consequences. First, since the large r behaviour

of E0 is dominated by the α term, we must have α ≥ 0 for the energy to be bounded

below. Second, the condition E1(r0) = 0 determines β in terms of the other parameters:

β(r0) =
λ + αr0

G10(r0)
. (2.4)

Third, because G10 > 0, β > 0 is necessary for an extremum. Fourth, although

E2(k, r0) > 0 can only be checked numerically, when k = 0, it implies

α(r0) > β(r0)(2G20(r0) + G21(0, r0)) = β(r0)G̃(r0) .

3 Monotonic energy function

The left of figure 2 shows a plot of the energy of a circle versus radius for parameter

values selected according to the above criteria. Viewed as a Gibbs energy, this curve has

just the form we require: circles of radius r0 are metastable (i.e. local minima), with an

energy that is low but nevertheless higher than that of the empty region. In the absence

of supporting data, the global minimum will thus be the empty region, the correct be-

haviour. A gradient descent algorithm, however, cannot escape from these local minima,

meaning that circles of radius r0, once formed during gradient descent, cannot disap-

pear, even if the data does not support their existence. In practice such circles sometimes

do form, which is clearly undesirable. The best solution to this problem would be an

algorithm capable of finding the global minimum of the energy. A slightly less ambi-

tious approach, which we take here, involves making a compromise with the algorithm,

changing the model to avoid the creation of these local minima, while preserving as

much of the prior knowledge as possible.

The idea we will pursue is to adjust the parameters so that the minimum of the

curve on the left in figure 2 is replaced by a broad, approximately flat area, as shown

in the three rightmost plots in figure 2. Such an energy means that in the absence of

image data, a circle will shrink and disappear, whereas small amounts of image data

will be sufficient to create a minimum in the flat area, thus producing a stable circle. The

natural method to achieve such a broad flat region is to create an energy function that

has a single inflection point. If necessary the parameters can then be tweaked to ensure

that the gradient of energy wrt radius is positive rather than simply non-negative. It is,

however, a nontrivial exercise to find parameter values that result in inflection points.

We address this problem via further analysis of the energy (2.1).

We still require that a circle of radius r0 be stable to sinusoidal perturbations with

k > 0, but now we also require that such a circle be an inflection point with respect

to perturbations with k = 0, that is, changes of radius. We will see that these demands

are sufficient to fix the prior energy Eg up to an overall multiplicative constant and

a small range of values for d. More precisely, we still require that E1(r0) = 0 and

E2(k, r0) > 0 for k > 0, but we now require that E2(0, r0) = 0 too. The first condition

gives equation (2.4). The second condition, which follows from equation (2.3c), also

relates α and β:

α(r0) = β(r0)G̃(r0) . (3.1)
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Fig. 1. From left to right (r0 = 5.0 throughout): α plotted against d; β plotted against d; enlarged

plot of α near the critical domain.

We can solve equations (2.4) and (3.1) for α and β, giving

α(r0) =
λG̃(r0)

G10(r0) − r0G̃(r0)
and β(r0) =

λ

G10(r0) − r0G̃(r0)
. (3.2)

These equations fix α and β as functions of r0 and d. Since r0 is fixed by the application,

the only remaining parametric degrees of freedom are the value of d, and the overall

strength of the prior term, represented by λ. Recall, however, that we also require α
and β to be positive. The question is then how to find values of d for a given r0 so that

α(r0) > 0 and β(r0) > 0.

3.1 Determination of d

To illustrate the behaviour we want to understand, figure 1 shows plots of α and β
against d for fixed r0, in this case r0 = 5. There are two critical points, dmin and dmax.

Only for the range dmin < d < dmax are both α and β positive. Our goal is therefore to

find dmin and dmax as functions of r0.

From equations (3.2), it can be seen that dmax arises from a zero in the denominator,

while dmin arises from a zero in the numerator. It is therefore sufficient to find these

zeros in order to find dmin and dmax. To proceed, we first note a scaling property of G00.

The function G00 is given by the following integral [1]:

G00(r) =

∫ π

−π

dp cos(p) r2 Ψ

(

2r
∣

∣

∣
sin

p

2

∣

∣

∣

)

. (3.3)

Since Ψ(z) is a function of z/d only, by pulling d2 out of the integral we can write G00

as G00(r) = d2Ĝ00(r/d). Now recall that G10 = 1
2∂rG00 and G̃ = ∂rG10. We then

find that

G̃(r0) = ˆ̃G(r0/d) and G10(r0) − r0G̃(r0) = d
(

Ĝ10(r0/d) −
r0

d
ˆ̃G(r0/d)

)

,

(3.4)

where Ĝ10(z) = 1
2∂zĜ00(z) and

ˆ̃G(z) = ∂zĜ10(z). Thus both numerator and denom-

inator of equations (3.2) can be written, up to multiplication by positive coefficients, as



functions of r0/d. Now, f(r, d) = f̂(r/d) and f(r, d0) = 0 imply f(ar, ad0) = 0 for

all a ∈ R; thus if we determine dmin and dmax for one value of r0, we know their values

for any r0.

To determine dmin and dmax while avoiding iterative numerical procedures to find

these points, we use a polynomial approximation to G00:

G00(r) =

∞
∑

n=0

bnrn .

It is easy to show that

bm =

{

0 m < 2 ,
1

(m−2)!

∫ π

−π
dp cos(p) Y (m−2)(0) m ≥ 2 ,

(3.5)

where Y (r) = Ψ(2r| sin(p/2)|). The derivatives of Y evaluated at zero are

Y (m)(0)

(2| sin(p/2)|)m
= Ψ (m)(0) =











1 m = 0 ,

0 m = 1 or m even ,

(−1)
m−1

2
1
2d

(

π
d

)m−1
m ≥ 3 and m odd .

Substituting into equation (3.5) gives bm:

bm =

{

0 m < 5 or m even ,

(−1)
m−1

2
4(2π)m−3

m!!(m−4)!!
1

dm−2 m ≥ 5 and m odd .

We can then derive expressions for G̃ and G10 − rG̃:

G̃(r) = 2
∑

m≥3
m odd

(−1)
m+1

2 (2π)m−1(m + 1)

m!!(m − 2)!!

( r

d

)m

G10(r) − rG̃(r) = 2d
∑

m≥4
m even

(−1)
m−2

2 (2π)m−2

[(m − 3)!!]2

( r

d

)m

.

We computed the roots of these polynomials including terms up to m = 49. The

smallest positive roots furnish the values of dmin and dmax. The result is that dmin ≃
1.2776r0 and dmax ≃ 1.4499r0. The rightmost three graphs in figure 2 show plots of

E0 against r for r0 = 5, with d values chosen from the domain dmin < d < dmax.

4 Tree crown extraction

The tree crown extraction problem is important in forestry, and has been much stud-

ied. Gougeon [8] uses an automatic valley following method to delineate tree crowns.

Larsen [9] uses a template matching method based on a 3D model to find spruce trees.
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Fig. 2. Plot of E0 against r for r0 = 5.0. Left: model in [1], with a local energy minimum. Right

three: new model, with α and β determined by equations (3.2). Second from left, d = 6.4; second

from right, d = 6.8; far right, d = 7.2. For this value of r0, dmin = 6.3880, dmax = 7.2495.

This works well, but requires knowledge of image acquisition and illumination parame-

ters to construct the template. Neither of these methods model the spatial distribution of

trees. Perrin et al. [10] model a forest as a marked point process with ellipses as marks,

thereby including inter-tree interactions. The method in this paper is similar in spirit,

although expressed in a very different language. It has the advantage that the tree shape

is not hard-constrained, but the disadvantage that it is difficult to apply to dense forest.

4.1 Likelihood energy and energy minimization

We use Eg, with parameters fixed as described above, as a prior model for the region R
of the image domain corresponding to trees. We also need a likelihood energy Ei(I,R).
We will model the image in R, and in the background R̄, using Gaussian distributions.5

We add a term that predicts high gradients along the boundary ∂R:

Ei(I,R) = λi

∫

dpn(p)·∂I(γ(p))+αi

[
∫

R

d2x
(I(x) − µ)2

2σ2
+

∫

R̄

d2x
(I(x) − µ̄)2

2σ̄2

]

,

where n is the (unnormalized) outward facing normal. Note that to facilitate comparison

of parameters in the prior energy, we set λ = 1 in Eg and introduce a weight αi in Ei.

The parameters µ, σ, µ̄, and σ̄ are learned from examples using maximum likelihood,

and then fixed.

The energy E = Eg +Ei is minimized using gradient descent. The descent equation

is

n̂ · ∂tγ(p) = −λi∂
2I(γ(p)) + αi

[

(I(γ(p)) − µ̄)2

2σ̄2
−

(I(γ(p)) − µ)2

2σ2

]

− κ(p) − α + β

∫

dp′ r̂(p, p′) · n(p′) Ψ (1)(r(p, p′)) ,

where κ is the curvature of the contour, r(p, p′) = γ(p) − γ(p′), and r̂ = r/r. In the

algorithm, it is convenient to represent the boundary by the zero level set of its signed

distance function [11]. We use the extended level set framework described in [7] to cope

with the nonlocal forces arising from HOAC energies.

5 We ignore the normalization constant Z(R) = DI e−Ei(I,R) since in our case it merely

changes λ and α, and we are interested in stability of the posterior in the absence of image-

dependent terms.



4.2 Experimental results

We tested the model on colour infrared aerial images of poplar stands located in the

‘Saône et Loire’ region in France, provided by the French National Forest Inventory

(IFN). We compare our new model to a classical active contour (β = 0), and the model

in [1] containing an energy minimum. Note that the new model has three free parame-

ters, λi, αi and d, since the other likelihood parameters are fixed by training, while the

other prior parameters are fixed once r0 is known. The classical active contour also has

three free parameters (λi, αi, and α), while the model used in [1] has four (λi, αi, α,

and d). The initial contour in all experiments, except that in figure 4, was a rounded rec-

tangle slightly bigger than the image domain. The image values in the region exterior

to the image domain were set to µ̄ to ensure that the contour would shrink inwards.

Figure 3 shows four images.6 On the left is the data. Next comes the best result we

could obtain using the same likelihood but setting β = 0, i.e. using a classical active

contour. Note how the absence of the quadratic term, which includes the prior shape

knowledge, prevents trees from being separated. Next is the result we obtain with the

model in [1], while on the right is the result obtained with the new model. Note that the

parameter values for the new model, although fixed, nevertheless produce a comparable

result. One tree on the border is missing, but on the other hand, two trees are separated

that were merged by the old model.

Figure 4 shows two images. On the left is the data, while on the right is the result

obtained using the new model. The initial contour in this experiment was the red line.

With a couple of exceptions, the trees are separated and the extraction is accurate.

Figure 5 shows three images. On the left is the data; in the middle is the result

obtained with the model in [1]; on the right is the result obtained with the new model.

Despite its fixed parameters, the new model produces a better result, finding a tree

missed by the old model, and again separating trees that were merged by the old model.

For the experiment in figure 6, we used an α value slightly larger than that given

by equations (3.2), in order make E1 slightly positive for all r. This ensures that in the

absence of image data, circles will disappear. The resulting E0 is shown on the left in

the figure. Next comes the data. The aim of the experiment is to detect the older, larger

radius trees in the upper part of the plantation area. Third from left is the best result

using the model in [1]. Note the phantom regions generated as the contour becomes

trapped in local energy minima (the phantom regions in the bright exterior area are also

reinforced by the image term). On the right is the result using the new model. With

one exception, the phantom regions are eliminated, while the level of error elsewhere is

comparable to the old model.

5 Conclusion

The ‘gas of circles’ model developed by [1] has numerous potential applications in

image processing, e.g. tree crown extraction from remote sensing images and cell ex-

traction from biological and medical images. The model in [1] suffers, however, from

6 Parameter values in image captions are written in the form (λi, αi, α, β, d, r0), truncated if

the parameters are not present.



Fig. 3. From left to right: image of poplars c©IFN; the best result with a classical active contour

(70, 0.08, 5.8); result with model in [1] (150, 0.15, 5.8, 4.67, 4.16, 4.16); result with new model

(90, 0.08, 5.47, 2.61, 6, 4.16).

Fig. 4. Left: bigger slice of planted forest c©IFN; right: result using new model

(90, 0.04, 5.49, 2.65, 5, 3.47). The contour was initialized to the red line.

phantom circles created by the fact that circles of a given radius are local energy min-

ima. The requirement that regions consisting of collections of circles of a given radius

be inflection points rather than local minima solves this problem. In addition, the re-

quirement halves the number of model parameters, and severely constrains one of the

two that remain, a major advantage for an energy-based model. Despite the small re-

maining freedom to adjust the parameters, experiments on the tree crown detection

problem show that the new model performs comparably or better than the old local

minimum model, and much better than a classical active contour.
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