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Abstract. The 3-coloring problem is well known to be NP-complete. It is also well known that it
remains NP-complete when the input is restricted to graphs with diameter 4. Moreover, assuming
the Exponential Time Hypothesis (ETH), 3-coloring cannot be solved in time 2o(n) on graphs with n

vertices and diameter at most 4. In spite of extensive studies of the 3-coloring problem with respect to
several basic parameters, the complexity status of this problem on graphs with small diameter, i.e. with
diameter at most 2, or at most 3, has been an open problem. In this paper we investigate graphs with
small diameter. For graphs with diameter at most 2, we provide the first subexponential algorithm for
3-coloring, with complexity 2O(

√
n log n). Furthermore we extend the notion of an articulation vertex to

that of an articulation neighborhood, and we provide a polynomial algorithm for 3-coloring on graphs
with diameter 2 that have at least one articulation neighborhood. For graphs with diameter at most 3,
we establish the complexity of 3-coloring by proving for every ε ∈ [0, 1) that 3-coloring is NP-complete
on triangle-free graphs of diameter 3 and radius 2 with n vertices and minimum degree δ = Θ(nε).
Moreover, assuming ETH, we use three different amplification techniques of our hardness results, in
order to obtain for every ε ∈ [0, 1) subexponential asymptotic lower bounds for the complexity of
3-coloring on triangle-free graphs with diameter 3 and minimum degree δ = Θ(nε). Finally, we provide
a 3-coloring algorithm with running time 2O(min{δ∆, n

δ
log δ}) for arbitrary graphs with diameter 3,

where n is the number of vertices and δ (resp. ∆) is the minimum (resp. maximum) degree of the input
graph. To the best of our knowledge, this is the first subexponential algorithm for graphs with δ = ω(1)
and for graphs with δ = O(1) and ∆ = o(n). Due to the above lower bounds of the complexity of
3-coloring, the running time of this algorithm is asymptotically almost tight when the minimum degree

of the input graph is δ = Θ(nε), where ε ∈ [ 1
2
, 1), as its time complexity is 2O(n

δ
log δ) = 2O(n1−ε log n)

and the corresponding lower bound states that there is no 2o(n
1−ε)-time algorithm.

Keywords: 3-coloring, graph diameter, graph radius, subexponential algorithm, NP-complete, Expo-
nential Time Hypothesis.

1 Introduction

A proper k-coloring (or k-coloring) of a graph G is an assignment of k different colors to the vertices
of G, such that no two adjacent vertices receive the same color. That is, a k-coloring is a partition
of the vertices of G into k independent sets. The corresponding k-coloring problem is the problem
of deciding whether a given graph G admits a k-coloring of its vertices, and to compute one if it
exists. Furthermore, the minimum number k of colors for which there exists a k-coloring is denoted
by χ(G) and is termed the chromatic number of G. The minimum coloring problem is to compute
the chromatic number of a given graph G, and to compute a χ(G)-coloring of G.

One of the most well known complexity results is that the k-coloring problem is NP-complete
for every k ≥ 3, while it can be solved in linear time for k = 2 [12]. Therefore, since graph coloring
has numerous applications besides its theoretical interest, there has been a considerable interest
in studying how several graph parameters affect the tractability of the k-coloring problem, where
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k ≥ 3. In view of this, the complexity status of the coloring problem has been established for many
graph classes.

It has been proved that 3-coloring remains NP-complete even when the input graph is restricted
to be a line graph [15], a triangle-free graph with maximum degree 4 [20], or a planar graph with
maximum degree 4 [12]. On the positive side, one of the most famous result in this context has been
that the minimum coloring problem can be solved in polynomial time for perfect graphs using the
ellipsoid method [13]. Furthermore, polynomial algorithms for 3-coloring have been also presented
for classes of non-perfect graphs, such as P6-free graphs [24] and AT-free graphs [25]. Here, a
graph G is a P6-free graph if G does not contain any path on 6 vertices as an induced subgraph.
Furthermore, a graph G is an AT-free graph if G does not contain any asteroidal triple, i.e. three
vertices where every two of them are connected by a path avoiding the neighborhood of the third
one. Although the minimum coloring problem is NP-complete on P5-free graphs, the k-coloring
problem is polynomial on these graphs for every fixed k [14]. Courcelle’s celebrated theorem states
that every problem definable in Monadic Second-Order logic (MSO) can be solved in linear time
on graphs with bounded treewidth [9], and thus also the coloring problem can be solved in linear
time on such graphs.

For the cases where 3-coloring is NP-complete, considerable attention has been given to devising
exact algorithms that are faster than the brute-force algorithm (see e.g. the recent book [11]). In
this context, asymptotic lower bounds of the time complexity have been provided for the main
NP-complete problems, based on the Exponential Time Hypothesis (ETH) [16,17]. ETH states that
there exists no deterministic algorithm that solves the 3SAT problem in time 2o(n), given a boolean
formula with n variables. In particular, assuming ETH, 3-coloring cannot be solved in time 2o(n)

on graphs with n vertices, even when the input is restricted to graphs with diameter 4 and radius 2
(see [19,22]). Therefore, since it is assumed that no subexponential 2o(n) time algorithms exist for 3-
coloring, most attention has been given to decreasing the multiplicative factor of n in the exponent
of the running time of exact exponential algorithms, see e.g. [5,11,21]. For a more detailed discussion
about ETH we refer to Section 2.

One of the most central notions in a graph is the distance between two vertices, which is the
basis of the definition of other important parameters, such as the diameter, the eccentricity, and the
radius of a graph. For these graph parameters, it is known that 3-coloring is NP-complete on graphs
with diameter at most 4 (see e.g. the standard proof of [22]). Furthermore, it is straightforward to
check that k-coloring is NP-complete for graphs with diameter at most 2, for every k ≥ 4: we can
reduce 3-coloring on arbitrary graphs to 4-coloring on graphs with diameter 2, just by introducing
to an arbitrary graph a new vertex that is adjacent to all others.

In contrast, in spite of extensive studies of the 3-coloring problem with respect to several basic
parameters, the complexity status of this problem on graphs with small diameter, i.e. with diameter
at most 2 or at most 3, has been an open problem, see e.g. [6, 8, 18]. The complexity status of
3-coloring is open also for triangle-free graphs of diameter 2 and of diameter 3. It is worthwhile
mentioning here that a graph is triangle-free and of diameter 2 if and only if it is a maximal triangle
free graph. Moreover, it is known that 3-coloring is NP-complete for triangle-free graphs [20],
however it is not known whether this reduction can be extended to maximal triangle free graphs.
Another interesting result is that almost all graphs have diameter 2 [7]; however, this result cannot
be used in order to establish the complexity of 3-coloring for graphs with diameter 2.

Our contribution. In this paper we provide subexponential algorithms and hardness results for
the 3-coloring problem on graphs with low diameter, i.e. with diameter 2 and 3. As a preprocessing
step, we first present two reduction rules that we apply to an arbitrary graph G such that the
resulting graph G′ is 3-colorable if and only G is 3-colorable. We use these reduction rules to reduce
the size of the given graph and to simplify the algorithms that we present. Whenever these two
reduction rules cannot be applied to a graph, we call this graph irreducible; for a detailed discussion
we refer to Section 2.
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For graphs with diameter at most 2, we first provide a subexponential algorithm for 3-coloring
with running time 2O(min{δ,n

δ
log δ}), where n is the number of vertices and δ is the minimum degree

of the input graph. This algorithm is simple and has worst-case running time 2O(
√
n logn). To the

best of our knowledge, this is the first subexponential algorithm for graphs with diameter 2. We
demonstrate that this is indeed the worst-case of our algorithm by providing, for every n ≥ 1, a
3-colorable graph Gn = (Vn, En) with Θ(n) vertices, such that Gn has diameter 2 and both its
minimum degree and the size of a minimum dominating set is Θ(

√
n). In addition, this graph is

triangle-free and irreducible with respect to the above two reduction rules. Furthermore we define
the notion of an articulation neighborhood in a graph, which extends the notion of an articulation
vertex. For any vertex v of a graph G, the closed neighborhood N [v] = N(v) ∪ {v} is an articula-
tion neighborhood if G − N [v] is disconnected. We present a polynomial algorithm for 3-coloring
irreducible graphs G with diameter 2 having at least one articulation neighborhood.

For graphs with diameter at most 3, we establish the complexity of deciding 3-coloring, even for
the case of triangle-free graphs. Namely we prove that 3-coloring is NP-complete on irreducible and
triangle-free graphs with diameter 3 and radius 2, by providing a reduction from 3SAT. In addition,
we provide a 3-coloring algorithm with running time 2O(min{δ∆, n

δ
log δ}) for arbitrary graphs with

diameter 3, where n is the number of vertices and δ (resp. ∆) is the minimum (resp. maximum)
degree of the input graph. To the best of our knowledge, this algorithm is the first subexponential
algorithm for graphs with δ = ω(1) and for graphs with δ = O(1) and∆ = o(n). Table 1 summarizes
the current state of the art of the complexity of k-coloring, as well as our algorithmic and NP-
completeness results.

k \ diam(G) 2 3 ≥ 4

3
1
1
1

(∗) NP-complete for bla

3 (∗) 2O(min{δ,n
δ

log δ})-time minimum degree δ = Θ(nε), bla
3 algorithm for every ε ∈ [0, 1), even if NP-complete [22]

3 (∗) polynomial algorithm rad(G) = 2 and G is triangle-free and no 2o(n)-time algorithm

3 if there is at least one (∗) 2O(min{δ∆, n

δ
log δ})-time

.

.

.

.
bla

3 articulation neighborhood algorithm bla

≥ 4 NP-complete NP-complete NP-complete

Table 1. Current state of the art and our algorithmic and NP-completeness results for k-coloring on graphs with
diameter diam(G). Our results are indicated by an asterisk (∗).

Furthermore, we provide three different amplification techniques that extend our hardness re-
sults for graphs with diameter 3. In particular, we first show that 3-coloring is NP-complete on
irreducible and triangle-free graphs G of diameter 3 and radius 2 with n vertices and minimum
degree δ(G) = Θ(nε), for every ε ∈ [12 , 1) and that, for such graphs, there exists no algorithm for

3-coloring with running time 2o(
n
δ
) = 2o(n

1−ε), assuming ETH. This lower bound is asymptotically
almost tight, due to our above algorithm with running time 2O(n

δ
log δ), which is subexponential

when δ(G) = Θ(nε) for some ε ∈ [12 , 1). With our second amplification technique, we show that
3-coloring remains NP-complete also on irreducible and triangle-free graphs G of diameter 3 and
radius 2 with n vertices and minimum degree δ(G) = Θ(nε), for every ε ∈ [0, 12). Moreover, we
prove that for such graphs, when ε ∈ [0, 13 ), there exists no algorithm for 3-coloring with run-

ning time 2o(
√

n
δ
) = 2o(n

( 1−ε
2 )), assuming ETH. Finally, with our third amplification technique, we

prove that for such graphs, when ε ∈ [13 ,
1
2), there exists no algorithm for 3-coloring with run-

ning time 2o(δ) = 2o(n
ε), assuming ETH. Table 2 summarizes our time complexity lower bounds for

3-coloring on irreducible and triangle-free graphs with diameter 3 and radius 2, parameterized by
their minimum degree δ.

We note here that the way we use the term “parameterized by” should not be confused with the
way this term is being used in the context of parameterized complexity (such as in FPT algorithms).
In this paper we use the term “parameterized by” in the sense that our upper and lower bounds
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are given as a function of several parameters of the graph, such as the minimum degree δ, or the
maximum degree ∆.

δ(G) = Θ(nε): 0 ≤ ε < 1
3

1
3
≤ ε < 1

2
1
2
≤ ε < 1

.

.

.

.
Time complexity

.

.

.

.
no 2o(n

( 1−ε

2
)
)-time algorithm no 2o(n

ε)-time algorithm no 2o(n
1−ε)-time algorithm

.

.

lower bound:
.

. (cf. Theorem 13) (cf. Theorem 12) (cf. Theorem 11)

Table 2. Summary of the results of Theorems 11, 12, and 13: Time complexity lower bounds for deciding 3-coloring
on irreducible and triangle-free graphs G with n vertices, diameter 3, radius 2, and minimum degree δ(G) = Θ(nε),
where ε ∈ [0, 1), assuming ETH. The lower bound for ε ∈ [ 1

2
, 1) is asymptotically almost tight, as there exists an

algorithm for arbitrary graphs with diameter 3 with running time 2O(n

δ
log δ) = 2O(n1−ε log n) by Theorem 6.

Organization of the paper. We provide in Section 2 details about the Exponential Time Hy-
pothesis (ETH), as well as the necessary notation and terminology, our two reduction rules, and the
notion of an irreducible graph. In Sections 3 and 4 we present our results for graphs with diameter 2
and 3, respectively.

2 Preliminaries and notation

A theorem proving an NP-hardness result for a decision problem does not provide any information
about how efficiently (although not polynomially, unless P 6=NP) this decision problem can be solved.
In the context of providing lower bounds for the time complexity of solving NP-complete problems,
Impagliazzo, Paturi, and Zane formulated the Exponential Time Hypothesis (ETH) [17].

Exponential Time Hypothesis (ETH) [17]: There exists no algorithm solving 3SAT in time
2o(n), where n is the number of variables in the input CNF formula.

ETH is a strong hypothesis which might be true or not. In particular, if ETH is true then
it immediately follows that P 6=NP. In addition to formulating ETH, Impagliazzo, Paturi, and
Zane also proved the celebrated Sparsification Lemma [17], which has the following theorem as
a direct consequence. (This result is quite useful for providing lower bounds assuming ETH, as it
parameterizes the running time by the size of the input CNF formula, rather than only the number
of its variables.)

Theorem 1 ([16]). 3SAT can be solved in time 2o(n) if and only if it can be solved in time 2o(m),
where n is the number of variables and m is the number of clauses in the input CNF formula.

The following very well known theorem about the 3-coloring problem is based on the fact that
there exists a standard polynomial-time reduction from Not-All-Equal-3-SAT to 3-coloring* [22],
in which the constructed graph has diameter 4 and radius 2, and its number of vertices is linear in
the size of the input formula (see also [19]).

Theorem 2 ([19, 22]). Assuming ETH, there exists no 2o(n) time algorithm for 3-coloring on
graphs G with diameter 4, radius 2, and n vertices.

Notation. We consider in this article simple undirected graphs with no loops or multiple edges.
In an undirected graph G, the edge between vertices u and v is denoted by uv, and in this case u
and v are said to be adjacent in G. Otherwise u and v are called non-adjacent or independent. Given
a graph G = (V,E) and a vertex u ∈ V , denote by N(u) = {v ∈ V : uv ∈ E} the set of neighbors

*Note that there exists a polynomial-time reduction from 3SAT to Not-All-Equal-3-SAT, such that the size of
the output monotone formula is linear in the size of the input formula.
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(or the open neighborhood) of u and by N [u] = N(u) ∪ {u} the closed neighborhood of u. Whenever
the graph G is not clear from the context, we will write NG(u) and NG[u], respectively. Denote by
deg(u) = |N(u)| the degree of u in G and by δ(G) = min{deg(u) : u ∈ V } the minimum degree
of G. Let u and v be two non-adjacent vertices of G. Then, u and v are called (false) twins if they
have the same set of neighbors, i.e. if N(u) = N(v). Furthermore, we call the vertices u and v
siblings if N(u) ⊆ N(v) or N(v) ⊆ N(u); note that two twins are always siblings.

Given a graph G = (V,E) and two vertices u, v ∈ V , we denote by d(u, v) the distance of u and v,
i.e. the length of a shortest path between u and v in G. Furthermore, we denote by diam(G) =
max{d(u, v) : u, v ∈ V } the diameter of G and by rad(G) = minu∈V {max{d(u, v) : v ∈ V }} the
radius of G. Given a subset S ⊆ V , G[S] denotes the subgraph of G induced by S. We denote for
simplicity by G−S the induced subgraph G[V \S] of G. A subset S ⊆ V is an independent set in G if
the graph G[S] has no edges. Furthermore, a subset S ⊆ V is a clique if the graph G[S] has all

(|S|
2

)

possible edges among its vertices. A clique with t vertices is denoted by Kt. A graph G that contains
no Kt as an induced subgraph is called Kt-free. Furthermore, a subset D ⊆ V is a dominating set
of G if every vertex of V \D has at least one neighbor in D. For simplicity, we refer in the remainder
of the article to a proper k-coloring of a graph G just as a k-coloring of G. Throughout the article
we perform several times the merging operation of two (or more) independent vertices, which is
defined as follows: we merge the independent vertices u1, u2, . . . , ut when we replace them by a new
vertex u0 with N(u0) = ∪t

i=1N(ui). In addition to the well known big-O notation for asymptotic
complexity, sometimes we use the O∗ notation that suppresses polynomially bounded factors. For
instance, for functions f and g, we write f(n) = O∗(g(n)) if f(n) = O(g(n) poly(n)), where poly(n)
is a polynomial.

In the following we provide two reduction rules that can be applied to an arbitrary graph G.
Throughout the article, we assume that any given graph G of low diameter is irreducible with
respect to these two reduction rules, i.e. that these reduction rules have been iteratively applied
to G until they cannot be applied any more. Note that the iterative application of these reduction
rules on a graph with n vertices can be done in time polynomial in n. The correctness of these two
reduction rules is almost trivial, therefore they could be considered as folklore. Such reductions are
well-known tools in exact exponential and parameterized algorithms.

Observe that, whenever a graph G contains a clique with four vertices as an induced subgraph,
then G is not 3-colorable. Furthermore, we can check easily in polynomial time (e.g. with brute-
force) whether a given graph G contains a K4. Therefore we assume in the following that all
given graphs are K4-free. Furthermore, since a graph is 3-colorable if and only if all its connected
components are 3-colorable, we assume in the following that all given graphs are connected. In
order to present our two reduction rules of an arbitrary K4-free graph G, recall first that the
diamond graph is a graph with 4 vertices and 5 edges, i.e. it consists of a K4 without one edge.
The diamond graph is illustrated in Figure 1(a). Suppose that four vertices u1, u2, u3, u4 of a given
graph G = (V,E) induce a diamond graph, and assume without loss of generality that u1u2 /∈ E.
Then, it is easy to see that in any 3-coloring of G (if such exists), u1 and u2 necessarily obtain the
same color. Therefore we can merge u1 and u2 into one vertex, as the next reduction rule states,
and the resulting graph is 3-colorable if and only if G is 3-colorable.

Reduction Rule 1 (diamond elimination) Let G = (V,E) be a K4-free graph. If the quadruple
{u1, u2, u3, u4} of vertices in G induces a diamond graph, where u1u2 /∈ E, then merge vertices u1
and u2.

Note that, after performing a diamond elimination in a K4-free graph G, we may introduce
a new K4 in the resulting graph. An example of such a graph G is illustrated in Figure 1(b).
In this example, the graph on the left-hand side has no K4 but it has two diamonds, namely on
the quadruples {u1, u2, u3, u4} and {u4, u5, u6, u7} of vertices. However, after eliminating the first
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diamond by merging u1 and u4, we create a new K4 on the quadruple {u1, u5, u6, u7} of vertices,
cf. the graph of the right-hand side of Figure 1(b).

(a)

elimination

diamond

u1

u2 u3

u4

u5 u6

u7 u1

u2 u3 u5 u6

u7

(b)

Fig. 1. (a) The diamond graph and (b) an example of a diamond elimination of a K4-free graph, which creates a
new K4 on the vertices {u1, u5, u6, u7} in the resulting graph.

Suppose now that a graph G has a pair of siblings u and v and assume without loss of generality
that N(u) ⊆ N(v). Then, we can extend any proper 3-coloring of G − {u} (if such exists) to a
proper 3-coloring of G by assigning to u the same color as v. Therefore, we can remove vertex u
from G, as the next reduction rule states, and the resulting graph G−{u} is 3-colorable if and only
if G is 3-colorable.

Reduction Rule 2 (siblings elimination) Let G = (V,E) be a K4-free graph and u, v ∈ V , such
that N(u) ⊆ N(v). Then remove u from G.

Definition 1. Let G = (V,E) be a K4-free graph. If neither Reduction Rule 1 nor Reduction Rule 2
can be applied to G, then G is irreducible.

Due to Definition 1, a K4-free graph is irreducible if and only if it is diamond-free and siblings-
free. Given a K4-free graph G with n vertices, clearly we can iteratively execute Reduction Rules 1
and 2 in time polynomial in n, until we either find a K4 or none of the Reduction Rules 1 and 2 can
be further applied. If we find a K4, then clearly the initial graph G is not 3-colorable. Otherwise,
we transform G in polynomial time into an irreducible (K4-free) graph G′ of smaller or equal size,
such that G′ is 3-colorable if and only if G is 3-colorable.

Observe that during the application of these reduction rules to a graph G, neither the diam-
eter nor the radius of G increase. Moreover, note that in the irreducible graph G′, the neighbor-
hood NG′(u) of every vertex u in G′ induces a graph with maximum degree at most 1, since other-
wise G′ would have a K4 or a diamond as an induced subgraph. That is, the subgraph of G′ induced
by NG′(u) contains only isolated vertices and isolated edges. Furthermore, if G (and thus also G′)
is connected and if G′ has more than two vertices, then the minimum degree of G′ is δ(G′) ≥ 2,
since G′ is siblings-free. All these facts are summarized in the next observation. In the remainder
of the article, we assume that any given graph G is irreducible.

Observation 1 Let G = (V,E) be a connected K4-free graph and G′ = (V ′, E′) be an irreducible
graph obtained from G. If G′ has more than two vertices, then δ(G′) ≥ 2, diam(G′) ≤ diam(G),
rad(G′) ≤ rad(G), and G′ is 3-colorable if and only if G is 3-colorable. Moreover, for every u ∈ V ′,
NG′(u) induces in G′ a graph with maximum degree 1.

3 Algorithms for 3-coloring on graphs with diameter 2

In this section we present our results on graphs with diameter 2. In particular, we provide in
Section 3.1 our subexponential algorithm for 3-coloring on such graphs. We then provide, for every n,
an example of an irreducible and triangle-free graph Gn with Θ(n) vertices and diameter 2, which is
3-colorable, has minimum dominating set of size Θ(

√
n), and its minimum degree is δ(Gn) = Θ(

√
n).

6



Furthermore, we define in Section 3.2 the notion of an articulation neighborhood, and we provide our
polynomial algorithm for irreducible graphs G with diameter 2, which have at least one articulation
neighborhood.

3.1 An 2O(
√

n logn)-time algorithm for any graph with diameter 2

We first provide in the next lemma a well known algorithm that decides the 3-coloring problem on
an arbitrary graph G, using a dominating set (DS) of G [21]. For completeness we provide a short
proof of this lemma.

Lemma 1 ([21], the DS-approach). Let G = (V,E) be a graph and D ⊆ V be a dominating set
of G. Then, the 3-coloring problem can be decided in O∗(3|D|) time on G.

Proof. We iterate over all possible proper 3-colorings of D. There are at most 3|D| such colorings;
note that, if there is no proper 3-coloring of G[D], then clearly G is not 3-colorable. Fix now a proper
3-coloring of G[D]. If we want to construct a 3-coloring of G that agrees with this precoloring of
G[D], then for every vertex of G \D there will be only two possible colors that this vertex can use
in such a coloring (if one exists). Therefore, the question of whether this 3-coloring of G[D] can be
extended to a 3-coloring of G is a list 2-coloring problem, which can be solved in polynomial time
as it can be formulated as a 2SAT instance (a similar approach has been first used in [10], in the
context of coloring problems on dense graphs). Therefore, by considering in worst case all possible
3-colorings of the dominating set D, we can decide 3-coloring on G in time O∗(3|D|). ⊓⊔

In the next theorem we use Lemma 1 to provide an improved 3-coloring algorithm for the case
of graphs with diameter 2. The time complexity of this algorithm is parameterized by the minimum
degree δ of the given graph G, as well as by the fraction n

δ
.

Theorem 3. Let G = (V,E) be an irreducible graph with n vertices. Let diam(G) = 2 and δ be the
minimum degree of G. Then, the 3-coloring problem can be decided in 2O(min{δ,n

δ
log δ}) time on G.

Proof. In an arbitrary graph G with n vertices and minimum degree δ, it is well known how to
construct in polynomial time a dominating set D with cardinality |D| ≤ n1+ln(δ+1)

δ+1 [2, 3, 23] (see

also [1]). Therefore we can decide by Lemma 1 the 3-coloring problem on G in time O∗(3n
1+ln(δ+1)

δ+1 ).
Note by Observation 1 that δ ≥ 2, since G is irreducible by assumption. Therefore the latter running
time is 2O(n

δ
log δ).

The DS-approach of Lemma 1 applies to any graph G. However, since G has diameter 2 by
assumption, we can design a second algorithm for 3-coloring of G as follows. Consider a vertex
u ∈ V with minimum degree, i.e. deg(u) = δ. Since diam(G) = 2, it follows that for every other
vertex u ∈ V , either d(u, v) = 1 or d(u, v) = 2. Therefore N(u) is a dominating set of G with
cardinality δ. Fix a proper 3-coloring of G[N(u)]. Similarly to the proof of Lemma 1, note that
if we want to construct a 3-coloring of G that agrees with this precoloring of G[N(u)], then for
every vertex of G \ N(u) there will be only two possible colors that this vertex can use in such a
coloring (if one exists). We iterate now for all possible proper 2-colorings of G[N(u)] (instead of all
3-colorings of the dominating set as in the proof of Lemma 1). There are at most 2δ such colorings.
Similarly to the algorithm of Lemma 1, for every such 2-coloring of G[N(u)] we solve in polynomial
time the corresponding list 2-coloring of G−N [u]. Thus, considering at most all possible 2-colorings
of G[N(u)], we can decide the 3-coloring problem on G in time O∗(2δ) = 2O(δ).

Summarizing, we can combine these two 3-coloring algorithms for G, obtaining an algorithm
with time complexity 2O(min{δ,n

δ
log δ}). ⊓⊔

The next corollary provides the first subexponential algorithm for the 3-coloring problem on
graphs with diameter 2. Its correctness follows by Theorem 3.
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Corollary 1. Let G = (V,E) be an irreducible graph with n vertices and let diam(G) = 2. Then,
the 3-coloring problem can be decided in 2O(

√
n logn) time on G.

Proof. Let δ = δ(G) be the minimum degree of G. If δ ≤
√
n log n, then the 3-coloring problem

can be decided in 2O(δ) = 2O(
√
n logn) time on G by Theorem 3. Suppose now that δ >

√
n log n.

Note that log δ < log n, since δ < n. Therefore log δ
δ

< logn√
n logn

=
√

logn
n

, and thus n
δ
log δ < n

√
logn
n

,

i.e. n
δ
log δ <

√
n log n. Therefore the 3-coloring problem can be decided in 2O(n

δ
log δ) = 2O(

√
n logn)

time on G by Theorem 3. ⊓⊔

Given the statements of Lemma 1 and Theorem 3, a question that arises naturally is whether the
worst case complexity of the algorithm of Theorem 3 is indeed 2O(

√
n logn) (as given in Corollary 1).

That is, do there exist 3-colorable irreducible graphs G with n vertices and diam(G) = 2, such
that both δ(G) and the size of the minimum dominating set of G are Θ(

√
n log n), or close to this

value? We prove that such graphs exist; therefore our analysis of the DS-approach (cf. Lemma 1 and
Theorem 3, see also [1–3,23]) is asymptotically almost tight in the case of 3-coloring of graphs with
diameter 2. In particular, we provide in the next theorem for every n an example of an irreducible
3-colorable graph Gn with Θ(n) vertices and diam(Gn) = 2, such that both δ(Gn) and the size of
the minimum dominating set of G are Θ(

√
n). In addition, each of these graphs Gn is triangle-free,

as the next theorem states. The construction of the graphs Gn is based on a suitable and interesting
matrix arrangement of the vertices of Gn.

Theorem 4. Let n ≥ 1. Then there exists an irreducible and triangle-free 3-colorable graph
Gn = (Vn, En) with Θ(n) vertices, where diam(Gn) = 2 and δ(Gn)= Θ(

√
n). Furthermore, the size

of the minimum dominating set of Gn is Θ(
√
n).

Proof. We assume without loss of generality that n = 4k2 + 1 for some integer k > 1 and we con-
struct a graph Gn = (Vn, En) with n vertices (otherwise, if n 6= 4k2 + 1 for any k > 1, we provide

the same construction of Gn with 4⌈
√
n
2 + 1⌉2 + 1 = Θ(n) vertices). We arrange the first n− 1 ver-

tices of Gn (i.e. all vertices of Gn except one of them) in a matrix of size 2k× 2k. For simplicity of
notation, we enumerate these 4k2 vertices in the usual fashion, i.e. vertex vi,j is the vertex in the
intersection of row i and column j, where 1 ≤ i, j ≤ 2k. Furthermore, we denote the (4k2 + 1)th
vertex of Gn by v0. We assign the 3 colors red, blue, green to the vertices of Gn as follows. The ver-
tices {vi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ k} are colored blue, the vertices {vi,j : k + 1 ≤ i ≤ 2k, 1 ≤ j ≤ k}
are colored green, the vertices {vi,j : 1 ≤ i ≤ 2k, k + 1 ≤ j ≤ 2k} are colored red, and vertex v0 is
colored green.

We add edges among vertices of Vn as follows. First, vertex v0 is adjacent to ex-
actly all vertices that are colored red in the above 3-coloring of Gn. Then, the ver-
tices of jth column {v1,j , v2,j , . . . , v2k,j} and the vertices of the (2k + 1 − j)th col-
umn {v1,2k+1−j , v2,2k+1−j, . . . , v2k,2k+1−j} form a complete bipartite graph, without the edges
{vi,jvi,2k+1−j : 1 ≤ i ≤ 2k}, i.e. without the edges between vertices of the same row. Fur-
thermore, the vertices of ith row {vi,1, vi,2, . . . , vi,2k} and the vertices of the (2k + 1 − i)th
row {v2k+1−i,1, v2k+1−i,2, . . . , v2k+1−i,2k} form a complete bipartite graph, without the edges
{vi,jv2k+1−i,j : 1 ≤ j ≤ k} ∪ {vi,jv2k+1−i,ℓ : k + 1 ≤ j, ℓ ≤ 2k}. That is, there are no edges
between vertices of the same column and no edges between vertices colored red in the above 3-
coloring of Gn. Note also that there are no edges between vertices colored blue (resp. green, red),
and thus this coloring is a proper 3-coloring of Gn. The 2k× 2k matrix arrangement of the vertices
of Gn is illustrated in Figure 2(a). In this figure, the three color classes are illustrated by different
shades of gray. Furthermore, the edges of Gn between different rows and between different columns
in this matrix arrangement are illustrated in Figures 2(b) and 2(c), respectively.

It is easy to see by the construction of Gn that 3k ≤ deg(vi,j) ≤ 4k − 2 for every vertex
vi,j ∈ Vn \ {v0} and that deg(v0) = 2k2. In particular, deg(vi,j) = 3k (resp. deg(vi,j) = 4k − 2)
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k

k

k k

v0

(a)

vi,1 vi,k vi,k+1 vi,2k

v2k+1−i,1 v2k+1−i,k v2k+1−i,k+1 v2k+1−i,2k

(b)

v1,j

vk,j

vk+1,j

v2k,j

v1,2k+1−j

v2k,2k+1−j

(c)

Fig. 2. (a) The 2k × 2k matrix arrangement of the vertices of Gn, where n = 4k2 + 1, (b) the edges of Gn between
the ith and the (2k + 1− i)th rows, and (c) the edges of Gn between the jth and the (2k + 1− j)th columns of this
matrix arrangement. The three color classes are illustrated by different shades of gray.

for every vertex vi,j that has been colored red (resp. blue or green) in the above coloring of Gn.
Therefore, since k = Θ(

√
n), it follows that deg(vi,j) = Θ(

√
n) for every vi,j ∈ Vn \ {v0} and that

deg(v0) =
n−1
2 . That is, the minimum degree is δ(Gn) = Θ(

√
n).

Note now that the set {v0} ∪ {v1,1, v2,1, . . . , v2k,1} of vertices is a dominating set of G with
2k+1 = Θ(

√
n) vertices, since for every i = 1, 2, . . . , 2k, vertex vi,1 is adjacent to all vertices of the

(2k + 1 − i)th row of the matrix, except vertex v2k+1−i,1. Suppose that there exists a dominating

set D ⊆ Vn with cardinality o(
√
n), i.e. |D| =

√
n

f(n) , where f(n) = ω(1). Denote D′ = D∪{v0}; note
that |D′| ≤

√
n

f(n) + 1. Then, since deg(vi,j) = Θ(
√
n) for every vertex vi,j ∈ Vn \ {v0}, the vertices

of D′ can be adjacent to at most

n− 1

2
+ |D′ \ {v0}| · Θ(

√
n) ≤ n− 1

2
+

√
n

f(n)
· Θ(

√
n) =

n− 1

2
+

Θ(n)

f(n)

vertices of Vn \ D′ in total. However |Vn \ D′| ≥ n −
√
n

f(n) − 1 ≥ n − √
n − 1 and n−1

2 + Θ(n)
f(n) is

asymptotically smaller than n − √
n − 1, since f(n) = ω(1). That is, the vertices of D′ (and thus

also of D) cannot dominate all vertices of Vn \D′ ⊆ Vn \D. Thus D is not a dominating set, which
is a contradiction. Therefore the size of a minimum dominating set of Gn is Θ(

√
n).

Now we will prove that diam(Gn) = 2. First note that for every vertex vi,j ∈ Vn \ {v0} we
have d(v0, vi,j) ≤ 2. Indeed, if vi,j is colored red, then vi,j is adjacent to v0; otherwise v0 and vi,j
have vertex v2k+1−i,2k as common neighbor. Now consider two arbitrary vertices vi,j and vp,q, where
(i, j) 6= (p, q). Since any two red vertices have v0 as common neighbor (and thus they are at distance
2 from each other), assume that at most one of the vertices {vi,j , vp,q} is colored red. We will prove
that d(vi,j , vp,q) ≤ 2. If p = i, then vi,j and vp,q lie both in the ith row of the matrix. Therefore
vi,j and vp,q have all vertices of {v2k+1−i,1, v2k+1−i,2, . . . , v2k+1−i,k} \ {v2k+1−i,j , v2k+1−i,q} as their
common neighbors, and thus d(vi,j , vp,q) = 2. If q = j, then vi,j and vp,q lie both in the jth column
of the matrix. Therefore vi,j and vp,q have all vertices of {v1,2k+1−j , v2,2k+1−j, . . . , v2k,2k+1−j} \
{vi,2k+1−j, vp,2k+1−j} as their common neighbors, and thus d(vi,j , vp,q) = 2. Suppose that p 6= i and
q 6= j. If p = 2k + 1 − i or q = 2k + 1 − j, then vi,jvp,q ∈ En by the construction of Gn, and thus
d(vi,j, vp,q) = 1. Suppose now that also p 6= 2k + 1− i and q 6= 2k+ 1− j. Since at most one of the
vertices {vi,j, vp,q} is colored red, we may assume without loss of generality that vi,j is blue or green,
i.e. j ≤ k. Then there exists the path (vi,j, v2k+1−i,2k+1−q, vp,q) in Gn, and thus d(vi,j , vp,q) = 2.
Summarizing, d(u, v) ≤ 2 for every pair of vertices u and v in Gn, and thus diam(Gn) = 2.
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Now we will prove that Gn is a triangle-free graph. First note that v0 cannot belong to any
possible triangle in Gn, since its neighbors are by construction an independent set. Suppose now
that the vertices vi,j, vp,q, vr,s induce a triangle in Gn. Since the above coloring of the vertices of
Vn is a proper 3-coloring of Gn, we may assume without loss of generality that vi,j is colored blue,
vp,q is colored green, and vr,s is colored red in the above coloring of Gn. That is, i, j ∈ {1, 2, . . . , k},
p ∈ {k + 1, k +2, . . . , 2k}, q ∈ {1, 2, . . . , k}, r ∈ {1, 2, . . . , 2k}, and s ∈ {k + 1, k + 2, . . . , 2k}. Thus,
since vi,jvp,q ∈ En, it follows by the construction of Gn that p = 2k + 1 − i. Furthermore, since
vp,qvr,s ∈ En, it follows that p = 2k+1− r or q = 2k+1− s. If p = 2k+1− r, then r = i (since also
p = 2k+1− i). Therefore vi,j and vr,s lie both in the ith row of the matrix, which is a contradiction,
since we assumed that vi,jvr,s ∈ En. Therefore q = 2k+1− s. Finally, since vi,jvr,s ∈ En, it follows
that r = 2k + 1 − i or s = 2k + 1 − j. If r = 2k + 1 − i, then r = p (since also p = 2k + 1 − i).
Therefore vp,q and vr,s lie both in the pth row of the matrix, which is a contradiction, since we
assumed that vp,qvr,s ∈ En. Therefore s = 2k + 1 − j. Thus, since also q = 2k + 1 − s, it follows
that q = j, i.e. vi,j and vp,q lie both in the jth column of the matrix. This is again a contradiction,
since we assumed that vi,jvp,q ∈ En. Therefore, no three vertices of Gn induce a triangle, i.e. Gn is
triangle-free.

Note now that Gn is diamond-free, since it is also triangle-free, and thus the Reduction Rule 1
does not apply on Gn. Furthermore, it is easy to check that there exist no pair vi,j and vp,q of vertices
such that N(vi,j) ⊆ N(vp,q), and that there does not exist any vertex vi,j such that N(vi,j) ⊆ N(v0)
or N(v0) ⊆ N(vi,j). That is, Gn is siblings-free, and thus also the Reduction Rule 2 does not apply
on Gn. Therefore Gn is irreducible. This completes the proof of the theorem. ⊓⊔

3.2 A tractable subclass of graphs with diameter 2

In this section we present a subclass of graphs with diameter 2, which admits an efficient algorithm
for 3-coloring. We first introduce the definition of an articulation neighborhood in a graph.

Definition 2. Let G = (V,E) be a graph and let v ∈ V . If G−N [v] is disconnected, then N [v] is
an articulation neighborhood in G.

We prove in Theorem 5 that, given an irreducible graph with diam(G) = 2, which has at least one
articulation neighborhood, we can decide 3-coloring on G in polynomial time. Note here that there
exist instances of K4-free graphs G with diameter 2, in which G has no articulation neighborhood,
but in the irreducible graph G′ obtained by G (by iteratively applying the Reduction Rules 1 and 2),
G′ − NG′ [v] becomes disconnected for some vertex v of G′. That is, G′ may have an articulation
neighborhood, although G has none. Therefore, if we consider as input the irreducible graph G′

instead of G, we can decide in polynomial time the 3-coloring problem on G′ (and thus also on G).

Theorem 5. Let G = (V,E) be an irreducible graph with n vertices and diam(G) = 2. If G has at
least one articulation neighborhood, then we can decide 3-coloring on G in time polynomial in n.

Proof. Let v0 ∈ V such that G−N [v0] is disconnected and let C1, C2, . . . , Ck be the connected
components of G − N [v0]. In order to compute a proper 3-coloring of G, the algorithm assigns
without loss of generality the color red to vertex v0. Suppose that at least one component Ci,
1 ≤ i ≤ k, is trivial, i.e. Ci is an isolated vertex u. Then, since u ∈ V \N [v0] and u has no
adjacent vertices in V \ N [v0], it follows that N(u) ⊆ N(v0), i.e. u and v0 are siblings in G.
This is a contradiction, since G is an irreducible graph. Therefore, every connected component Ci

of G−N [v0] is non-trivial, i.e. it contains at least one edge. Thus, in any proper 3-coloring of G (if
such exists), there exists at least one vertex of every connected component Ci of G−N [v0] that is
colored not red, i.e. with a different color than v0.

Suppose now that G is 3-colorable, and let c be a proper 3-coloring of G. Assume without loss
of generality that c uses the colors red, blue, and green (recall that v0 is already colored red). Let
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Ci, Cj be an arbitrary pair of connected components of G − N [v0]; such a pair always exists, as
G − N [v0] is assumed to be disconnected. Let u and v be two arbitrary vertices of Ci and of Cj,
respectively, such that both u and v are not colored red in c; such vertices u and v always exist,
as we observed above. Then, since diam(G) = 2, there exists at least one common neighbor a of
u and v, where a ∈ N(v0). That is, a ∈ N(v0) ∩ N(u) ∩ N(v). Therefore, since v0 is colored red
in c and u, v are not colored red in c, it follows that both u and v are colored by the same color
in c. Assume without loss of generality that both u and v are colored blue in c. Thus, since u and
v have been chosen arbitrarily under the single assumption that they are not colored red in c, it
follows that for every vertex u of G−N [v0], u is either colored red or blue in c. Furthermore, since
v0 has been assumed to be red and hence the neighbors of v0 use colors blue and green, each vertex
now has only two possible colors that it can use. This reduces the problem to the list 2-coloring
problem that can be solved in polynomial time (by reducing to the 2SAT problem). This completes
the proof of the theorem. ⊓⊔

A question that arises now naturally by Theorem 5 is whether there exist any irreducible 3-
colorable graph G = (V,E) with diam(G) = 2, which has no articulation neighborhood at all. A
negative answer to this question would imply that we can decide the 3-coloring problem on any
graph with diameter 2 in polynomial time using Theorem 5. However, the answer to that question
is positive: for every n ≥ 1, the graph Gn = (Vn, En) that has been presented in Theorem 4 is
irreducible, 3-colorable, has diameter 2, and Gn − N [v] is connected for every v ∈ Vn, i.e. Gn

has no articulation neighborhood. Therefore Theorem 5 cannot be used in a trivial way to decide
in polynomial time the 3-coloring problem for an arbitrary graph of diameter 2. We leave the
tractability of the 3-coloring problem of arbitrary diameter-2 graphs as an open problem.

4 Almost tight results for graphs with diameter 3

In this section we present our results on graphs with diameter 3. In particular, we first provide
in Section 4.1 our algorithm for 3-coloring arbitrary graphs with diameter 3 that has running
time 2O(min{δ∆, n

δ
log δ}), where n is the number of vertices and δ (resp.∆) is the minimum (resp. max-

imum) degree of the input graph. Then we prove in Section 4.2 that 3-coloring is NP-complete
on irreducible and triangle-free graphs with diameter 3 and radius 2 by providing a reduction
from 3SAT. Finally, we provide in Section 4.3 our three different amplification techniques that
extend our hardness results of Section 4.2. In particular, we provide in Theorems 9 and 10 our
NP-completeness amplifications, and in Theorems 11, 12, and 13 our lower bounds for the time
complexity of 3-coloring, assuming ETH.

4.1 An 2O(min{δ∆, n

δ
log δ})-time algorithm for any graph with diameter 3

In the next theorem we use the DS-approach of Lemma 1 to provide a 3-coloring algorithm for
the case of graphs with diameter 3. The time complexity of this algorithm is parameterized by the
minimum degree δ of the given graph G, as well as by the fraction n

δ
.

Theorem 6. Let G = (V,E) be an irreducible graph with n vertices and diam(G) = 3. Let δ and ∆
be the minimum and the maximum degree of G, respectively. Then, the 3-coloring problem can be
decided in 2O(min{δ∆, n

δ
log δ}) time on G.

Proof. First recall that, in an arbitrary graph G with n vertices and minimum degree δ, we can
construct in polynomial time a dominating set D with cardinality |D| ≤ n1+ln(δ+1)

δ+1 [2]. Therefore,
similarly to the proof of Theorem 3, we can use the DS-approach of Lemma 1 to obtain an algorithm
that decides 3-coloring on G in 2O(n

δ
log δ) time.
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The DS-approach of Lemma 1 applies to any graph G. However, since G has diame-
ter 3 by assumption, we can design a second algorithm for 3-coloring of G as follows. Con-
sider a vertex u ∈ V with minimum degree, i.e. deg(u) = δ. Since diam(G) = 3, we can parti-
tion the vertices of V \N [u] into two sets A and B, such that A = {v ∈ V \N [u] : d(u, v) = 2}
and B = {v ∈ V \N [u] : d(u, v) = 3}. Note that every vertex v ∈ A is adjacent to at least one vertex
of N(u). Therefore, since |N(u)| = δ and the maximum degree in G is ∆, it follows that |A| ≤ δ ·∆.
Furthermore, the set A ∪ {u} is a dominating set of G with cardinality at most δ∆ + 1. Thus we
can decide 3-coloring on G by considering in the worst case all possible 3-colorings of A ∪ {u}
in O∗(3δ∆+1) = 2O(δ∆) time by using the DS-approach of Lemma 1.

Summarizing, we can combine these two 3-coloring algorithms for G, obtaining an algorithm
with time complexity 2O(min{δ∆, n

δ
log δ}). ⊓⊔

To the best of our knowledge, the algorithm of Theorem 6 is the first subexponential algorithm
for graphs with diameter 3, whenever δ = ω(1), as well as whenever δ = O(1) and ∆ = o(n). As we
will later prove in Section 4.3, the running time provided in Theorem 6 is asymptotically almost
tight whenever δ = Θ(nε), for any ε ∈ [12 , 1).

Note now that for any graph G with n vertices and diam(G) = 3, the maximum degree

∆ of G is ∆ = Ω(n
1
3 ). Indeed, suppose otherwise that ∆ = o(n

1
3 ), and let u be any vertex

of G. Then, there are at most ∆ vertices in G at distance 1 from u, at most ∆2 vertices
at distance 2 from u, and at most ∆3 vertices at distance 3 from u. That is, G contains at
most 1 +∆+∆2 +∆3 = o(n) vertices, since we assumed that ∆ = o(n

1
3 ), which is a contradic-

tion. Therefore ∆ = Ω(n
1
3 ). Furthermore note that, whenever δ = Ω(n

1
3
√
log n) in a graph with n

vertices and diameter 3, we have δ∆ = Ω(n
δ
log δ). Indeed, since ∆ = Ω(n

1
3 ) as we proved above,

it follows that in this case δ2∆ = Ω(n log n) = Ω(n log δ), since δ < n, and thus δ∆ = Ω(n
δ
log δ).

Therefore, if the minimum degree of G is δ = Ω(n
1
3
√
log n), the running time of the algorithm of

Theorem 6 becomes 2O(n
δ
log δ) = 2O(n

2
3
√
logn).

4.2 The 3-coloring problem is NP-complete on graphs with diameter 3 and radius 2

In this section we provide a reduction from the 3SAT problem to the 3-coloring problem of triangle-
free graphs with diameter 3 and radius 2. Given a boolean formula φ in conjunctive normal form
with three literals in each clause (3-CNF), φ is satisfiable if there is a truth assignment of φ, such
that every clause contains at least one true literal. The problem of deciding whether a given 3-CNF
formula is satisfiable, i.e. the 3SAT problem, is one of the most known NP-complete problems [12].
Let φ be a 3-CNF formula with n variables x1, x2, . . . , xn and m clauses α1, α2, . . . , αm. We can
assume in the following without loss of generality that each clause has three distinct literals. We
now construct an irreducible and triangle-free graph Hφ = (Vφ, Eφ) with diameter 3 and radius 2,
such that φ is satisfiable if and only if Hφ is 3-colorable. Before we construct Hφ, we first construct
an auxiliary graph Gn,m that depends only on the number n of the variables and the number m of
the clauses in φ, rather than on φ itself.

We construct the graph Gn,m = (Vn,m, En,m) as follows. Let v0 be a vertex with 8m
neighbors v1, v2, . . . , v8m, which induce an independent set. Consider also the sets
U = {ui,j : 1 ≤ i ≤ n+ 5m, 1 ≤ j ≤ 8m} and W = {wi,j : 1 ≤ i ≤ n+ 5m, 1 ≤ j ≤ 8m} of ver-
tices. Each of these sets has (n+ 5m)8m vertices. The set Vn,m of vertices of Gn,m is de-
fined as Vn,m = U ∪W ∪ {v0, v1, v2, . . . , v8m}. That is, |Vn,m| = 2 · (n+ 5m)8m+ 8m+ 1, and
thus |Vn,m| = Θ(m2), since m = Ω(n).

The set En,m of the edges of Gn,m is defined as follows. Define first for every j ∈ {1, 2, . . . , 8m}
the subsets Uj = {u1,j , u2,j , . . . , un+5m,j} and Wj = {w1,j , w2,j, . . . , wn+5m,j} of U and W , respec-
tively. Then define N(vj) = {v0} ∪ Uj ∪Wj for every j ∈ {1, 2, . . . , 8m}, where N(vj) denotes the
set of neighbors of vertex vj in Gn,m. For simplicity of the presentation, we arrange the vertices of
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U∪W on a rectangle matrix of size 2(n + 5m)×8m, cf. Figure 3(a). In this matrix arrangement, the
(i, j)th element is vertex ui,j if i ≤ n+ 5m, and vertex wi−n−5m,j if i ≥ n+ 5m+ 1. In particular,
for every j ∈ {1, 2, . . . , 8m}, the jth column of this matrix contains exactly the vertices of Uj ∪Wj,
cf. Figure 3(a). Note that, for every j ∈ {1, 2, . . . , 8m}, vertex vj is adjacent to all vertices of the jth
column of this matrix. Denote now by ℓi = {ui,1, ui,2, . . . , ui,8m} (resp. ℓ′i = {wi,1, wi,2, . . . , wi,8m})
the ith (resp. the (n+ 5m+i)th) row of this matrix, cf. Figure 3(a). For every i ∈ {1, 2, . . . , n + 5m},
the vertices of ℓi and of ℓ′i induce two independent sets in Gn,m. We then add between the vertices
of ℓi and the vertices of ℓ′i all possible edges, except those of {ui,jwi,j : 1 ≤ j ≤ 8m}. That is, we
add all possible (8m)2 − 8m edges between the vertices of ℓi and of ℓ′i, such that they induce a
complete bipartite graph without a perfect matching between the vertices of ℓi and of ℓ′i, cf. Fig-
ure 3(b). Note by the construction of Gn,m that both U and W are independent sets in Gn,m.
Furthermore note that the minimum degree in Gn,m is δ(Gn,m) = Θ(m) and the maximum degree
is ∆(Gn,m) = Θ(n + m). Thus, since m = Ω(n), we have that δ(Gn,m) = ∆(Gn,m) = Θ(m). The
construction of the graph Gn,m is illustrated in Figure 3.
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v1 v2 . . .

U
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ℓ′i
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Fig. 3. (a) The 2(n + 5m) × 8m-matrix arrangement of the vertices U ∪ W of Gn,m and their connections with
the vertices {v0, v1, v2, . . . , v8m}, (b) the edges between the vertices of the ith row ℓi and the (n + 5m + i)th row
ℓ′i in this matrix, and (c) the gadget with 8 vertices and 10 edges that we associate in Hφ to the clause αk of φ,
where 1 ≤ k ≤ m.

Lemma 2. For every n,m ≥ 1, the graph Gn,m has diameter 3 and radius 2.

Proof. First note that for any j ∈ {1, 2, . . . , 8m}, every vertex ui,j (resp. wi,j) is adjacent to vj.
Therefore, since vj ∈ N(v0) for every j ∈ {1, 2, . . . , 8m}, it follows that d(v0, u) ≤ 2 for every
u ∈ Vn,m \ {v0}, and thus Gn,m has radius 2. Furthermore note that d(vj , vk) ≤ 2 for every
j, k ∈ {1, 2, . . . , 8m}, since vj, vk ∈ N(v0). Consider now an arbitrary vertex ui,j (resp. wi,j) and
an arbitrary vertex vk. If j = k, then d(vk, ui,j) = 1 (resp. d(vk, wi,j) = 1). Otherwise, if j 6= k,
then there exists the path (vk, v0, vj , ui,j) (resp. (vk, v0, vj , wi,j)) of length 3 between vk and ui,j
(resp. wi,j). Therefore also d(vk, u) ≤ 3 for every k = 1, 2, . . . , 8m and every u ∈ Vn,m \ {vk}.

We will now prove that d(ui,j , up,q) ≤ 3 for every (i, j) 6= (p, q). If q 6= j, then there exists
the path (ui,j, vj , wp,j, up,q) of length 3 between ui,j and up,q. If q = j, then d(ui,j , up,q) = 2,
as ui,j , up,q ∈ N(vj). Therefore d(ui,j , up,q) ≤ 3 for every (i, j) 6= (p, q). Similarly we can prove
that d(wi,j , wp,q) ≤ 3 for every (i, j) 6= (p, q). It remains to prove that d(ui,j, wp,q) ≤ 3 for every
(i, j) and every (p, q). If p 6= i and q 6= j, then there exists the path (ui,j, vj , up,j, wp,q) of length 3
between ui,j and wp,q. If q = j, then d(ui,j , wp,q) = 2, since ui,j , wp,q ∈ N(vj). If p = i and q 6= j,
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then wp,q = wi,q, and thus ui,jwp,q ∈ En,m. Therefore d(uij , wpq) ≤ 3 for every (i, j) and every
(p, q), and thus Gn,m has diameter 3. ⊓⊔

Lemma 3. For every n,m ≥ 1, the graph Gn,m is irreducible and triangle-free.

Proof. First observe that, by construction, Gn,m has no pair of sibling vertices, and thus the Re-
duction Rule 2 does not apply to Gn,m. Thus, in order to prove that Gn,m is irreducible, it suffices
to prove that Gn,m is triangle-free, and thus also diamond-free, i.e. also the Reduction Rule 1 does
not apply to Gn,m. Suppose otherwise that Gn,m has a triangle with vertices a, b, c. Note that vertex
v0 does not belong to any triangle in Gn,m, since its neighbors N(v0) = {v1, v2, . . . , v8m} induce an
independent set in Gn,m. Furthermore, note that also vertex vj, where 1 ≤ j ≤ 8m, does not belong
to any triangle in Gn,m. Indeed, by construction of Gn,m, its neighbors N(vj) = {v0} ∪ Uj ∪ Wj

induce an independent set in Gn,m. Therefore all the vertices a, b, c of the assumed triangle of Gn,m

belong to U ∪W . Therefore, at least two vertices among a, b, c belong to U , or at least two of them
belong to W . This is a contradiction, since by the construction of Gn,m the sets U and W induce
two independent sets. Therefore Gn,m is triangle-free. Thus Gn,m is also diamond-free, i.e. the Re-
duction Rule 1 does not apply to Gn,m. Summarizing, Gn,m is irreducible and triangle-free. ⊓⊔

We now construct the graph Hφ = (Vφ, Eφ) from φ by adding 10m edges to Gn,m as follows.
Let k ∈ {1, 2, . . . ,m} and consider the clause αk = (lk,1 ∨ lk,2 ∨ lk,3), where lk,p ∈ {xik,p , xik,p}
for p ∈ {1, 2, 3} and ik,1, ik,2, ik,3 ∈ {1, 2, . . . , n}. For this clause αk, we add on the vertices of
Gn,m an isomorphic copy of the gadget in Figure 3(c), which has 8 vertices and 10 edges, as
follows. Let p ∈ {1, 2, 3}. The literal lk,p corresponds to vertex gk,p of this gadget. If lk,p = xik,p ,
we set gk,p = uik,p,8k+1−p. Otherwise, if lk,p = xik,p , we set gk,p = wik,p,8k+1−p. Furthermore, for
p ∈ {4, . . . , 8}, we set gk,p = un+5k+4−p,8k+1−p.

Note that, by construction, the graphs Hφ and Gn,m have the same vertex set, i.e. Vφ = Vn,m,
and that En,m ⊂ Eφ. Therefore diam(Hφ) ≤ 3 and rad(Hφ) ≤ 2, since diam(Gn,m) = 3 and
rad(Gn,m) = 2 by Lemma 2. Observe now that every positive literal of φ is associated to a vertex
of U , while every negative literal of φ is associated to a vertex of W . In particular, each of the
3m literals of φ corresponds by this construction to a different column in the matrix arrangement
of the vertices of U ∪W . If a literal of φ is the variable xi (resp. the negated variable xi), where
1 ≤ i ≤ n, then the vertex of U (resp. W ) that is associated to this literal lies in the ith row ℓi
(resp. in the (n+ 5m+ i)th row ℓ′i) of the matrix.

Moreover, note by the above construction that each of the 8m vertices {gk,1, gk,2, . . . , gk,8}mk=1

corresponds to a different column in the matrix of the vertices of U ∪W . Finally, each of the 5m
vertices {gk,4, gk,5, gk,6, gk,7, gk,8}mk=1 corresponds to a different row in the matrix of the vertices
of U . We emphasize here that, by construction, each copy of the gadget of Figure 3(c) is an induced
subgraph of Hφ.

Observation 2 The gadget of Figure 3(c) has no proper 2-coloring, as it contains an induced cycle
of length 5.

Observation 3 Consider the gadget of Figure 3(c). If we assign to vertices gk,1, gk,2, gk,3 the same
color, we cannot extend this coloring to a proper 3-coloring of the gadget. Furthermore, if we assign
to vertices gk,1, gk,2, gk,3 in total two or three colors, then we can extend this coloring to a proper
3-coloring of the gadget.

The next observation follows by the construction of Hφ and by our initial assumption that each
clause of φ has three distinct literals.

Observation 4 For every i ∈ {1, 2, . . . , n + 5m}, there exists no pair of adjacent vertices in the
same row ℓi or ℓ′i in Hφ.
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Lemma 4. For every formula φ, the graph Hφ is irreducible and triangle-free.

Proof. First observe that, similarly to Gn,m, the graph Hφ has no pair of sibling vertices, and thus
the Reduction Rule 2 does not apply to Hφ. We will now prove that Hφ is triangle-free. Suppose
otherwise that Hφ has a triangle with vertices a, b, c. Similarly to Gn,m, note that the neighbors
of v0 in Hφ induce an independent set, and thus vertex v0 does not belong to any triangle in Hφ.
Furthermore, note by the construction of Hφ that we do not add any edge between vertices ui,j
and wi,j, where 1 ≤ i ≤ n + 5m and 1 ≤ j ≤ 8m. Therefore, similarly to Gn,m, the neighbors of
vj induce an independent set in Hφ, where j ∈ {1, 2, . . . , 8m}, and thus vj does not belong to any
triangle in Hφ. Therefore all the vertices a, b, c of the assumed triangle of Hφ belong to U ∪ W .
Since Gn,m is triangle-free by Lemma 3, it follows that at least one edge in this triangle belongs
to Eφ \ En,m, i.e. to at least one of the copies of the gadget in Figure 3(c). Note that not all of
the three vertices a, b, c belong to the same copy of this gadget, since the gadget is triangle-free,
cf. Figure 3(c). Assume without loss of generality that vertices a and b (and thus also the edge
ab) of the assumed triangle of Hφ belong to the copy of the gadget that corresponds to clause αk,
where 1 ≤ k ≤ m. Then, since vertex c does not belong to this gadget, the edges ac and bc of
the assumed triangle belong also to the graph Gn,m. Therefore, since a, b, c ∈ U ∪ W , it follows
by the construction of Gn,m that a and b belong to some row ℓi and c belongs to the row ℓ′i, or
a and b belong to some row ℓ′i and c belongs to the row ℓi. This is a contradiction, since no pair
of adjacent vertices (such as a and b) belong to the same row ℓi or ℓ′i in Hφ by Observation 4.
Therefore Hφ is triangle-free, and thus also diamond-free, i.e. the Reduction Rule 2 does not apply
to Hφ. Summarizing, Hφ is irreducible and triangle-free. ⊓⊔

We are now ready to state the main theorem of this section.

Theorem 7. The formula φ is satisfiable if and only if Hφ is 3-colorable.

Proof. We will first prove that Gn,m is always 3-colorable. Recall that both U and W are indepen-
dent sets in Gn,m, and that the only edges among the vertices of U ∪ W in Gn,m are all possible
edges between the rows ℓi (that contains only vertices of U) and ℓ′i (that contains only vertices of
W ), except for a perfect matching between the vertices of ℓi and of ℓ′i. Consider three colors, say red,
green, and blue. We assign to vertex v0 the color red. Furthermore we assign arbitrarily the color
blue or green to each of its neighbors vj , 1 ≤ j ≤ 8m. For each of these 28m different colorings of
vertex v0 and its neighbors, we can construct 2n+5m different proper 3-colorings of Gn,m as follows.
For every i ∈ {1, 2, . . . , n+5m}, we have at least two possibilities for coloring the vertices of ℓi and
of ℓ′i: (a) color all vertices of ℓi red, and for every vertex wi,j of ℓ

′
i, color wi,j blue (resp. green) if vj

is colored green (resp. blue), and (b) color all vertices of ℓ′i red, and for every vertex ui,j of ℓi, color
ui,j blue (resp. green) if vj is colored green (resp. blue). Therefore, there are at least 28m · 2n+5m

different proper 3-colorings of Gn,m, in which vertex v0 obtains color red.

(⇒) Suppose first that φ is satisfiable, and let τ be a satisfying truth assignment of φ. Given
this truth assignment τ , we construct a proper 3-coloring χφ of Hφ as follows. First assign to v0
the color red in χφ. By construction, this coloring χφ will be one of the above 28m · 2n+5m proper
3-colorings of Gn,m. That is, for every i ∈ {1, 2, . . . , n + 5m}, either all vertices of row ℓi are red
and all vertices of row ℓ′i are green or blue in χφ, or vice versa. For every i ∈ {1, 2, . . . , n+ 5m}, if
the vertices of row ℓi (resp. of row ℓ′i) are red in χφ, then we call row ℓi (resp. row ℓ′i) a red line.
Otherwise, if the vertices of row ℓi (resp. of row ℓ′i) are not red in χφ, then we call row ℓi (resp. row
ℓ′i) a white line. Furthermore, for every vertex ui,j (resp. wi,j) of a white line ℓi (resp. of a white
line ℓ′i), the color of ui,j (resp. of wi,j) in χφ is uniquely determined by the color of its neighbor vj
in χφ. That is, if vj is blue then ui,j (resp. wi,j) is green in χφ. Otherwise, if vj is green then ui,j
(resp. wi,j) is blue in χφ.

Let xi be an arbitrary variable in φ, where 1 ≤ i ≤ n. If xi = 0 in τ , we define row ℓi to be a
red line and row ℓ′i to be a white line in χφ, respectively. Otherwise, if xi = 1 in τ , we define row
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ℓ′i to be a red line and row ℓi to be a white line in χφ, respectively. Consider an arbitrary clause
αk = (lk,1 ∨ lk,2 ∨ lk,3) of φ, where lk,p ∈ {xik,p , xik,p} for p ∈ {1, 2, 3}. Furthermore consider the
copy of the gadget of Figure 3(c) that is associated to clause αk in Hφ. Recall by the construction
of Hφ that the literals lk,1, lk,2, and lk,3 correspond to the vertices gk,1, gk,2, and gk,3 of this gadget,
respectively. Since τ is a satisfying assignment of φ, at least one of the literals lk,1, lk,2, and lk,3
is true in τ . Therefore at least one of the vertices gk,1, gk,2, and gk,3 belongs to a white line in
χφ, i.e. at least one of them is green or blue in χφ. If one (resp. two) of the vertices gk,1, gk,2, gk,3
belongs (resp. belong) to a red line of χφ, then we color the other two (resp. the other one) green
in χφ. Otherwise, if all three of the vertices gk,1, gk,2, and gk,3 belong to a white line in χφ, then we
color gk,1, gk,2 green and vertex gk,3 blue in χφ. For every p ∈ {1, 2, 3}, if we color vertex gk,p green
(resp. blue) in χφ, then we color its neighbor v8k+1−p blue (resp. green) in χφ, cf. the construction
of the graph Hφ. Otherwise, if we color vertex gk,p red in χφ, then we color its neighbor v8k+1−p

either blue or green in χφ (both choices lead to a proper 3-coloring of Hφ).

Once we have colored the vertices gk,1, gk,2, gk,3 with two colors in total, we extend the col-
oring of these three vertices to a proper 3-coloring χk of the gadget associated to clause αk (cf.
Observation 3). Let p ∈ {4, 5, 6, 7, 8}. If gk,p is colored green (resp. blue) in χk, then we color its
neighbor v8k+1−p blue (resp. green) in χφ, and we define row ℓn+5k+4−p to be a white line and
row ℓ′n+5k+4−p to be a red line in χφ, respectively. Otherwise, if gk,p is colored red in χk, then
we define row ℓn+5k+4−p to be a red line and row ℓ′n+5k+4−p to be a white line in χφ, respectively.
Furthermore, in this case we color the neighbor v8k+1−p of gk,p either blue or green χφ (both choices
lead to a proper 3-coloring of Hφ). After performing the above coloring operations for every clause
αk, where 1 ≤ k ≤ m, we obtain a well defined coloring χφ of all vertices of Hφ. Note that in
this coloring χφ, all copies of the gadget of Figure 3(c) are properly colored with 3 colors. Further-
more, by construction this coloring χφ is also a proper 3-coloring of Gn,m. Therefore χφ is a proper
3-coloring of Hφ.

(⇐) Suppose now thatHφ is 3-colorable and let χφ be a proper 3-coloring ofHφ. Assume without
loss of generality that vertex v0 is colored red in χφ. We will construct a satisfying assignment τ of
φ. Consider an index i ∈ {1, 2, . . . , n + 5m} and the rows ℓi and ℓ′i of the matrix. Suppose that ℓi
has at least one vertex ui,j1 that is colored red and at least one vertex ui,j2 that is colored blue in
χφ. Then clearly all vertices of ℓ′i, except possibly of wi,j1 and wi,j2 , are colored green in χφ, since
they are adjacent to both ui,j1 and ui,j2 . Therefore all vertices of {v1, v2, . . . , v8m} \ {vj1 , vj2} are
colored blue in χφ. Thus, all vertices of (U ∪W )\ (Uj1 ∪Uj2 ∪Wj1 ∪Wj2) are colored either green or
red in χφ. However there exists at least one copy of the gadget of Figure 3(c) on these vertices, by
the construction of Hφ. That is, this gadget has a proper coloring (induced by χφ) with the colors
green and red. This is a contradiction by Observation 2. Thus, there exists no row ℓi with at least
one vertex colored red and another one colored blue in χφ. Similarly we can prove that there exists
no row ℓi (resp. ℓ

′
i) with at least one vertex colored red and another one colored blue or green in

χφ. That is, if at least one vertex of a row ℓi (resp. ℓ
′
i) is colored red in χφ, then all vertices of ℓi

(resp. ℓ′i) are colored red in χφ.

We will now prove that for any i ∈ {1, 2, . . . , n + 5m}, at least one vertex of ℓi or at least one
vertex of ℓ′i is red in χφ. Suppose otherwise that every vertex of the rows ℓi and ℓ′i is colored either
green or blue in χφ. Then, since the vertices of ℓi and of ℓ′i induce a connected bipartite graph, it
follows that all vertices of ℓi are colored green and all vertices of ℓ′i are colored blue in χφ, or vice
versa. Thus, in particular, for every j = 1, 2, . . . , 8m, vertex vj is adjacent to one blue and to one
green vertex (one from ℓi and the other one from ℓ′i). Thus, since χφ is a proper 3-coloring of Hφ,
it follows that vj is colored red in χφ. This is a contradiction, since v0 ∈ N(vj) and v0 is colored
red in χφ by assumption. Therefore, for any i ∈ {1, 2, . . . , n + 5m}, at least one vertex of ℓi or at
least one vertex of ℓ′i is colored red in χφ.

Summarizing, for every i ∈ {1, 2, . . . , n+ 5m}, either all vertices of the row ℓi or all vertices of
the row ℓ′i are colored red in χφ. We define now the truth assignment τ of φ as follows. For every
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i ∈ {1, 2, . . . , n + 5m}, we set xi = 0 in τ if all vertices of ℓi are colored red in χφ; otherwise, if all
vertices of ℓ′i are colored red in χφ, then we set xi = 1 in τ . We will prove that τ is a satisfying
assignment of φ. Consider a clause αk = (lk,1 ∨ lk,2 ∨ lk,3) of φ, where lk,p ∈ {xik,p , xik,p} for
p ∈ {1, 2, 3}. By the construction of the graph Hφ, this clause corresponds to a copy of the gadget
of Figure 3(c) in Hφ. Thus, since χφ is a proper 3-coloring of Hφ by assumption, the vertices of
this gadget are colored with three colors by Observation 2. Furthermore, not all three vertices
gk,1, gk,2, gk,3 have the same color in χφ by Observation 3. Moreover, note by the construction of
Hφ and by the definition of the truth assignment τ , that lk,p = 0 in τ if and only if vertex gk,p is
colored red in χφ, where p ∈ {1, 2, 3}. Thus, since the vertices gk,1, gk,2, gk,3 are not all red in χφ, it
follows that the literals lk,1, lk,2, lk,3 of clause αk are not all false in τ . Therefore αk is satisfied by
τ , and thus τ is a satisfying truth assignment of φ. This completes the proof of the theorem. ⊓⊔

The next theorem follows by Lemma 4 and Theorem 7.

Theorem 8. The 3-coloring problem is NP-complete on irreducible and triangle-free graphs with
diameter 3 and radius 2.

4.3 Time complexity lower bounds and general NP-completeness results

In this section we present our three different amplification techniques of the reduction of Theo-
rem 7. In particular, using these three amplifications we extend for every ε ∈ [0, 1) the result of
Theorem 8 (by providing both NP-completeness and time complexity lower bounds) to irreducible
triangle-free graphs with diameter 3 and radius 2 and minimum degree δ = Θ(nε). We use our first
amplification technique in Theorems 9 and 11, our second one in Theorems 10 and 13, and our
third one in Theorem 12.

Theorem 9. Let G = (V,E) be an irreducible and triangle-free graph with diameter 3 and radius 2.
If the minimum degree of G is δ(G) = Θ(|V |ε), where ε ∈ [12 , 1), then it is NP-complete to decide
whether G is 3-colorable.

Proof. Let φ be a boolean formula with n variables andm clauses. Using the reduction of Section 4.2,
we construct from the formula φ the irreducible and triangle-free graph Hφ = (Vφ, Eφ) where Hφ

has diameter 3 and radius 2. Furthermore |Vφ| = Θ(nm) by the construction of Hφ. Then, φ is
satisfiable if and only if Hφ is 3-colorable, by Theorem 7.

Let now ε ∈ [12 , 1). Define ε0 =
ε

1−ε
and k0 = mε0 . Since ε ∈ [12 , 1) by assumption, it follows that

ε0 ≥ 1. We construct now from the graph Hφ the irreducible graph H1(φ, ε) with diameter 3 and
radius 2, as follows. First we add 8m new vertices v0,1, v0,2, . . . , v0,8m. For every vertex vj in Hφ,
where j ∈ {1, 2, . . . , 8m}, we remove vj and introduce 2k0 new vertices Aj = {v′j,1, v′j,2, . . . , v′j,k0}
and Bj = {v′′j,1, v′′j,2, . . . , v′′j,k0}. The vertices of Aj and of Bj induce two independent sets in H1(φ, ε).
We then add between the vertices of Aj and of Bj all possible edges, except those of {v′j,pv′′j,p : 1 ≤
p ≤ k0}. That is, we add k20 − k0 edges between the vertices of Aj and Bj , such that they induce
a complete bipartite graph without a perfect matching between Aj and Bj. Furthermore we add
all k0 edges between v0 and the vertices of Aj . Moreover we add all 2(n + 5m) · k0 edges between
the 2(n+5m) vertices of Uj ∪Wj (i.e. the jth column of the matrix arrangement of the vertices of
U ∪ V ) and the k0 vertices of Aj. Finally we add all k0 edges between v0,j and the vertices of Bj,
as well as all (8m− 1)k0 edges between v0,j and the vertices of Aj′ , where j

′ ∈ {1, 2, . . . , 8m} \ {j}.
Denote the resulting graph by H1(φ, ε). The replacement of vertex vj by the vertex sets Aj and Bj

in H1(φ, ε) is illustrated in Figure 4.
Observe that, by this construction, for every j ∈ {1, 2, . . . , 8m}, all neighbors of vertex vj in the

graph Hφ are included in the neighborhood of every vertex v′j,p of Aj in the graph H1(φ, ε), where
1 ≤ p ≤ k0. In particular, Hφ is an induced subgraph of H1(φ, ε): if we remove from H1(φ, ε) the
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Uj ∪Wj

in Hφ:

vj

v0

(a)

Uj ∪Wj

in H1(φ, ε):
k0 = mε0

Aj Bj

v0,jv0,j′v0

(b)

Fig. 4. (a) The vertex vj with its neighbors N(vj) = {v0} ∪ Uj ∪ Wj in the graph Hφ and (b) the vertex sets Aj

and Bj that replace vertex vj in the graph H1(φ, ε); here j′ is an arbitrary index from {1, 2, . . . , 8m} \ {j}.

vertices of ({v0,j} ∪Bj ∪Aj) \ {v′j,1}, for every j ∈ {1, 2, . . . , 8m}, we obtain a graph isomorphic to
Hφ, where v′j,1 of H1(φ, ε) corresponds to vertex vj of Hφ, for every j ∈ {1, 2, . . . , 8m}. Note that,
similarly to Hφ, the graph H1(φ, ε) has radius 2, since d(v0, u) ≤ 2 in H1(φ, ε) for every vertex u
of H1(φ, ε) − {v0}.

We now prove that H1(φ, ε) has diameter 3. First note that the distance between any two
vertices of ∪8m

j=1Aj is at most 2, since they all have v0 as common neighbor. Consider two arbitrary
vertices a ∈ Aj and b ∈ Bj′, where j, j

′ ∈ {1, 2, . . . , 8m}. If j = j′ then either a and b are adjacent or
there exists another vertex a′ ∈ Aj \ {a} such that a and b are connected with the path (b, a′, v0, a)
of length 3. If j 6= j′ then a and b have v0,j as a common neighbor, i.e. their distance is 2. Consider
now two vertices b ∈ Bj and b′ ∈ Bj′. If j = j′ then b and b′ have v0,j as a common neighbor, i.e.
their distance is 2. If j 6= j′ then there exists at least one vertex a′ ∈ Aj′ such that b and b′ are
connected with the path (b, v0,j , a

′, b′) of length 3. That is, the distance between any two vertices
of ∪8m

j=1Aj ∪8m
j=1 Bj is at most 3.

Consider an arbitrary vertex a ∈ ∪8m
j=1Aj and an arbitrary vertex ui,j ∈ U (resp. wi,j ∈ W ). If a

and ui,j (resp. wi,j) are not adjacent inH1(φ, ε), there exists the path (a, v0, v
′
j,1, ui,j) (resp. the path

(a, v0, v
′
j,1, wi,j)) of length 3 between a and ui,j (resp. wi,j). Consider an arbitrary vertex b′ ∈ Bj′

and an arbitrary vertex ui,j ∈ U (resp. wi,j ∈ W ). If j = j′ then b′ and ui,j (resp. wi,j) have at
least one common neighbor a′ ∈ Aj′ , i.e. their distance is 2. If j 6= j′ then b′ and ui,j (resp. wi,j)
are connected with the path (b′, v0,j′ , v′j,1, ui,j) (resp. the path (b′, v0,j′ , v′j,1, wi,j)) of length 3. That

is, the distance between any vertex of ∪8m
j=1Aj ∪8m

j=1 Bj and any vertex of U ∪W in H1(φ, ε) is at
most 3.

Consider now an arbitrary vertex v0,j. This vertex has every vertex of Aj′ , where j′ ∈
{1, 2, . . . , 8m} \ {j}, as common neighbors with v0, i.e. d(v0,j , v0) = 2. Furthermore, for every
j′ ∈ {1, 2, . . . , 8m} \ {j}, there exists the path (v0,j , v

′′
j,2, v

′
j,1, v0,j′) of length 3 between the vertices

v0,j and v0,j′ . Note that, by construction of H1(φ, ε), the distance between v0,j and every vertex
of ∪8m

j=1Aj ∪8m
j=1 Bj is at most 2. Thus, since every vertex of U ∪ W is adjacent to at least one

vertex of ∪8m
j=1Aj , it follows that the distance between v0,j and every vertex of U ∪W is at most 3.

Finally, since Hφ is an induced subgraph of H1(φ, ε), it follows by Lemma 2 that also d(z, z′) ≤ 3
in H1(φ, ε), for every pair of vertices z, z′ ∈ U ∪W . Therefore H1(φ, ε) has diameter 3.

Recall now that for every j ∈ {1, 2, . . . , 8m}, vertex vj of Hφ has been replaced by the vertices
of Aj∪Bj in H1(φ, ε). Furthermore, recall that the vertices of Aj∪Bj induce in H1(φ, ε) a complete
bipartite graph without a perfect matching between Aj and Bj. Therefore there exists no pair of
sibling vertices in Aj ∪ Bj, for every j ∈ {1, 2, . . . , 8m}. Similarly there exists no pair of sibling
vertices among {v0, v0,1, v0,2, . . . , v0,8m}. Furthermore it can be easily checked that H1(φ, ε) has no
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triangles, and thus it has no diamonds. Thus, since Hφ is irreducible by Lemma 4, it follows that
H1(φ, ε) is irreducible as well.

We now prove that H1(φ, ε) is 3-colorable if and only if Hφ is 3-colorable. Suppose first that
H1(φ, ε) is 3-colorable. Then, since Hφ is an induced subgraph of H1(φ, ε), it follows immediately
that Hφ is also 3-colorable. Now suppose that Hφ is 3-colorable, and let χ be a proper 3-coloring of
Hφ. Assume without loss of generality that v0 is colored red in χ. We will extend χ into a proper
3-coloring of H1(φ, ε) as follows. First we color all vertices {v0,1, v0,2, . . . , v0,8m} red. Consider the
vertex vj of Hφ, where 1 ≤ j ≤ 8m. Since v0 is colored red in χ, it follows that vj is colored either
blue or green in χ. If vj is colored green in χ, then we color in H1(φ, ε) all vertices of Aj green and
all vertices of Bj blue. Otherwise, if vj is colored blue in χ, then we color in H1(φ, ε) all vertices of
Aj blue and all vertices of Bj green. It is now straightforward to check that the resulting 3-coloring
of H1(φ, ε) is proper, i.e. that H1(φ, ε) is 3-colorable. That is, H1(φ, ε) is 3-colorable if and only
if Hφ is 3-colorable. Therefore Theorem 7 implies that the formula φ is satisfiable if and only if
H1(φ, ε) is 3-colorable.

By construction, the graph H1(φ, ε) has N = 2(n + 5m)8m+ 8m · 2k0 + 8m+ 1 vertices, where
k0 = mε0 . Thus, since m = Ω(n) and ε0 ≥ 1, it follows that N = Θ(m1+ε0). Therefore m =

Θ(N
1

1+ε0 ), where N is the number of vertices in H1(φ, ε). Furthermore, the degree of each of the
vertices {v0, v0,1, v0,2, . . . , v0,8m} in H1(φ, ε) is Θ(m · k0) = Θ(m1+ε0), the degree of every vertex
v′j,p in H1(φ, ε) is Θ(n+m+ k0) = Θ(mε0), the degree of every vertex v′′j,p in H1(φ, ε) is Θ(k0) =
Θ(mε0), and the degree of every vertex ui,j (resp. wi,j) in H1(φ, ε) is Θ(m+k0) = Θ(mε0). Therefore

the minimum degree of H1(φ, ε) is δ = Θ(mε0). Thus, since m = Θ(N
1

1+ε0 ), it follows that δ =

Θ(N
ε0

1+ε0 ), i.e. δ = Θ(N ε).

Summarizing, for every ε ∈ [12 , 1) and for every formula φ with n variables and m clauses, we

can construct in polynomial time a graph H1(φ, ε) with N = Θ(m1+ε0) (i.e. N = Θ(m
1

1−ε )) vertices
and minimum degree δ = Θ(mε0) (i.e. δ = Θ(N ε)), such that H1(φ, ε) is 3-colorable if and only if φ
is satisfiable. Moreover, the constructed graph H1(φ, ε) is irreducible and triangle-free, and it has
diameter 3 and radius 2. This completes the proof of the theorem. ⊓⊔

In the next theorem we provide an amplification of the reduction of Theorem 7 to the case of
graphs with minimum degree δ = Θ(|V |ε), where ε ∈ [0, 12).

Theorem 10. Let G = (V,E) be an irreducible and triangle-free graph with diameter 3 and ra-
dius 2. If the minimum degree of G is δ(G) = Θ(|V |ε), where ε ∈ [0, 12), then it is NP-complete to
decide whether G is 3-colorable.

Proof. Let G1 = (V1, E1) be an arbitrary irreducible and triangle-free graph with diameter 3 and
radius 2, such that G1 has n vertices and minimum degree δ(G1) = Θ(

√
n). Note that such a graph

G1 exists by the construction of Hφ in Section 4.2 (see also Theorems 7 and 9). For simplicity,
we arbitrarily enumerate the vertices of G1 as v1, v2, . . . , vn. Let ε ∈ [0, 12 ). Define ε0 = ε

1−ε
and

k0 = nε0 . Since ε ∈ [0, 12) by assumption, it follows that ε0 ∈ [0, 1). We now construct from the
graph G1 the irreducible graph G2(ε) with diameter 3 and radius 2 as follows. First we intro-
duce n + 1 new vertices v0, v0,1, v0,2, . . . , v0,n. For every i ∈ {1, 2, . . . , n}, we add 2k0 new vertices
Ai = {v′i,1, v′i,2, . . . , v′i,k0} and Bi = {v′′i,1, v′′i,2, . . . , v′′i,k0}. The vertices of Ai and of Bi induce two
independent sets in G2(ε). We then add between the vertices of Ai and of Bi all possible edges,
except those of {v′i,ℓv′′i,ℓ : 1 ≤ ℓ ≤ k0}. That is, we add k20 − k0 edges between the vertices of Ai and
Bi, such that they induce a complete bipartite graph without a perfect matching between Ai and
Bi. Moreover we add all k0 edges between vi and the vertices of Ai, as well as all k0 edges between
v0 and the vertices of Ai. Finally we add all k0 edges between v0,i and the vertices of Bi, as well
as all (n− 1)k0 edges between v0,i and the vertices of Ai′ , where i′ ∈ {1, 2, . . . , n} \ {i}. Denote the
resulting graph by G2(ε).
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Observe that, by construction, G1 is an induced subgraph of G2(ε). Furthermore, G2(ε) has

N = n+n · 2k0 +n+1 vertices, and thus N = Θ(n1+ε0). Therefore n = Θ(N
1

1+ε0 ), where N is the
number of vertices in G2(ε). Furthermore, the degree of each of the vertices {v0, v0,1, v0,2, . . . , v0,n}
in G2(ε) is Θ(n · k0) = Θ(n1+ε0), the degree of every vertex v′i,ℓ in G2(ε) is Θ(n+ k0) = Θ(n), the
degree of every vertex v′′i,ℓ in G2(ε) is Θ(k0) = Θ(nε0), and the degree of every vertex vi ∈ V1 in

G2(ε) is at least δ(G1)+ k0 = Θ(
√
n+nε0). Therefore, for every ε0 ∈ [0, 1), the minimum degree of

G2(ε) is δ = Θ(nε0). Thus, since n = Θ(N
1

1+ε0 ), it follows that δ = Θ(N
ε0

1+ε0 ), i.e. δ = Θ(N ε). Note
that the graph G2(ε) has radius 2, since d(v0, u) ≤ 2 in G2(ε) for every vertex u of G2(ε)− {v0}.

We now prove that G2(ε) has diameter 3. First note that the distance between any two vertices
of ∪n

i=1Ai is at most 2, since they all have v0 as common neighbor. Consider two arbitrary vertices
a ∈ Ai and b ∈ Bi′ , where i, i′ ∈ {1, 2, . . . , n}. If i = i′ then either a and b are adjacent or there
exists another vertex a′ ∈ Ai \ {a} such that a and b are connected with the path (b, a′, v0, a) of
length 3. If i 6= i′ then a and b have v0,i as a common neighbor, i.e. their distance is 2. Consider
now two vertices b ∈ Bi and b′ ∈ Bi′ . If i = i′ then b and b′ have v0,i as a common neighbor, i.e.
their distance is 2. If i 6= i′ then there exists at least one vertex a′ ∈ Ai′ such that b and b′ are
connected with the path (b, v0,i, a

′, b′) of length 3. That is, the distance between any two vertices
of ∪n

i=1Ai ∪n
i=1 Bi is at most 3.

Consider an arbitrary vertex vi ∈ V1 and an arbitrary vertex a ∈ Ai. If i = i′ then vi is adjacent
with a in G2(ε). Otherwise, if i 6= i′, there exists the path (a, v0, v

′
i,1, vi) of length 3 between a and

vi. Consider an arbitrary vertex vi ∈ V1 and an arbitrary vertex b′ ∈ Bi′ . If i = i′ then b′ and vi
have at least one common neighbor a′ ∈ Ai′ , i.e. their distance is 2. If i 6= i′ then b′ and vi are
connected with the path (b′, v0,i′ , v′i,1, vi) of length 3. That is, the distance between any vertex of
∪n
i=1Ai ∪n

i=1 Bi and any vertex of V1 in G2(ε) is at most 3.

Consider now an arbitrary vertex v0,i. Similarly to the proof of Theorem 9, v0,i has every
vertex of Ai′ as a common neighbor with v0, where i′ ∈ {1, 2, . . . , n} \ {i}. That is, d(v0,i, v0) = 2.
Furthermore, for every i′ ∈ {1, 2, . . . , n} \ {i}, there exists the path (v0,i, v

′′
i,2, v

′
i,1, v0,i′) of length 3

between the vertices v0,i and v0,i′ . Note that, by construction of G2(ε), the distance between v0,i
and every vertex of ∪n

i=1Ai ∪n
i=1 Bi is at most 2. Thus, since every vertex of V1 is adjacent to at

least one vertex of ∪n
i=1Ai, it follows that the distance between v0,i and every vertex of V1 is at

most 3. Finally, since G1 is an induced subgraph of G2(ε) and G1 has diameter 3 by assumption,
it follows that also d(z, z′) ≤ 3 in G2(ε) for every pair of vertices z, z′ ∈ V1. Therefore G2(ε) has
diameter 3.

Recall that for every i ∈ {1, 2, . . . , n} the vertices of Ai∪Bi induce in G2(ε) a complete bipartite
graph without a perfect matching between Ai and Bi. Therefore there exists no pair of sibling
vertices in Ai ∪ Bi, for every i ∈ {1, 2, . . . , n}. Similarly there exists no pair of sibling vertices
among {v0, v0,1, v0,2, . . . , v0,n}. Furthermore it can be easily checked that G2(ε) has no triangles,
and thus it has no diamonds. Thus, since G1 is irreducible by assumption, it follows that G2(ε) is
irreducible as well.

We now prove that G2(ε) is 3-colorable if and only if G1 is 3-colorable. If G2(ε) is 3-colorable,
then clearly G1 is also 3-colorable, since G1 is an induced subgraph of G2(ε). Now suppose that G1

is 3-colorable, and let χ be a proper 3-coloring of G1 that uses the colors red, blue, and green. We
will extend χ into a proper 3-coloring χ′ of G2(ε) as follows. Consider the vertex vi ∈ V1, where
1 ≤ i ≤ n. If vi is colored red or blue in χ, then we color all vertices of Ai green and all vertices
of Bi blue in χ′. Otherwise, if vi is colored green in χ, then we color all vertices of Ai blue and
all vertices of Bi green in χ′. Finally, we color all vertices {v0, v0,1, v0,2, . . . , v0,n} red in χ′. It is
now straightforward to check that the resulting 3-coloring χ′ of G2(ε) is proper, i.e. that G2(ε) is
3-colorable. That is, G2(ε) is 3-colorable if and only if G1 is 3-colorable.

Summarizing, for every irreducible graph G1 with diameter 3 and radius 2, such that G1 has n
vertices and minimum degree δ(G1) = Θ(

√
n), we can construct in polynomial time a graph G2(ε)

with N = Θ(n1+ε0) (i.e. N = Θ(n
1

1−ε )) vertices and minimum degree δ = Θ(N ε), such that G2(ε)
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is 3-colorable if and only if G1 is 3-colorable. Moreover, the constructed graph G2(ε) is irreducible
and has diameter 3 and radius 2. This completes the proof of the theorem, since it is NP-complete
to decide whether G1 is 3-colorable by Theorem 9. ⊓⊔

Therefore, Theorems 9 and 10 imply that, for every ε ∈ [0, 1), the 3-coloring problem remains
NP-complete for irreducible and triangle-free graphs G = (V,E) with diameter 3 and radius 2,
where the minimum degree δ(G) is Θ(|V |ε). However, Theorems 9 and 10 do not provide any
information about how efficiently (although not polynomially, assuming P 6=NP) we can decide 3-
coloring on such graphs. We provide in the next three theorems subexponential lower bounds for the
time complexity of 3-coloring on irreducible and triangle-free graphs with diameter 3 and radius 2.
Moreover, the lower bounds provided in Theorem 11 are asymptotically almost tight, due to the
algorithm of Theorem 6.

Theorem 11. Let ε ∈ [12 , 1). Assuming ETH, there exists no algorithm with running time 2o(
N
δ
) =

2o(N
1−ε) for 3-coloring on irreducible and triangle-free graphs G with diameter 3, radius 2, and N

vertices, where the minimum degree of G is δ(G) = Θ(N ε).

Proof. Let ε ∈ [12 , 1) and define ε0 = ε
1−ε

. In the reduction of Theorem 9, given the value of ε
and a boolean formula φ with n variables and m clauses, we constructed a graph H1(φ, ε) with

N = Θ(m1+ε0) vertices and minimum degree δ = Θ(mε0). Therefore δ = Θ(N
ε0

1+ε0 ), i.e. δ = Θ(N ε).
Furthermore the graph H1(φ, ε) is by construction irreducible and triangle-free, and it has diame-
ter 3 and radius 2. Moreover φ is satisfiable if and only if H1(φ, ε) is 3-colorable by Theorem 9.

Suppose now that there exists an algorithm A that, given an irreducible triangle-free graph G
with N vertices, diameter 3, radius 2, and minimum degree δ = Θ(N ε) for some ε ∈ [12 , 1), decides 3-

coloring on G in time 2o(
N
δ
). Then A decides 3-coloring on input G = H1(φ, ε) in time 2o(

N
δ
) = 2o(m).

However, since the formula φ is satisfiable if and only if H1(φ, ε) is 3-colorable, algorithm A can
be used to decide the 3SAT problem in time 2o(m), where m is the number of clauses in the given
boolean formula φ. Thus A can decide 3SAT in time 2o(m). This is a contradiction by Theorem 1,
assuming ETH. This completes the proof of the theorem. ⊓⊔

Theorem 12. Let ε ∈ [13 ,
1
2). Assuming ETH, there exists no algorithm with running time

2o(δ) = 2o(N
ε) for 3-coloring on irreducible and triangle-free graphs G with diameter 3, radius 2,

and N vertices, where the minimum degree of G is δ(G) = Θ(N ε).

Proof. We provide for the purposes of the proof an amplification of the reduction of Theorem 7. In
Section 4.2, given a boolean formula φ with n variables and m clauses, we constructed the graph
Hφ, which is irreducible and triangle-free by Lemma 4. By its construction in Section 4.2, the
graph Hφ has Θ(m2) vertices. Furthermore, the degree of vertex v0 in Hφ is Θ(m). The degree of
every vertex vj in Hφ is Θ(n+m) = Θ(m), where j ∈ {1, 2, . . . , 8m}. Finally, the degree of every
vertex ui,j (resp. wi,j) in Hφ is Θ(m), where i ∈ {1, 2, . . . , n+5m} and j ∈ {1, 2, . . . , 8m}. Therefore
the minimum degree of Hφ is δ = Θ(m).

Let ε ∈ [13 ,
1
2) and define ε0 = 1

ε
− 2. Note that ε0 ∈ (0, 1], since ε ∈ [13 ,

1
2). We construct now

from Hφ a graph H2(φ, ε) as follows. Consider the rows ℓi and ℓ′i of the matrix arrangement of the
vertices U ∪ W of Hφ, where i ∈ {1, 2, . . . , n + 5m}. For every i ∈ {1, 2, . . . , n + 5m}, we extend
row ℓi by new (m1+ε0 − 8m) vertices {ui,8m+1, ui,8m+2, . . . , ui,m1+ε0}. Denote the resulting row of

the matrix with the m1+ε0 vertices {ui,1, ui,2, . . . , ui,m1+ε0} by ℓ̂i. Similarly, we extend row ℓ′i by
new (m1+ε0 − 8m) vertices {wi,8m+1, wi,8m+2, . . . , wi,m1+ε0}. Denote the resulting row of the ma-

trix with the m1+ε0 vertices {wi,1, wi,2, . . . , wi,m1+ε0} by ℓ̂′i. Furthermore, add all necessary edges

between vertices of ℓ̂i and of ℓ̂′i, such that they induce a complete bipartite graph without a perfect
matching. For simplicity of notation, denote by U ′ = {ui,j : 1 ≤ i ≤ n+ 5m, 1 ≤ j ≤ m1+ε0} and
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W ′= {wi,j : 1 ≤ i ≤ n+ 5m, 1 ≤ j ≤ m1+ε0} the vertex sets that extend the sets U and W , respec-
tively. Moreover, similarly to the notation of Section 4.2, denote U ′

j = {u1,j , u2,j , . . . , un+5m,j} and

W ′
j = {w1,j, w2,j , . . . , wn+5m,j}, for every j ∈ {1, 2, . . . ,m1+ε0}. Then, the vertices of U ′

j ∪ W ′
j

contain the vertices of the jth column in the (updated) matrix arrangement of the vertices
of U ′ ∪ W ′. Similarly to the construction of the graph Hφ (cf. Section 4.2), we add for every
j ∈ {8m+1, 8m+2, . . . ,m1+ε0} a vertex vj that is adjacent to U ′

j ∪W ′
j ∪{v0}. Denote the resulting

graph by H2(φ, ε).

Now, following exactly the same argumentation as in the proof of Lemma 4 and Theorem 7, we
can prove that: (a) H2(φ, ε) has diameter 3 and radius 2, (b)H2(φ, ε) is irreducible and triangle-free,
and (c) the formula φ is satisfiable if and only if H2(φ, ε) is 3-colorable.

By the above construction, the graph H2(φ, ε) has N = 2(n+5m) ·m1+ε0 +m1+ε0 +1 vertices.
Thus, since m = Ω(n), it follows that N = Θ(m2+ε0). Furthermore, the degree of vertex v0
in H2(φ, ε) is Θ(m1+ε0). The degree of every vertex vj in H2(φ, ε) is Θ(n+m) = Θ(m), where
j ∈ {1, 2, . . . ,m1+ε0}. Finally, the degree of every vertex ui,j (resp. wi,j) in H2(φ, ε) is Θ(m1+ε0),
where i ∈ {1, 2, . . . , n + 5m} and j ∈ {1, 2, . . . ,m1+ε0}. Thus the minimum degree of H2(φ, ε)

is δ = Θ(m). Therefore, since N = Θ(m2+ε0), it follows that δ = Θ(N
1

2+ε0 ) = Θ(N ε), where N is
the number of vertices in the graph H2(φ, ε).

Suppose now that there exists an algorithm A that, given an irreducible triangle-free graph
G with N vertices, diameter 3, radius 2, and minimum degree δ = Θ(N ε) for some ε ∈ [13 ,

1
2),

decides 3-coloring on G in time 2o(δ). Then A decides 3-coloring on input G = H2(φ, ε) in time
2o(δ) = 2o(m). However, since the formula φ is satisfiable if and only if H2(φ, ε) is 3-colorable,
algorithm A can be used to decide the 3SAT problem in time 2o(m), where m is the number of
clauses in the given boolean formula φ. Therefore A can decide 3SAT in time 2o(m). This is a
contradiction by Theorem 1, assuming ETH. This completes the proof of the theorem. ⊓⊔

Theorem 13. Let ε ∈ [0, 13). Assuming ETH, there exists no algorithm with running time

2
o(
√

N
δ
)
= 2o(N

( 1−ε
2 )) for 3-coloring on irreducible and triangle-free graphs G with diameter 3, ra-

dius 2, and N vertices, where the minimum degree of G is δ(G) = Θ(N ε).

Proof. Let ε ∈ [0, 13) and define ε0 = ε
1−ε

. In the reduction of Theorem 10, given the value of ε and
an irreducible graph G1 with diameter 3 and radius 2 such that G1 has n vertices and minimum
degree δ(G1) = Θ(

√
n), we constructed an irreducible graph G2(ε) with N = Θ(n1+ε0) vertices and

minimum degree δ = Θ(nε0). Therefore δ = Θ(N
ε0

1+ε0 ), i.e. δ = Θ(N ε). Furthermore the graph G2(ε)
has by construction diameter 3 and radius 2. Moreover G1 is 3-colorable if and only if G2(ε) is 3-
colorable by Theorem 10.

Suppose now that there exists an algorithm A that, given an irreducible triangle-free graph
G with N vertices, diameter 3, radius 2, and minimum degree δ = Θ(N ε) for some ε ∈ [0, 13),

decides 3-coloring on G in time 2
o(
√

N
δ
)
. Then A decides 3-coloring on input G = G2(ε) in time

2
o(
√

N
δ
)
= 2o(

√
n). However, since G1 is 3-colorable if and only if G2(ε) is 3-colorable, algorithm A

can be used to decide 3-coloring of G1 in time 2o(
√
n), where n is the number of vertices in the given

graph G1. This is a contradiction by Theorem 11, assuming ETH. This completes the proof of the
theorem. ⊓⊔

5 Concluding remarks

In this paper we investigated graphs with small diameter, i.e. with diameter at most 2, and at
most 3. For graphs with diameter at most 2, we provided the first subexponential algorithm for
3-coloring, with complexity 2O(

√
n logn). This time complexity is asymptotically the same as the
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currently best known complexity for the graph isomorphism (GI) problem [4]. Thus, as the 3-
coloring problem on graphs with diameter 2 has been neither proved to be polynomially solvable
nor to be NP-complete, it would be worthwhile to investigate whether this problem is polynomially
reducible to/from the GI problem. Furthermore we presented a subclass of graphs with diameter 2
that admits a polynomial algorithm for 3-coloring. An interesting open problem for further research
is to establish the time complexity of 3-coloring on arbitrary graphs with diameter 2. Moreover, the
complexity of 3-coloring remains open also for triangle-free graphs of diameter 2, or equivalently,
on maximal triangle-free graphs.

For graphs with diameter at most 3, we established the complexity of 3-coloring, even for
triangle-free graphs, which has been an open problem. Namely we proved that for every ε ∈ [0, 1),
3-coloring is NP-complete on triangle-free graphs of diameter 3 and radius 2 with n vertices and
minimum degree δ = Θ(nε). Moreover, assuming the Exponential Time Hyporthesis (ETH), we
provided three different amplification techniques of our hardness results, in order to obtain for
every ε ∈ [0, 1) subexponential asymptotic lower bounds for the complexity of 3-coloring on triangle-
free graphs with diameter 3, radius 2, and minimum degree δ = Θ(nε). Finally, we provided a 3-
coloring algorithm with running time 2O(min{δ∆, n

δ
log δ}) for arbitrary graphs with diameter 3, where

n is the number of vertices and δ (resp. ∆) is the minimum (resp. maximum) degree of the input
graph. Due to our lower bounds, the running time of this algorithm is asymptotically almost tight,
when the minimum degree if the input graph is δ = Θ(nε), where ε ∈ [12 , 1). An interesting problem
for further research is to find asymptotically matching lower bounds for the complexity of 3-coloring
on graphs with diameter 3, for all values of minimum degree δ.
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