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Abstract. Intersection graphs of geometric objects have been exten-
sively studied, both due to their interesting structure and their numerous
applications; prominent examples include interval graphs and permuta-
tion graphs. In this paper we study a natural graph class that generalizes
both interval and permutation graphs, namely simple-triangle graphs.
Simple-triangle graphs – also known as PI graphs (for Point-Interval) –
are the intersection graphs of triangles that are defined by a point on a
line L1 and an interval on a parallel line L2. They lie naturally between
permutation and trapezoid graphs, which are the intersection graphs
of line segments between L1 and L2 and of trapezoids between L1

and L2, respectively. Although various efficient recognition algorithms
for permutation and trapezoid graphs are well known to exist, the
recognition of simple-triangle graphs has remained an open problem
since their introduction by Corneil and Kamula three decades ago.
In this paper we resolve this problem by proving that simple-triangle
graphs can be recognized in polynomial time. As a consequence, our
algorithm also solves a longstanding open problem in the area of partial
orders, namely the recognition of linear-interval orders, i.e. of partial
orders P = P1 ∩ P2, where P1 is a linear order and P2 is an interval
order. This is one of the first results on recognizing partial orders P
that are the intersection of orders from two different classes P1 and P2.
In contrast, partial orders P which are the intersection of orders from
the same class P have been extensively investigated, and in most cases
the complexity status of these recognition problems has been established.

Keywords: Intersection graphs, PI graphs, recognition problem, partial
orders, polynomial algorithm.

1 Introduction

A graph G is the intersection graph of a family F of sets if we can bijectively
assign sets of F to vertices of G such that two vertices of G are adjacent if and
only if the corresponding sets have a non-empty intersection. It turns out that
many graph classes with important applications can be described as intersection
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graphs of set families that are derived from some kind of geometric configura-
tion. One of the most prominent examples is that of interval graphs, i.e. the
intersection graphs of intervals on the real line, which have natural applications
in several fields, including bioinformatics and involving the physical mapping of
DNA and the genome reconstruction1 [3, 6, 7].

Generalizing the intersections on the real line, consider two parallel horizon-
tal lines on the plane, L1 (the upper line) and L2 (the lower line). A graph G is
a simple-triangle graph if it is the intersection graph of triangles that have one
endpoint on L1 and the other two on L2. Furthermore, G is a triangle graph
if it is the intersection graph of triangles with endpoints on L1 and L2, but
now there is no restriction on which line contains one endpoint of every trian-
gle and which contains the other two. Simple-triangle and triangle graphs are
also known as PI and PI∗ graphs, respectively [2, 4, 14], where PI stands for
“Point-Interval”. Such representations of simple-triangle and of triangle graphs
are called simple-triangle (or PI ) and triangle (or PI ∗) representations, respec-
tively. Simple-triangle and triangle graphs lie naturally between permutation
graphs (i.e. the intersection graphs of line segments with one endpoint on L1

and one on L2) and trapezoid graphs (i.e. the intersection graphs of trapezoids
with one interval on L1 and the opposite interval on L2) [2, 14]. Note that, us-
ing the notation PI for simple-triangle graphs, permutation graphs are PP (for
“Point-Point”) graphs, while trapezoid graphs are II (for “Interval-Interval”)
graphs [4].

A partial order is a pair P = (U,R), where U is a finite set and R is an
irreflexive transitive binary relation on U . Whenever (x, y) ∈ R for two elements
x, y ∈ U , we write x <P y. If x <P y or y <P x, then x and y are comparable,
otherwise they are incomparable. P is a linear order if every pair of elements in
U are comparable. Furthermore, P is an interval order if each element x ∈ U
is assigned to an interval Ix on the real line such that x <P y if and only if Ix
lies completely to the left of Iy. One of the most fundamental notions on partial
orders is dimension. For any partial order P and any class P of partial orders
(e.g. linear order, interval order, semiorder, etc.), the P-dimension of P is the
smallest k such that P is the intersection of k orders from P. In particular, when
P is the class of linear orders, the P-dimension of P is known as the dimension
of P . Although in most cases we can efficiently recognize whether a partial order
belongs to a class P, this is not the case for higher dimensions. Due to a classical
result of Yannakakis [15], it is NP-complete to decide whether the dimension, or
the interval dimension, of a partial order is at most k, where k ≥ 3.

There is a natural correspondence between graphs and partial orders. For a
partial order P = (U,R), the comparability (resp. incomparability) graph G(P )
of P has elements of U as vertices and an edge between every pair of compa-
rable (resp. incomparable) elements. A graph G is a (co)comparability graph if
G is the (in)comparability graph of a partial order P . There has been a long
line of research in order to establish the complexity of recognizing partial or-

1 Benzer [1] earned the prestigious Lasker Award (1971) and Crafoord Prize (1993)
partly for showing that the set of intersections of a large number of fragments of
genetic material in a virus form an interval graph.
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ders of P-dimension at most 2 (e.g. where P is linear orders [14] or interval
orders [9]). In particular, since permutation (resp. trapezoid) graphs are the in-
comparability graphs of partial orders with dimension (resp. interval dimension)
at most 2 [5,14], permutation and trapezoid graphs can be recognized efficiently
by the corresponding partial order algorithms [9, 14].

In contrast, not much is known so far for the recognition of partial orders
P that are the intersection of orders from different classes P1 and P2. One of
the longstanding open problems in this area is the recognition of linear-interval
orders P , i.e. of partial orders P = P1∩P2, where P1 is a linear order and P2 is an
interval order. In terms of graphs, this problem is equivalent to the recognition of
simple-triangle (i.e. PI) graphs, since PI graphs are the incomparability graphs
of linear-interval orders; this problem is well known and remains open since the
introduction of PI graphs in 1987 [4] (cf. for instance the books [2, 14]).

Our contribution. In this article we establish the complexity of recognizing
simple-triangle (PI) graphs, and therefore also the complexity of recognizing
linear-interval orders. Given a graph G with n vertices, such that its comple-
ment G has m edges, we provide an algorithm with running time O(n2m) that
either computes a PI representation of G, or it announces that G is not a PI
graph. Equivalently, given a partial order P = (U,R) with |U | = n and |R| = m,
our algorithm either computes in O(n2m) time a linear order P1 and an interval
order P2 such that P = P1 ∩ P2, or it announces that such orders P1, P2 do
not exist. Surprisingly, it turns out that the seemingly small difference in the
definition of simple-triangle (PI) graphs and triangle (PI∗) graphs results in a
very different behavior of their recognition problems; only recently it has been
proved that the recognition of triangle graphs is NP-complete [11]. In addition,
our polynomial time algorithm is in contrast to the recognition problems for
the related classes of bounded tolerance (i.e. parallelogram) graphs [12] and of
max-tolerance graphs [8], which have already been proved to be NP-complete.

As the main tool for our algorithm we introduce the notion of a linear-interval
cover of bipartite graphs. As a second tool we identify a new tractable sub-
class of 3SAT, called gradually mixed formulas, for which we provide a linear
time algorithm. The class of gradually mixed formulas is hybrid, i.e. it is charac-
terized by both relational and structural restrictions on the clauses. Then, using
the notion of a linear-interval cover, we are able to reduce our problem to the
satisfiability problem of gradually mixed formulas.

Our algorithm proceeds as follows. First, it computes from the given graph
G a bipartite graph G̃, such that G is a PI graph if and only if G̃ has a linear-
interval cover. Second, it computes a gradually mixed Boolean formula φ such
that φ is satisfiable if and only if G̃ has a linear-interval cover. This formula φ
can be written as φ = φ1 ∧ φ2, where every clause of φ1 has 3 literals and every
clause of φ2 has 2 literals. The construction of φ1 and φ2 is based on the fact that
a necessary condition for G̃ to admit a linear-interval cover is that its edges can
be colored with two different colors (according to some restrictions). Then the

edges of G̃ correspond to literals of φ, while the two edge colors encode the truth
value of the corresponding variables. Furthermore every clause of φ1 corresponds
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to the edges of an alternating cycle in G̃ (i.e. a closed walk that alternately visits
edges and non-edges) of length 6, while the clauses of φ2 correspond to specific

pairs of edges of G̃ that are not allowed to receive the same color. Finally, the
equivalence between the existence of a linear-interval cover of G̃ and a satisfying
truth assignment for φ allows us to use our linear algorithm to solve satisfiability
on gradually mixed formulas in order to complete our recognition algorithm.

Organization of the paper. We present in Section 2 the class of gradually
mixed formulas and a linear time algorithm to solve satisfiability on this class.
In Section 3 we provide the necessary notation and preliminaries on alternating
cycles. Then in Section 4 we introduce the notion of a linear-interval cover of
bipartite graphs to characterize PI graphs, and in Section 5 we translate the
linear-interval cover problem to the satisfiability problem on a gradually mixed
formula. Finally, in Section 6 we present our PI graph recognition algorithm.

2 A tractable subclass of 3SAT

In this section we introduce the class of gradually mixed formulas and we provide
a linear time algorithm for solving satisfiability on this class. Any gradually
mixed formula φ is a mix of binary and ternary clauses. That is, there exist a 3-
CNF formula φ1 (i.e. a formula in conjunctive normal form with at most 3 literals
per clause) and a 2-CNF formula φ2 (i.e. with at most 2 literals per clause) such
that φ = φ1 ∧φ2, while φ satisfies some constraints among its clauses. Before we
define gradually mixed formulas (cf. Definition 2), we first define dual clauses.

Definition 1. Let φ1 be a 3-CNF formula. If α = (`1∨`2∨`3) is a clause of φ1,
then the α = (`1 ∨ `2 ∨ `3) is the dual clause of α.

Note by Definition 1 that, whenever α is a clause of a formula φ1, the dual
clause α of α may belong, or may not belong, to φ1.

Definition 2. Let φ1 and φ2 be CNF formulas with 3 literals and 2 literals in
each clause, respectively. The mixed formula φ = φ1 ∧ φ2 is gradually mixed if
the next two conditions are satisfied:

1. Let α and β be two clauses of φ1. Then α does not share exactly one literal
with either the clause β or the clause β.

2. Let α = (`1 ∨ `2 ∨ `3) be a clause of φ1. Then:

– if (`0 ∨ `1) is a clause of φ2, then φ2 contains also (at least) one of the
clauses {(`0 ∨ `2), (`0 ∨ `3)},

– if (`0 ∨ `1) is a clause of φ2, then φ2 contains also (at least) one of the
clauses {(`0 ∨ `2), (`0 ∨ `3)}.

As an example of a gradually mixed formula, consider the formula φ = φ1∧φ2,
where φ1 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x5 ∨ x6 ∨ x7) and φ2 = (x8∨x3)∧
(x8 ∨ x1) ∧ (x8 ∨ x4) ∧ (x8 ∨ x9) ∧ (x5 ∨ x10) ∧ (x6 ∨ x10).
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Note by Definition 2 that the class of gradually mixed formulas contains 2SAT
as a proper subclass, since every 2-CNF formula φ2 can be written as a gradually
mixed formula φ = φ1 ∧ φ2 where φ1 = ∅. Furthermore the class of gradually
mixed formulas φ is a hybrid class, since the conditions of Definition 2 concern
simultaneously relational restrictions (i.e. where the clauses are restricted to
be of certain types) and structural restrictions (i.e. where there are restrictions
on how different clauses interact with each other). The intuition for the term
gradually mixed in Definition 2 is that, whenever the sub-formulas φ1 and φ2
share more variables, the number of clauses of φ2 that are imposed by condition 2
of Definition 2 increases. In the next theorem we use resolution to prove that
satisfiability can be solved in linear time on gradually mixed formulas.

Theorem 1. There exists a linear time algorithm which decides whether a given
gradually mixed formula φ is satisfiable and computes a satisfying truth assign-
ment of φ, if one exists.

The conditions of Definition 2 which guarantee the tractability of gradually
mixed formulas are minimal, in the sense that, if we remove any of these two
conditions, the resulting subclass of 3SAT is NP-complete.

3 Preliminaries

Notation. In this article we consider finite, simple, and undirected graphs. An
edge between two vertices u and v of a graph G = (V,E) is denoted by uv, and
in this case u and v are said to be adjacent. The neighborhood of a vertex u ∈ V
is the set N(u) = {v ∈ V | uv ∈ E} of its adjacent vertices. The complement of
G is denoted by G, i.e. G = (V,E), where uv ∈ E if and only if uv /∈ E. For any
subset E0 ⊆ E of the edges of G, we denote for simplicity G−E0 = (V,E \E0).
A subset S ⊆ V of its vertices induces an independent set in G if uv /∈ E for
every pair of vertices u, v ∈ S. Furthermore, S induces a clique in G if uv ∈ E for
every pair u, v ∈ S. A graph G is a split graph if its vertices can be partitioned
into a clique K and an independent set I.

The smallest k for which there exists a proper k-coloring of G is the chromatic
number of G, denoted by χ(G). If χ(G) = 2 then G is a bipartite graph, i.e. its
vertices are partitioned into two independent sets, the color classes. A bipartite
graph G is denoted by G = (U, V,E), where U and V are its color classes and
E is the set of edges between them. For a bipartite graph G = (U, V,E), its

bipartite complement is the graph Ĝ = (U, V, Ê), where for two vertices u ∈ U
and v ∈ V , uv ∈ Ê if and only if uv /∈ E. A bipartite graph G = (U, V,E) is
a chain graph if the vertices of each color class can be ordered by inclusion
of their neighborhoods, i.e. N(u) ⊆ N(v) or N(v) ⊆ N(u) for any two vertices
u, v in the same color class. Note that chain graphs are closed under bipartite
complementation, i.e. G is a chain graph if and only if Ĝ is a chain graph.

For two graphs G1 = (V,E1) and G2 = (V,E2), we denote G1 ⊆ G2 whenever
E1 ⊆ E2. Moreover, we denote for simplicity by G1∪G2 and G1∩G2 the graphs
(V,E1 ∪E2) and (V,E1 ∩E2), respectively. Similarly, for any two partial orders
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P1 = (U,R1) and P2 = (U,R2), we denote P1 ⊆ P2 wheneverR1 ⊆ R2. Moreover,
we denote for simplicity P1 ∪ P2 and P1 ∩ P2 for the partial orders (U,R1 ∪R2)
and (U,R1 ∩R2), respectively.

Alternating cycles in a graph. The next definition of an alternating cycle is
crucial for our recognition algorithm for PI graphs.

Definition 3. Let G = (V,E) be a graph, Ẽ ⊆ E be an edge subset, and k ≥ 2.
A set of 2k (not necessarily distinct) vertices v1, v2, . . . , v2k ∈ V builds an al-

ternating cycle AC2k in Ẽ, if vivi+1 ∈ Ẽ whenever i is even and vivi+1 /∈ E
whenever i is odd (where indices are mod 2k). Furthermore, we say that G has

an alternating cycle AC2k, whenever G has an AC2k in the edge set Ẽ = E.

For instance, for k = 3, there exist two different possibilities for an AC6,
which are illustrated in Figures 1(a) and 1(b). These two types of an AC6 are
called an alternating path of length 5 or of length 6, respectively (AP5 and
AP6 for short, respectively). Furthermore, note that for k = 2, a set of four
vertices v1, v2, v3, v4 ∈ V builds an alternating cycle AC4 if v1v2, v3v4 /∈ E and
v2v3, v1v4 ∈ E. There are three possible graphs on four vertices that build an
alternating cycle, AC4 which are illustrated in Figures 1(c)-1(e).

v1 = v4

v2

v6

AP5

v3

v5

(a)

v1 v2

v3

v4v5

v6 AP6

(b)

v1 v2

v3v4

(c)

v1 v2

v3v4

(d)

v1 v2

v3v4

(e)

Fig. 1. The two possibilities for an AC6: (a) an alternating path AP5 of length 5 and
(b) an alternating path AP6 of length 6. Furthermore, the three possibilities for an
AC4: (c) a 2K2, (d) a P4, and (e) a C4. The solid lines denote edges of the graph and
the dashed lines denote non-edges of the graph.

Alternating cycles can be used to characterize chain graphs as the bipartite
graphs with no induced 2K2 [10]. We define now for any bipartite graph G the
associated split graph of G, which we use extensively throughout of the paper.

Definition 4. Let G = (U, V,E) be a bipartite graph. The associated split graph
of G is the split graph HG = (U ∪ V,E′), where E′ = E ∪ (V × V ), i.e. HG is
the split graph made by G by replacing the independent set V of G by a clique.

The next two definitions of a conflict between two edges and the conflict
graph are essential for our results.

Definition 5. Let G = (V,E) be a graph and e1, e2 ∈ E. If the vertices of e1
and e2 build an AC4 in G, then e1 and e2 are in conflict, and in this case we
denote e1||e2 in G. Furthermore, an edge e ∈ E is committed if there exists an
edge e′ ∈ E such that e||e′; otherwise e is uncommitted.
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Definition 6 ([13]). Let G = (V,E) be a graph. The conflict graph
G∗ = (V ∗, E∗) of G is defined by

– V ∗ = E and
– for every e1, e2 ∈ E, e1e2 ∈ E∗ if and only if e1||e2 in G.

4 Linear-Interval covers of bipartite graphs

In this section we introduce the crucial notion of a linear-interval cover of bipar-
tite graphs (cf. Definition 9). Then we use linear-interval covers to provide a new
characterization of PI graphs (cf. Theorem 3), which is one of the main tools for
our PI graph recognition algorithm. First we provide in the next theorem the
characterization of PI graphs using linear orders and interval orders.

Theorem 2. Let G = (V,E) be a cocomparability graph and P be a partial order
of G. Then G is a PI graph if and only if P = P1 ∩ P2, where P1 is a linear
order and P2 is an interval order.

For every partial order P we define now the domination bipartite graph C(P ),
which has been used to characterize interval orders [9]. Here “C” stands for
“Comparable”, since the definition of C(P ) uses the comparable elements of P .

Definition 7 ([9]). Let P = (U,R) be a partial order, where
U = {u1, u2, . . . , un}. Furthermore let V = {v1, v2, . . . , vn}. The domina-
tion bipartite graph C(P ) = (U, V,E) is defined such that uivj ∈ E if and only
if ui <P uj.

Lemma 1 ([9]). Let P = (U,R) be a partial order. Then, P is an interval order
if and only if C(P ) is a chain graph.

Extending the notion of C(P ), we now introduce the bipartite graph NC(P )
to characterize linear orders (cf. Lemma 2). Here “NC” stands for “Non-strictly
Comparable”. Namely, this graph can be obtained by adding to the graph C(P )
the perfect matching {uivi | i = 1, 2, . . . , n} on the vertices of U and V .

Definition 8. Let P = (U,R) be a partial order, where U = {u1, u2, . . . , un}.
Furthermore let V = {v1, v2, . . . , vn}. Then, NC(P ) = (U, V,E) is the bipartite
graph, such that uivj ∈ E if and only if ui ≤P uj.
Lemma 2. Let P = (U,R) be a partial order. Then, P is a linear order if and
only if NC(P ) is a chain graph.

Now we introduce the notion of a linear-interval cover of a bipartite graph.
This notion is crucial for our main result of this section, cf. Theorem 3.

Definition 9. Let G = (U, V,E) be a bipartite graph, where U =
{u1, u2, . . . , un} and V = {v1, v2, . . . , vn}. Let E0 = {uivi | 1 ≤ i ≤ n} and
suppose that E0 ⊆ E. Then, G is linear-interval coverable if there exist two
chain graphs G1 = (U, V,E1) and G2 = (U, V,E2), such that G = G1 ∪G2 and
E0 ⊆ E2 \ E1. In this case, the sets {E1, E2} are a linear-interval cover of G.
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Theorem 3. Let P = (U,R) be a partial order. In the bipartite complement

Ĉ(P ) of the graph C(P ), denote E0 = {uivi | 1 ≤ i ≤ n}. The following three
statements are equivalent:

(a) P = P1 ∩ P2, where P1 is a linear order and P2 is an interval order.

(b) Ĉ(P ) = N̂C(P1) ∪ Ĉ(P2) for two partial orders P1 and P2 on V , where

N̂C(P1) and Ĉ(P2) are chain graphs.

(c) Ĉ(P ) is linear-interval coverable, i.e. Ĉ(P ) = G1 ∪G2 for two chain graphs
G1 = (U, V,E1) and G2 = (U, V,E2), where E0 ⊆ E2 \ E1.

Furthermore, a linear-interval cover of the bipartite graph Ĉ(P ) does not
only guarantee that the input graph G is a PI graph, but it can be also used to
efficiently compute a PI representation of G, as the next theorem states.

Theorem 4. Let G be a cocomparability graph with n vertices and P be the
partial order of G. Let {E1, E2} be a linear-interval cover of Ĉ(P ). Then we can
construct in O(n2) time a PI representation R of G.

5 Detecting linear-interval covers using Boolean
satisfiability

The natural algorithmic question that arizes from the characterization of PI
graphs using linear-interval covers in Theorems 2 and 3, is the following: “Given
a cocomparability graph G and a partial order P of G, can we efficiently de-
cide whether the bipartite graph Ĉ(P ) has a linear-interval cover?” We will
answer this algorithmic question in the affirmative in Section 6. In this section
we translate every instance of this decision problem (i.e. whether the bipartite

graph Ĉ(P ) has a linear-interval cover) to a restricted instance of 3SAT (cf. The-

orem 5). That is, for every such a bipartite graph Ĉ(P ), we construct a Boolean
formula φ in conjunctive normal form (CNF), with size polynomial on the size

of Ĉ(P ) (and thus also on G), such that Ĉ(P ) has a linear-interval cover if and
only if φ is satisfiable. In particular, this formula φ can be written as φ = φ1∧φ2,
where φ1 has three literals in every clause and φ2 has two literals in every clause.
Moreover, as we will prove in Section 6, the satisfiability problem can be effi-
ciently decided on the formula φ, by exploiting an appropriate sub-formula of φ
which is gradually mixed (cf. Definition 2).

In the remainder of the paper, given a cocomparability graph G and a partial
ordering P of its complement G, we denote by G̃ = Ĉ(P ) the bipartite comple-
ment of the domination bipartite graph C(P ) of P . Furthermore we denote by H

the associated split graph of G̃ and by H∗ the conflict graph of H. Moreover, we
assume in the remainder of the paper without loss of generality that χ(H∗) ≤ 2,

i.e. that H∗ is bipartite. Indeed, as we can prove, if χ(H∗) > 2 then G̃ does
not have a linear-interval cover, i.e. G is not a PI graph. Note that every proper
2-coloring of the vertices of the conflict graph H∗ corresponds to exactly one
2-coloring of the edges of H that includes no monochromatic AC4. We assume
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in the following that a proper 2-coloring (with colors blue and red) of the vertices
of H∗ is given as input; note that χ0 can be computed in polynomial time.

Let C1, C2, . . . , Ck be the connected components of H∗. Some of these com-
ponents of H∗ may be isolated vertices, which correspond to uncommitted edges
in H. We assign to every component Ci, where 1 ≤ i ≤ k, the Boolean vari-
able xi. Since H∗ is bipartite by assumption, the vertices of each connected
component Ci of H∗ can be partitioned into two color classes Si,1 and Si,2.
Without loss of generality, we assume that Si,1 (resp. Si,2) contains the vertices
of Ci that are colored red (resp. blue) in χ0. Note that, since vertices of H∗ cor-
respond to edges of H (cf. Definition 6), for every two edges e and e′ of H that
are in conflict (i.e. e||e′) there exists an index i ∈ {1, 2, . . . , k} such that one of
these edges belongs to Si,1 and the other belongs to Si,2. We now assign a literal
`e to every edge e of H as follows: if e ∈ Si,1 for some i ∈ {1, 2, . . . , k}, then
`e = xi; otherwise, if e ∈ Si,2, then `e = xi. Note that, by construction, when-
ever two edges are in conflict in H, their assigned literals are one the negation
of the other.

Observation 1 Every truth assignment τ of the variables x1, x2, . . . , xk cor-
responds bijectively to a proper 2-coloring χτ (with colors blue and red) of the
vertices of H∗, as follows: xi = 0 in τ (resp. xi = 1 in τ), if and only if all
vertices of the component Ci have in χτ the same color as in χ0 (resp. opposite
color than in χ0). In particular, τ = (0, 0, . . . , 0) corresponds to the coloring χ0.

Description of the 3-CNF formula φ1: Consider an AC6 in the split
graph H, and let e, e′, e′′ be its three edges in H, such that no two literals
among {`e, `e′ , `e′′} are one the negation of the other. Then the Boolean formula
φ1 has for this triple {e, e′, e′′} of edges exactly the two clauses α = (`e∨`e′∨`e′′)
and α′ = (`e∨ `e′ ∨ `e′′). It is easy to check by the assignment of literals to edges
that the clause α (resp. the clause α′) of φ1 is false in a truth assignment τ of
the variables if and only if all edges {e, e′, e′′} are colored red (resp. blue) in the
2-edge-coloring χτ of H (cf. Observation 1).

Consider now another AC6 of H on the edges {e1, e2, e3}, in which at least
one literal among {`e1 , `e2 , `e3} is the negation of another literal, for example
`e1 = `e2 . Then, for any proper 2-coloring of the vertices of H∗, the edges e and
e′ of H receive different colors, and thus this AC6 is not monochromatic.

Observation 2 The formula φ1 is satisfied by a truth assignment τ if and only if
the corresponding 2-coloring χτ of the edges of H does not contain any monochro-
matic AC6.

Description of the 2-CNF formula φ2: Denote for simplicity H =
(U, V,EH), where U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn}. Furthermore
denote E0 = {uivi | 1 ≤ i ≤ n}. Let E′ = EH \ E0 and H ′ = H − E0, i.e. H ′

is the split graph that we obtain if we remove from H all edges of E0. Consider
now a pair of edges e = uivt and e′ = utvj of E′, such that uivj /∈ E′. Note that
i and j may be equal. However, since E′∩E0 = ∅, it follows that i 6= t and t 6= j.
Moreover, since the edge utvt belongs to EH but not to E′, it follows that the
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edges e and e′ are in conflict in H ′ but not in H (for both cases where i = j and
i 6= j). That is, although e and e′ are two non-adjacent vertices in the conflict
graph H∗ of H, they are adjacent vertices in the conflict graph of H ′. For both
cases where i = j and i 6= j, an example of such a pair of edges {e, e′} is illus-
trated in Figure 2. For every such pair {e, e′} of edges in H, the Boolean formula
φ2 has the clause (`e ∨ `e′). It is easy to check by the assignment of literals to
edges of H that this clause (`e ∨ `e′) of φ2 is false in the truth assignment τ if
and only if both e and e′ are colored red in the 2-edge coloring χτ of H.

L2

L1
ui

vt

ut

vj

e e′

(a)

L1
ui ut

e e′

vt vj
L2

(b)

Fig. 2. Two edges e = uivt and e′ = utvj of H, for which the formula φ2 has the clause
(`e ∨ `e′), in the case where (a) i 6= j and (b) i = j.

Now we provide the main result of this section, which relates the existence of
a linear-interval cover in G̃ = Ĉ(P ) with the satisfiability of the formula φ1∧φ2.

Theorem 5. G̃ = Ĉ(P ) is linear-interval colorable if and only if φ1 ∧ φ2 is sat-

isfiable. Given a satisfying assignment τ of φ1 ∧ φ2, a linear-interval cover of G̃
can be computed in O(n2) time.

6 The recognition of linear-interval orders and PI graphs

In this section we investigate the structure of the formula φ1 ∧ φ2 that we com-
puted in Section 5. In particular, we first prove some fundamental structural
properties of φ1∧φ2, which allow us to find an appropriate sub-formula of φ1∧φ2
which is gradually mixed (cf. Definition 2). Then we exploit this sub-formula of
φ1∧φ2 to provide an algorithm that solves the satisfiability problem on φ1∧φ2 in
time linear to its size, cf. Theorem 6. Finally, using this satisfiability algorithm,
we combine our results of Sections 4 and 5 to recognize efficiently PI graphs and
linear-interval orders.

The main structural properties of φ1 ∧ φ2 are proved in Lemmas 3 and 4.
The proof of the next lemma is a based on the results of [13].

Lemma 3. Let α and β be two clauses of φ1. If α and β share at least one
variable, then {α, α} = {β, β}.

Definition 10. The clauses of φ2 are partitioned into the sub-formulas φ′2, φ
′′
2 ,

such that φ′2 contains all tautologies of φ2 and all clauses of φ2 in which at
least one literal corresponds to an uncommitted edge, while φ′′2 contains all the
remaining clauses of φ2.
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Algorithm 1 Recognition of PI graphs

Input: A graph G = (V,E)
Output: A PI representation R of G, or the announcement that G is not a PI graph

1: if G is a trapezoid graph then
2: Compute a partial order P of the complement G
3: else return “G is not a PI graph”

4: Compute the domination bipartite graph C(P ) from P

5: G̃← Ĉ(P )

6: Compute the associated split graph H of G̃
7: Compute the conflict graph H∗ of H

8: if H∗ is bipartite then
9: Compute a 2-coloring χ0 of the vertices of H∗

10: Compute the formulas φ1 and φ2

11: if φ1 ∧ φ2 is satisfiable then
12: Compute a satisfying truth assignment τ of φ1 ∧ φ2 by Theorem 6
13: Compute from τ a linear-order cover of G̃ by Theorem 5
14: Compute a PI representation R of G by Theorem 4
15: else
16: return “G is not a PI graph”
17: else
18: return “G is not a PI graph”

19: return R

Lemma 4. Let {e1, e2, e3} be the three edges of an AC6 in H, which has clauses
in φ1. Let e be an edge of H such that (`e ∨ `e1) is a clause in φ′′2 . Then φ′′2 has
also one of the clauses {(`e ∨ `e2), (`e ∨ `e3)}.

The next corollary, which follows easily by Definition 2 and by Lemmas 3
and 4, allows us to use the linear time algorithm for gradually mixed formulas
(cf. Theorem 1) in order to solve the satisfiability problem on φ1 ∧ φ′′2 .

Corollary 1. φ1 ∧ φ′′2 is a gradually mixed formula.

In the next theorem we use Corollary 1 to design an algorithm that decides
satisfiability on φ1 ∧ φ2 in time linear to its size. This will enable us to combine
the results of Sections 4 and 5 to recognize efficiently whether a given graph is
a PI graph, or equivalently, due to Theorem 2, whether a given partial order P
is the intersection of a linear order P1 and an interval order P2.

Theorem 6. φ1 ∧ φ2 is satisfiable if and only if φ1 ∧ φ′′2 is satisfiable. Given a
satisfying truth assignment of φ1 ∧ φ′′2 we can compute a satisfying truth assign-
ment of φ1 ∧ φ2 in linear time.

Now we are ready to present our recognition algorithm for PI graphs (Algo-
rithm 1). Its correctness and timing analysis is established in Theorem 7. Due
to characterization of PI graphs in Theorem 2 using partial orders, Theorem 8
follows also by Theorem 7.

11



Theorem 7. Let G = (V,E) be a graph and G = (V,E) be its complement,
where |V | = n and |E| = m. Then Algorithm 1 constructs in O(n2m) time a PI
representation of G, or it announces that G is not a PI graph.

Theorem 8. Let P = (U,R) be a partial order, where |U | = n and |R| = m.
Then we can decide in O(n2m) time whether P is a linear-interval order, and in
this case we can compute a linear order P1 and an interval order P2 such that
P = P1 ∩ P2.
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