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SUMMARY

A distinctive feature of analysis of variance is the common occurrence of more than one error
term. This feature calls attention to the two distinct potential roles of a single mean square. As
a “numerator” it measures the variability visible at a given level in a design hierarchy, and as a
“denominator” it measures how much variability has been “passed up” to higher levels, and may,
if appropriate, serve as part of an error term. We propose a straightforward multiphase procedure
that explicitly recognizes these two roles, and argue that, in general, such considerations preclude
naive use of robust regression techniques for analysis of factorially designed experiments. Instead,
an upsweeping-by-medians decomposition of the data is followed by a comparison-within-subtable
analysis to flag exotic (“relatively large”) entries in each of the subtables associated with the dif-
ferent sorts of variation. A classical analysis by means, after replacing each identified exotic entry
by an algorithmically specified value, yields a decomposition of the data that is used to construct
an analysis of variance table in which for each sort of variation there is both a list of any exotic
entries and an inner (“denominator”) mean square that ‘excludes’ those exotic entries. The analysis
can then be completed by downsweeping the inner subtables that are insufficiently prominent, and
providing (formally) appropriate error terms for analyzing table entries that remain. The results are
displayed as a decomposition of the data into exotic values and those inner subtables, both simple
and composite, that survive downsweeping. The exploratory nature of the approach is emphasized,
and the method is applied to an example of a factorial experiment in which all factors have three or
more versions.

KEY WORDS: ANOVA; Downsweeping; Exotic values; Factorial experiments; Fibian;
Half-Winsorizing; Inner mean squares; Mean polish; Median polish: Middle-Median; Midmedian;
Robust ANOVA; Upsweeping; Winsorizing.



1 INTRODUCTION

Today’s challenge to a “robust” analysis of variance procedure is not to optimize the process of
analysis, but rather to be organized in meeting a variety of complications, both individually or in as
many combinations as we can handle. We describe below a multistep process that does this better
than any other proposed process that we have seen.

As with other procedures for analyzing substantial bodies of data, we have to expect a frequent
need to combine a formalized scheme of analysis with judgment-based adaptations to the combination
of a particular dataset and a particular purpose of analysis. Part of the expected evolution of “current
best procedure” will be the incorporation, into the formalized scheme of analysis, of techniques for
dealing with an increasing variety of “unusual” behaviors.

In 1950, the formalized schemes dealing with analysis of variance were relatively simple, so that
the demands on the analyst were diverse and frequently important. In 2000, the sort of formalized
scheme illustrated below will handle a much greater diversity of complications—but not all—without
reference to the judgment of the analyst.

The operation of the formalized scheme of analysis is illustrated by the application of its steps
to a frequently analyzed 3 × 5 × 8 dataset. In this dataset, values for 19 of 120 cells, 3 of 79 (one-
dimensional) fibers, and 3 of 15 (2-dimensional) sheets of values appear exotic. (Of the 7 subtables
of different kinds of effects and interactions, 5 contain instances of corresponding exoticity.) Clearly,
this dataset calls for an analysis that is prepared to deal with a diverse collection of kinds of exoticity.

While the example does not show all the idiosyncrasies that deserve attention, it does show a
reasonable diversity of misbehavior.

While our process is designed to restrict the impact of exotic valued fibers, sheets, etc., on the
fit to non-exotic values, when, as in this dental gold experiment, we know the purpose for which the
data was gathered, we have an obligation to ask whether there is any way to “clean” the analysis still
further by omitting some of the initial data. In the present example we can do this by omitting one
or more versions of two of the three factors, a process not yet formalized, but a definite obligation.

In this paper we offer a recipe for robust/resistant analysis of variance of data from factorial
experiments in which all factors have three or more versions. The details presented are subject to
further evolutionary changes, as we learn more. However, we believe the overall structure, concepts
and attitudes to be important, useful, and likely to continue. Special modifications will be required
for certain, other types of factorially designed experiment, including those in which some factors
have only two versions, a situation we plan to treat in a separate account: however, see Seheult and
Tukey (1982) and Seheult (1997) for robust treatments of (pure) 2n experiments.

Analysis of variance continues to be one of the most widely used statistical methods. Not only the
form of an analysis of variance table with its lines of mean squares and degrees-of-freedom associated
with each of several sorts of variation, but the entire analysis, including confidence statements,
is classically supposed to be determined by the design—the hierarchical structure, conduct, and
the intent of the experiment—alone. The behavior of the data itself is, classically, not supposed
to influence how its description is formatted. Hardly an exploratory attitude, and one for which
the book Fundamentals of Exploratory Analysis of Variance (FEAV ) has provided a meaningful
alternative within the classical framework, where summarization by means is a basic. As Mallows
and Tukey (1982) remark: “In our experience most analysis of variance is a matter of exploratory
data analysis, rather than one of critical confirmatory analysis”. In this account, rather than using
a data-free structure to define our procedures, we provide a further stage of responding to the data’s
behavior, one where summarization is based on a robust alternative to the mean.
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Given a format, to which we have been led by the data, we may well want to return to the
data and present a careful analysis, at least in balanced cases. For classical analyses, such final
analysis can be conducted by regression methods. Thus, it is tempting to suppose that at least
the final analysis—and even, some optimists would dream, the process of feeling around for the
right format—could be conducted by naive use of a conventional robust-regression technique, which
allows for a certain number of individual points to misbehave individually. Such a tempting view—of
only simple misbehavior—is far from being usually applicable. Properly designed robust techniques
should (i) bring to our attention unusual behavior; (ii) prevent such behavior from disturbing our
understanding and appreciation of the general, usual behavior; and (iii) prevent us from disturbing
our summaries and conclusions by responding conventionally to unusual behavior not confined only
to individual data points. As examples of designed experiments so frequently illustrate, unusual
behavior is often exhibited by larger structured subsets of data points.

Such issues are illustrated in the example of a two-factor experiment with equal replication in
each cell (factor combination), for which the analysis of variance can be derived from the results of
sweeping out row and column means from the two-way table of replicate means. It follows that we
need to be robust at least at two levels or lines of the analysis: at the replicate level, to obtain ‘clean’
estimates of cell effects and replicate error, and at the interaction level, where substantial interaction
is often concentrated in one or a few cells, or in one or a few rows or columns. Analysis by means
‘smears’ such concentrated interactions both over the other cells and into the main effects. In some
instances such interactions may be of genuine scientific interest, in others they may be dismissible as
“bias” or “model failure”, but in either case their identification will be important; see Brown (1975)
and Daniel (1976, 1978) for careful classical treatments of examples of factorial data exhibiting these
and other types of nonstandard behavior.

As with least squares, a standard robust regression analysis of this problem, which treats main
effects and interactions as an undifferentiated whole, to be fitted all at once, will not usually isolate
and sterilize such concentrated interactions. However, a simple procedure such as median polish
(Tukey, 1977) of the replicate medians will usually do what is needed at the interaction level and
for main effects and, if there are at least three replications per cell, at the replication level as well;
see, also, Besag and Seheult (1988). A robust regression procedure applied to cell medians would
then have some chance of providing a useful analysis at the upper level, provided that both the
number of rows and the number of columns is not too small. Oehlert (1994) suggests a scheme in
which prominent one-cell interactions are identified as ‘outliers’ from a previously identified simple
model, and Besag (1981) gives a resistant decomposition of data from a latin square experiment as
a preliminary to a final classical analysis.

An important related issue arises when, for example, one of the two factors is treated as ran-
dom. In a classical analysis the interaction mean square is the appropriate error term for making
comparisons between summaries for versions of the other factor. It is often important that such
concentrated or exotic interactions do not contribute to these summaries and hence should not
contribute to the corresponding error term.

In experiments involving more factors, where we will regard the data as a many-way array,
recognition of “cells” (containing single or duplicate observations), or of “fibers” (lines of cells), or
of “sheets” (two-way arrays of cells) or of “blocks” (many-way arrays of cells) as exotic raises the
question of how our observations should be summarized. Should we include exotic values in our
basic (overall) summaries? On balance, we believe the answer is much more often “no” than “yes”,
especially when exoticity is so profound as to make the non-robust summary silly or when the exotic
values are “clearly something else” than the bulk of the observations. In those infrequent instances
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where classical summaries are reasonable and relevant, we would use the classical analysis of variance
table. Otherwise, we ‘exclude’ exotic values from basic summaries and, once we do this, we also
exclude them from the error terms used to assess these basic summaries. However, we need to take
these exotic values seriously, and would want to assess their variability separately.

These considerations emphasize that in classical analysis a single mean square can have two roles:
as a “numerator” it indicates how much variability is there at the given level, and as a “denominator”,
or error term, it indicates how much variability has been “passed up” to “higher lines” in the design
hierarchy. In a robust analysis, we choose to emphasize this distinction explicitly, having at each
line of an analysis of variance table (i) a list of any exotic entries; and (ii) a denominator or inner
mean square that ‘excludes’ the contributions of exotic entries and indicates how much variability
has been passed up to non-exotic aspects of higher levels by whatever robust summaries have been
used. Our recipe, for the present at least, is as follows:

Pre-decomposition. In Section 2, we apply a simple robust summary, a type of median,
through the same pattern of sweep operations used in the corresponding classical analysis by means
in order to determine an additive pre-decomposition or breakdown of data into subtables of effects
focused on different sorts of variation. The primary purpose of this “median polish” breakdown is
to aid in identification of “exotic” values.

Identification. Each subtable of the pre-decomposition is examined separately to flag exotic
entries; that is, entries which are large relative to the overall variability of the entries in the subtable.
A simple procedure for doing this is described in Section 3.

Re-decomposition. At the next stage, each identified exotic entry in each subtable is first
replaced by a value related in size to the non-exotic entries in its subtable. The resulting ‘decom-
position’ is then re-polished by means to produce an inner decomposition undisturbed by identified
exotic values. Different possibilities for replacement values are discussed in Section 4.

Robust analysis of variance. For any line whose subtable includes exotic entries, there
will now be (i) an inner mean square proportional to the sum of squares of the entries in the
corresponding subtable of the inner decomposition, (ii) a degrees-of-freedom and (iii) this list of
exotic entries. Details of proportionality and calculation are discussed in Section 5.

Downsweeping. Downsweeping, a process which involves pooling of mean squares, is applied
to the inner mean squares following the pattern for classical analysis of variance described in FEAV,
Chapter 11. There, when a subtable (or equivalently an “overlay”) is downswept onto a candidate
subtable, namely one involving “one more factor”, corresponding entries from the equivalent overlays
are simply added together, and the identity of the downswept subtable is lost. The identity of a
subtable is preserved if it is not downswept. Overall, the downsweeping process is intended to
concentrate the data for further analyses, not to choose a prescribed framework of final analysis.
Details of when and where to downsweep and subsequent pooling of mean squares are treated in
Section 6.

Evaluation. Finally, error mean squares are calculated for each subtable, whether simple or
complex, that survives the downsweeping process, The details and how these error mean squares
might be converted into standard errors and confidence statements are discussed briefly in Section 7.

This recipe may seem unduly complicated, but the steps parallel those used in the non-robust
case, as described in FEAV. Basford and Tukey (1995) apply some of the above ingredients to a
randomized block experiment. Paying even more attention to details of a decomposition can be
worthwhile and is addressed by Johnson and Tukey (1987) for the non-robust case and by Johnson
(1988) and also Tukey (1993).
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2 PRE-DECOMPOSITION

Before considering details of decomposition, we introduce an example to illustrate the ideas in
this and other sections of the paper.

Dental Gold Data

Brown (1975) analyzed a three-factor experiment described in Xhonga (1971). The response variable
was a measure of hardness of gold alloy fillings obtained by five dentists (D), each using three methods
of condensation (C), with each of eight types of gold alloy (G). The data, reproduced from Brown’s
paper in Table 1, will be analyzed as a three-factor experiment for which the standard analysis of
variance is given in Table 2. A full description of the background to these data can be found in
Xhonga (1971) and Chapter 11 of FEAV. They will be used here to illustrate both the classical
decomposition of factorial data into main effects and interactions using means and the analogous
robust decomposition using medians.

Mean Polish

Table 3 displays the mean or least squares decomposition of the data in Table 1 into eight (= 23)
subtables associated with the corresponding lines in the analysis of variance in Table 2: an overall
effect (1), three main effects D, C and G, three two-factor interactions DC, DG and CG, and a
three-factor interaction DCG. All the entries here and hereafter have been rounded to the nearest
integer.

Each datum in Table 1 is the appropriate sum of eight entries, one from each of the eight
subtables; for example, the first data entry 792 is decomposed as

792 = 737 + 48 + 49 + (−9) + (−16) + 6 + (−54) + 30

which, in an obvious notation, corresponds to

y111 = (1) + d1 + c1 + g1 + (dc)11 + (dg)11 + (cg)11 + (dcg)111

In classical analysis of variance, the mean square for an interaction or main effect can be obtained
as the sum of squares of the entries in its corresponding subtable, times the number of data values
contributing to each entry, and divided by the associated degrees of freedom. Thus, for example,
the mean square for DC is (conventionally) computed as

8× [(−16)2 + · · ·+ (−88)2]
(5− 1)× (3− 1)

= 32930

A convenient way of obtaining the subtables in Table 3 is as follows. First, expand the 5× 3× 8
data array into a 6× 4× 9 array with zero entries in each of the three additional last planes. Next,
sweep out in the D direction the 4 × 9 array of means of the first five planes and add them to the
sixth remaining 4 × 9 plane of the 6 × 4 × 9 array; and repeat a corresponding operation in each
of the C and G directions. The decomposition given in Table 3 can be obtained from the resulting
6× 4× 9 array as follows: the original data array has been replaced by the three-way table for the
three-factor interaction, and attached to it are seven bordering tables—a two-way table for each of
the three two-factor interactions, a one-way table for each of the three main effects and a zero-way
table for the overall effect. This process, which we will refer to as mean polish, can be applied
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to any many-way complete factorial data array, and can be extended to data from most balanced
experimental designs, with or without pure replication. Note that, for each proper subtable the
mean of any fiber—of any complete line of cell entries, holding all but one of the subtable’s factors
fixed—is zero.

Median Polish

To obtain a robust/resistant decomposition, we choose to use a median instead of a mean in the
above cycle and iterate until ‘convergence’. A median is the “middle” value for an odd number
of values, otherwise, it can be any value between the two central values. The lower of the two
central values is called the lomedian, the higher is called the himedian, and their average is called
the midmedian. At every stage leading towards our median based decomposition, we choose to
summarise a fiber by its fibian which is one these four medians. The fibian is the (unique) median
for an odd number of values in a fiber. For an even number, it is either the lomedian or himedian,
whichever, when swept out from the fiber, minimizes the size of the resulting swept-into value; and
hence could be the midmedian if these sizes are the same. It is usually convenient to label it as the
roof of the midmedian when the midmedian is a half-integer.

The fibian decomposition of the gold fillings data, using the “long-fibers-first” sweep order GDC,
is displayed in Table 4.

What can we learn from the fibian decomposition in Table 4 that perhaps is not so readily
apparent from the mean decomposition in Table 3 ? We notice, for example, that the two emboldened
entries -146 at (4, 3, ·) and -208 at (5, 3, ·) in the DC subtable are large relative to the other entries
there, and are designated as exotic according to the criterion set forth in the next section. Brown
(1975) discovered this appearance (that dentists 4 and 5 had difficulty with condensation method 3)
by first noting the significance of the DC mean square relative to the DCG mean square and then
examining the DC subtable from the mean decomposition to ascertain the cause of this significant
interaction.

Examination of the CG subtable reveals the distinctive nature of the entry -172 at (· , 3, 8).
Similarly, the fifth dentist and the hand condensation method (C3) produce distinctively low levels
of hardness, whereas the sixth gold appears to produce distinctively high levels of hardness. The 19
exotic entries in the DCG table are mostly associated with dentists 4 and 5 and hand condensation,
suggesting perhaps that different levels of variability are associated with the different levels of hard-
ness in different parts of the experiment. It might have been anticipated that hand condensation
would produce more variable results, but not necessarily overall low levels of hardness.

At this point readers may have the impression that they are being asked to examine carefully
6 × 4 × 9 = 216 numbers in the place of the 5 × 3 × 8 = 120 data values! While this is likely to
be worthwhile (Johnson and Tukey, 1987 and Johnson, 1988), this paper proposes only less striking
modifications. In any analysis of variance, robust or otherwise, careful examination of the details of
any subtable that appears to exhibit unusual behavior will be worthwhile.

Remarks on fibian decompositions. Clearly, the choice of fibian is somewhat arbitrary but
it has certain advantages over other simple robust/resistant measures of location. Like the median,
its computation is simple and does not require an internal assessment of scale. Moreover, if the
original data are integers, which in practice we can nearly always arrange to be the case, then all
the entries of the fibian decomposition will also be integers. If so, convergence of fibian polish in a
finite number of iterations is assured. Note that, in a final fibian decomposition at least one of the
lomedian, midmedian, roof of midmedian, or the himedian of every fiber in each proper subtable
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will be zero. Thus, there is either at least one zero in a fiber, or the two smallest values, one of each
sign, sum to 0 or −1. Unlike mean polish, but like all other median-based polishes, the result of a
fibian polish will usually depend on the order of sweep directions. We choose to polish in declining
order of number of versions of the factors.

These somewhat arbitrary aspects of fibian polish do not appear to be important in the present
context, where the main aim is to isolate genuine substantial entries in each subtable. In our
experience with real data, this aim is mostly achieved without real difficulty. These remarks also
apply to the lomedian and himedian: the fibian just chooses between them according to a sensible
criterion.

3 IDENTIFYING EXOTIC ENTRIES

Inevitably, any procedure for flagging exotic entries in a subtable will be somewhat arbitrary.
Thus, when Brown (1975) analyzed the dental gold data and noted the significant DC interaction
mean square, he redid the analysis setting the largest sized entry in the DC subtable as “missing.”
And, on finding that the new DC mean square was still significant, he continued the procedure
until nonsignificance: in this instance, a total of two passes were required. By contrast, in our
procedure each subtable is inspected, and a decision to flag an entry in any particular subtable is
determined by the entries in that subtable, rather than by reference to that table’s “error term.”
This is appropriate, since we are seeking to identify exoticity not significance. A very well-behaved
interaction with no trace of exoticity can quite easily be highly significant.

A simple flagging procedure, the one we use, runs as follows. Let ν denote the conventional
degrees-of-freedom assigned to a particular subtable of a decomposition, and denote by 0 ≤ zν ≤
zν−1 ≤ · · · ≤ z1 the ordered ν largest sizes of entries in the subtable. If none of the entries in
the subtable are exotic the z′s will tend to resemble an ordered sample of size ν from a half-
Gaussian distribution with unknown standard deviation σ. Let ci denote the median of the sampling
distribution of the i-th order statistic from a unit half-Gaussian distribution and put si = zi/ci for
i = 1, . . . , ν. Then, s, the middle-median1 of s1, . . . , sν , is a simple robust/resistant estimate of σ, a
measure of the overall variability in the subtable that is resistant to large ratios for small subtable
entries as well as those for large entries. Next, for each i = 1, . . . , ν, and for some positive “cutoff”
value K, we flag the entry corresponding to zi if sj > Ks for all j ≤ i. Thus, flagged entries
in a subtable must form an uninterrupted top-down sequence. This procedure is similar to the
use of half-normal plots for informally assessing controlling factors and interactions in 2n factorial
experiments; see Daniel (1959) and Johnson and Tukey (1987).

We now indicate how to calculate the ci and choose a value for K. An adequate (very good)
approximation to ci, which we sometimes refer to as the i-th working value, is found as the solution
to

2Φ(ci)− 1 =
ν − i + 1

ν + 2
3

where Φ(·) denotes the unit Gaussian cumulative distribution function. This working value formula
makes cν+1 = 0.

Unpublished simulation studies for two-way tables by Edward Fowlkes (Bell Communications
Research, Inc.), Jean McRae (AT&T Bell Laboratories) and the present authors indicated that a
value of about 1.5 for K is a reasonable general choice which comes close to optimizing the lesser of
two efficiencies—one for Gaussian perturbations, the other for the very stretched-tail perturbations

1The middle-median of a set of s’s is the median of sq+1, . . . , sν−q , where q is the floor of (ν + 1)/4.
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generated from the slash distribution—the ratio of a unit Gaussian random variable to an indepen-
dent unit uniform random variable. Here, we will use a single cutoff value of 1.5 for any subtable,
regardless of its dimensions.

We need to protect ourselves from problems with excessive numbers of zeros, especially for
small subtables. This is the case with the DG subtable from the fibian decomposition in Table 4,
where there are 25 non-zero entries, three less than the nominal degrees-of-freedom. Our present
recommendation is to replace ν by the lesser of ν and “one plus the number of nonzero entries”; for
example, ν = 28 for the DG subtable is replaced by 26, the lesser of 28 and (25+1). Notice that
the modification implies that if all-but-one of z1, z2 , · · · , zν are zero, the single nonzero value is
treated as exotic.

Sometimes there can be more than ν nonzero entries; for example, DCG has 68 rather than 56.
In such cases, our present recommendation is to subtract zν+1 from each of z1 , . . . , zν , and then
apply the exotic identification procedure to the ν differences z1 − zν+1 , . . . , zν − zν+1.

Table 12 shows the appropriate calculations for the DC subtable given in Table 4. Here, there
are exactly ν = 8 non-zero entries, and, according to the criterion above, the entries in DC cells
(5, 3, ·) and (4, 3, ·) are identified as exotic. Table 4 displays all such exotic entries in a large bold font.

4 EXOTIC REPLACEMENT AND

RE-DECOMPOSITION

Having isolated any exotic entries in each subtable, we now consider how they should be treated
and analyzed in conjunction with non-exotic subtable entries. The key idea is to first replace an
exotic entry by an exotic replacement value ‘similar in size’ to the non-exotic entries in its subtable,
and then mean polish the resulting decomposition, adjusting the exotic values to retain an overall
additive decomposition. This type of analysis lets us take advantage of the flexibility and power of
a mean analysis while ensuring that exotic values have no chance to take advantage of the general
failure of mean analysis to be robust.

The simplest replacement strategy is to replace each exotic value by zero. An alternative is to
Winsorize each exotic value by replacing it with the nearest non-exotic value (sign considered) in
the same subtable. We have investigated these and other replacement strategies, but on balance, at
least in the present example and for the remainder of this paper, we prefer the compromise “half-
Winsorization” strategy whereby each exotic entry is replaced by an amount equal to one-half of its
Winsorized value.

Note that the “zero” strategy is appropriate when an exotic value is ‘something other than the
rest’, whereas “Winsorization” treats each exotic value as if it were generated from a stretched-
tail distribution, as when a particular contribution to error is usually zero but sometimes large.
“Half-Winsorization”, the presently preferred compromise between “zeroing” and “Winsorization”,
is something to use when we do not understand the nature of the exotics in the data before us, and
seems a reasonable default if we can indulge ourselves with the luxury of a single answer. However, it
will often be desirable to compare the results with those from “zeroing” and from “Winsorization”.

Table 5 shows the (rounded) half-Winsorized exotic replacements for the exotic values in the fibian
decomposition in Table 4 for the dental gold data. Table 6 gives the inner decomposition (rounded
to the nearest integer), the result of mean polishing the replacement decomposition in Table 5: The
emboldened values highlight the cells which were flagged exotic in the fibian decomposition.

The values of the exotic supplements , the difference between the exotic values and their replace-
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ments, will be known before redecomposition; for example, the exotic value −57 in the D subtable
becomes the exotic supplement −52 = −57− (−5), since −5 is half of the Winsorized value -10, the
non-exotic subtable entry, sign considered, nearest to −57.

Finally, Table 7 shows a full additive decomposition of the data, formed by taking the sum of
the inner decomposition in Table 6 and the exotic supplements. Thus, each emboldened entry in
Table 7 is the sum of its inner value and its exotic supplement, and other entries are just inner
values. For example, the emboldened entry −42 for the fifth dentist in the D subtable is obtained
as −42 = 10 + (−52), whereas the effect for the first dentist is 16, its inner value from Table 6.

Observe that in this additive decomposition, previously identified exotics still appear to stand
out. Additionally, the entry 63 for the seventh gold also appears to stand out. Thus, the last three
golds, which correspond to the same gold alloy but sintered at three different temperatures, appear
to offer increased hardness in comparison with the other five golds.

5 A ROBUST ANALYSIS OF VARIANCE TABLE

In this section, we introduce a new style of analysis of variance table in which for each line of
the analysis, we give the conventional degrees-of-freedom, an inner mean square, a list of the signed
identities of any exotics, and include the classical mean square for comparison. Calculation of inner
mean squares proceeds exactly as in a classical analysis. Thus, for example, the inner mean square
for DC is derived from its inner subtable (Table 6), and is simply

[112 + (−18)2 + · · ·+ 232 + (−20)2]× 8
(5− 1)× (3− 1)

= 4218

Table 8 shows the robust analysis of variance table for the dental gold data.
What do we learn from Table 8? First, we discover the identity and signs of any exotic val-

ues, except where there are too many, when the number of each sign is just given, as in the DCG

line. Secondly, when we compare standard mean squares with inner mean squares for each line in
Table 8, we notice reductions of (i) 87% for dentists, indicating the very low level of hardness for
the gold fillings produced by the fifth dentist; (ii) 99% for condensation methods, indicating an
extremely low level of hardness produced when using the third condensation method (hand mal-
leting); (iii) 87% for the dentists × condensation methods interaction, indicating the very low level
of hardness achieved when the fourth and fifth dentist use hand malleting; and (iv) 85% for the
condensation methods × gold alloys interaction, indicating the low level of hardness attained when
hand malleting is used with the eighth gold alloy. Thus, the fifth dentist and/or hand malleting
tend to produce very soft fillings, even when hand malleting is applied to the eighth gold alloy
which itself appears to produce reasonably hard fillings. Thirdly, we see that the 13 positive and 6
negative three-factor exotic combinations are not exhibiting equally extreme behaviour, as judged
by the smaller (77% reduction) in the DCG mean square. Lastly, considered alone, the standard
analysis of variance table tells us none of this!

6 DOWNSWEEPING

The process of upsweeping separates the data into as many identifiable subtables as possible.
The subsequent process of downsweeping preserves (by not downsweeping) a subtable if its mean
square is at least twice the mean square of what it could be swept down into, namely, a subtable
involving one more factor—“Paull’s rule-of-two”; see Paull (1950) and Chapter 11 of FEAV for
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details on downsweeping in the conventional setting.
In the conventional non-robust setting, this downsweeping process can be suggested by starting

from an analysis treating all factors as “random”, but it is not intended to depend on either the
appropriateness or inappropriateness of such a choice. It is intended to provide a standard reduction
of complexity likely to be useful in any of a variety of situations. The results of downsweeping can
be incorporated in further analyses that treat some factors as “fixed”, some as “random”. It is
intended to concentrate the decomposed data, not to choose a detailed framework of analysis.

Downsweeping Conventional Subtables

Table 9, based on the conventional, and less than satisfactory, analysis of the dental gold data shows
a detailed application of downsweeping. The resulting downswept analysis is given in Table 10.
Notice that the (pooled) mean square for a surviving composite subtable is computed as the weighted
average of the mean squares of its component subtables, with weights proportional to the degrees-
of-freedom of the corresponding components. Of the eight subtables from the complete upsweeping,
five have preserved their identity and three have been downswept.

Downsweeping Inner Subtables

For the inner subtables, there seems to be no reason to alter the techniques used for classical
subtables. Degrees-of-freedom are as in a conventional analysis. The resulting downswept analysis
is given in Table 11. This time, the downsweeping leaves only the common term and the compound
two-way and three-way interactions DG∗ and DCG∗∗.

The possibility of downsweeping exotic supplements is considered briefly in Section 10.

7 STANDARD ERRORS

Now that we have completed robust upsweeping, identification, redecomposition, the robust
analysis of variance table, and downsweeping, and are left with survival lists of inner subtables
and of exotics that appear to deserve individual attention, we now consider the final part of our
recipe, evaluation; that is, “standard errors” and “confidence statements” for subtable entries. These
evaluations are intended for guidance only, as presently there is no distribution theory or simulation
results available for our robust procedure.

We plan to associate a standard error with the label of each surviving inner subtable. Here we
are concerned with subtables as “upper lines”, and we want to assess stability and confidence for
subtable entries. Thus, if there are exotic values associated with a surviving inner subtable, we
should recombine the inner subtable and the exotic supplements into a single table, within which
to make comparisons or assessments. The standard errors will be applied to both exotic and inner
entries.

If we have a full subtable containing m entries, and would be prepared to look at any simple
comparison among them, there is little doubt that q(m, ν, 5%), the upper five-percent point of
the studentized-range of comparisons among m values, based upon ν degrees of freedom, is the
natural critical value to use; see FEAV , Table A-4, p414. For comparison with zero, we can use the
Boole-Bonferroni Student’s t based allowance t(ν, 2.5%|m) for a 95% confidence interval; see FEAV ,
Table A-1, p405. If we wish to have a more informative analysis of two-factor interactions, we are
led to work with simple bicomparisons—double differences involving the 4 entries from 2 rows and
2 columns; see FEAV , p355.
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If we were making a standard analysis, the formulas for standard errors are simple and uniform,
namely

SE =
[
Mean Square providing error term
number of observations per entry

] 1
2

However, as we are making a robust analysis based upon inner mean squares, there are two processes
that should be accounted for in a more careful analysis when dealing with any inner subtable other
than the all-factor-interaction subtable. First, because of flagging in a subtable contributing to the
standard error, fewer observations may contribute to some of the values we are about to compare.
Secondly, because of the possibility of flagging, whether or not realized in any particular situation,
and thus removing from the inner mean square large entries in subtables contributing to the standard
error, the inner mean square will be slightly biased downward. While we cannot provide a definitive
procedure to deal with both of these effects, a plausible interim measure, would be to expand the
naive standard error of each surviving subtable by the factor

1.05×maximum
{

1
contraction

| contributing subtables
}

where the “contraction” of a subtable contributing to the standard error is simply the proportion
of unflagged entries in that subtable. Here, the 1.05 is a rough allowance for shrinking because of
possible flagging, while the maximum over contributing subtables is a conservative allowance for the
effects of absence of flagged values from the computation.

However, note that this interim procedure does not take account of the consequences of unbalance
of flagged values across the versions that we are comparing. Still greater precision and extreme
care would lead us to use different standard errors for different determinations, comparisons or
bicomparisons of the entries in a single subtable. Only in quite extreme cases does this seem likely
to be important.

We now illustrate some of these calculations for the dental gold example. The naive standard error
for the “common” value based upon the inner mean square for DG? in Table 11 is

√
8262/120 =

±8.3 and t(39, 2.5%|1) = 2.023, leading to a Boole-Bonferroni allowance of ±16.8. However, the
corresponding allowance based upon the DCG? inner mean square is only ±8.9. Only the larger of
these two standard errors allows for unfixedness (possibly randomness) in the versions of C.

The naive standard error for DG?, which can only be based on inner DCG?, is
√

2398/3 = ±28.3
and t(80, 2.5%|40) = 3.3107, leading to a Boole-Bonferroni allowance of ±93.6. On the other hand,
the Studentized-range tabular value is q(40, 80, 5%) = 5.596, leading to an allowance of ±158.2 for
simple comparisons of DG? entries. In the example, the standard errors change only moderately
when they are inflated to take account of the two possible effects of flagging described above.

8 REPLICATION AND NESTING

We now consider what sort of analysis we should do at the lowest level, provided this is a level
of pure replication. If we have at least three replicates in each cell, we can pass upward, to the cell
level, the fibian of the cell replicates. The resulting sets of residuals, one set for each cell, can be
processed as before using the exotic identification method described in Section 3, except that here
we have a choice between either applying it to each set of residuals separately, or to the pooled set
of residuals from all cells, or to each of a few pooled sets of residuals, probably divided to reflect
cell levels. The second of these is likely to be the choice in most balanced situations (at least until
we learn more about the problem), as it accords with the usual assumption of constant variance in
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the classical analysis.
Whichever procedure is adopted in any particular instance, we apply a half-Winsorized analysis

at each cell; that is, for each cell, we replace any exotic entry by its half-Winsorized value and then
sweep out the mean of the modified residuals and add it to the fibian of the original replicate values.
These modified cell summaries then become the input to the analysis described in the previous
sections.

The inner replicate mean squares will be calculated as before by analogy with the corresponding
classical analysis. The inner mean square will estimate the assumed constant variance, while the
existence of one or more exotic values will signal unusual behavior at the pure replicate level.

One possible reason for unusual behavior is non-constancy of variance, which is more likely than
not to be associated with differences in level. Thus we should, if exotic replications arise, compare
the fibians for cells with exotic replications with the fibians for the other cells.

All that we have said about pure replication applies equally well to the nesting of a factor (with
three or more versions) within a factor or within the interaction of two or more factors.

9 DISCUSSION FOR DENTAL GOLD DATA

In this section we give more details about the dental gold experiment and discuss what we seem
to have learned from our robust analysis.

What Do We Know About The Experiment?

Xhonga (1971) reported that the primary objective of the experiment was to find a dental gold filling
with increased hardness, and it was known that condensation when carried out properly increases
hardness. The three methods of condensation compared in the experiment were: hand condensation
(C3) in which hand pressure is applied using a handpiece; hand malleting (C2) which is the same
as hand condensation, except that blows are delivered by a hand mallet; and electromalleting (C1)
in which blows are delivered mechanically at constant frequency. It was anticipated that hardness
levels achieved with both hand condensation and hand malleting would be more variable and more
dependent on the ability of the dentists than with electromalleting,

Eight golds were compared: the first comprised pure gold cylinders; the second comprised pellets
of powdered gold in a gold foil envelope; and the remaining six were in a 2 × 3 factorial structure,
comprising two types of “direct gold alloy” each sintered at three different temperatures (1500◦ F,
1600◦ F, 1700◦ F). In this paper we have not attempted to incorporate this underlying additional
factorial structure; however, see FEAV for an exploratory treatment of the classical four-way analysis
of the last six golds.

Five dentists participated in the experiment, each of them applying each of the three condensation
methods to each of the eight golds, thus requiring twenty-four specimens in all. Morton Brown, in
correspondence with Donald Preece, reported that dentist 5 had been physically tired prior to the
experiment; Preece(1983).

Each reported hardness number in Table 1 is the sum of ten unavailable measurements taken
on the corresponding specimen. Each such measurement is a measure of surface hardness called
“Vickers diamond hardness” computed as 1.8544 W/d2 where W in this experiment was taken to
be 1 kg and d is surface indentation in mm. Thus, for example, hardness values of 245 and 1115 in
Table 1 convert to indentations of 0.28 mm and 0.13 mm, respectively.

Preece (1983) noticed that equally spaced indentations transform to the hardness values in Ta-
ble 1 which are 5 units apart for low values and 13 apart for high values, thus presenting enough
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discreteness for some to question a Gaussian assumption for errors.

What Have We Learned From Our Analysis?

Roughly, we seem to have learnt the following:

• The common or “undisturbed” (by the factors investigated) hardness is about 78 units give or
take about 0.8, a crude standard error calculated in Section 7 from the second line in Table 11.

• The sixth and seventh golds (Au Ca sintered at 1500◦ F and 1600◦ F) produce somewhat
harder fillings. In fact the last three golds, which outperformed the other five, were of one
type of direct gold alloy (Au Ca), which apparently all five dentists reported handled with
greater ease.

• Hand condensation seems to be inferior for all dentists, particularly for the fourth and fifth,

• The combination of hand condensation and the eighth gold alloy (Au Ca 1700◦ F) seems to
produce a further softening.

• Of the 19 DCG exotics, 12 were associated with the fourth and fifth dentists (D4 or D5), 11
with hand condensation (C3), and 16 were associated with either C3 or D4 or D5. Of the
remaining lines of the analysis involving C or D, all exotics involve C3 or D4 or D5.

• The larger exotics appear to be associated with low hardness, whereas many more positive
exotics seem to be associated with C1 and C2. The inhomogeneity of variability suggested by
these observations has been noted previously in Section 2.

• The one surviving subtable, DG?, shows that there is substantial interaction between dentists
and the golds, although this was the only subtable that showed no signs of exoticity.

What Might We Do Next?

The aim of our dental gold analysis is choices that make fillings harder. Thus we can consider setting
aside C3 and D4 and D5, leaving a 3× 2× 8 data pattern, that could be analysed by itself. If the
versions of the two factors set aside are involved in distinctive interactions, removing obviously low
values might lead to a cleaner analysis.

The analysis just described is appropriate if we are interested in performance by skilled dentists.
A very different option arises if we are asking for reasonable performance for any of a wide variety
of dentists. An extreme analysis of our dental gold data would involve finding the worst (i.e.
lowest hardness) result for the five dentists. We can do this for each of the 3 × 8 combinations of
condensations and golds, and we can analyse the resulting 3×8 table by fibian polish. This analysis
may be more sensitive to outliers than we would like. A compromise would be the same sort of
analysis of the next-to-lowest hardness achieved by the five dentists.

Table 13 reports the gold and condensation main effects (from the appropriate fibian polish) for
four analyses, the analysis of earlier sections and the three just suggested. All analyses agree that
G6 and condensation C1 or C2 is a desirable choice. Most golds and the satisfactory condensations
show no strong trend. Gold G8 and condensation C3, both of which are to be avoided as result
of each analysis, show rather strong trends from one analysis to another. Together, these last two
statements imply interaction-like behavior, suggesting that, given the concerns to be addressed,
analysing less than all the data is desirable, as does the absence of exotics in the DCG subtable of
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the 3 dentist-2 condensation analysis (not shown here) and the appearance of only small exotics in
the main effects and two-factor interactions.

10 DISCUSSION

In this paper, we have set forth a recipe for robust analysis of variance for factorial data (with
at least three versions for each factor) which explicitly seeks to identify exotic behaviour associated
with the different sorts of variation while insulating normal variation from the disturbing effects of
such exotic behaviour.

The recipe comprises the following sequence. First, an upsweeping-by-medians decomposition
of the data into subtables of main effects and interactions (associated with the different sorts of
variation) is followed by a comparison-within-subtables to flag unusually large (exotic) entries in
each of the subtables. Next, a classical analysis by means, after replacing exotic entries by values
similar in magnitude to the non-exotic entries in their respective subtables, yields a decomposition
of the data into inner subtables and associated adjusted exotic values (exotic supplements) which
is used to construct an analysis of variance table in which, for each sort of variation, there is a list
of exotic supplements and an inner (or denominator) mean square that excludes the exotic values.
The analysis continues by downsweeping those inner subtables that are inadequately prominent, as
judged by Paull’s rule-of-two. The results are displayed as a decomposition of the data into exotic
values and those inner subtables, both simple and composite, that survive downsweeping. Although
the exploratory nature of the recipe is emphasized, an approximate confirmatory stage is suggested
in which the inner mean squares corresponding to the surviving subtables can be used to construct
appropriate error terms for analysing subtable entries that remain.

While we believe the recipe represents the right approach to robust analysis of variance and
have kept the individual ingredients as simple as possible, we recognise that there may be scope
for sharpening some of them. For example, (i) to some, it might seem desirable that the initial
breakdown should be unique with the number of non-zero entries in each subtable being no more
than the nominal degrees-of-freedom; (ii) flagging procedures which depend both on the degrees-of-
freedom and on the level of the subtable in the design hierarchy may prove eventually to be better
suited to identifying distinctive subtable entries; (iii) rather than simply regard subtable entries as
either exotic or not, an alternative approach would be to weight each entry according to its size
compared to the overall variability in the subtable, and then do a weighted mean analysis; (iv)
we might consider downsweeping exotic values, and decide to downsweep an exotic supplement if
an appropriate multiple of the square of its value is less than twice the mean square of the inner
entries in a candidate fiber; (v) standard errors and associated confidence statements deserve careful
study, as allowances will have to be made for the process of flagging exotic values and for subsequent
processes in the recipe, such as downsweeping.

The procedures described in this paper can be readily adapted to other balanced designs such
as Latin squares, balanced incomplete blocks, and those involving both crossed and nested factors,
such as split-plot experiments. However, whenever factors with two versions are involved, different
procedures are likely to be needed such as those developed by Seheult and Tukey (1982) and by
Seheult (1997) for the special case where all the factors have just two versions. Unbalanced designs,
including those with unequal replication, will also require special attention.

What has all this accomplished ? Mainly two kinds of things:
• recognition, and proper treatment, of those subtables, most of whose entries deserve to be

downswept, although some are so large that they should not be downswept. Here, proper treat-
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ment means partial downsweeping, accomplished by downsweeping “inner” subtables while
leaving “exotic supplements” unmoved.

• arranging that unusually large entries (a) do not distort the summaries at higher levels and
(b) do not contribute unduly to to that subtable’s mean square, thus avoiding distortion of
downsweeping or of variance estimates.

While we may have been led to consider robust analysis of variance as a way to make improve-
ments, possibly minor, in the precision of our summaries, we now recognize its greatest virtue is its
ability to cope much more adequately with data whose factorial structure may be almost absent,
except perhaps for a sub-factorial structure, and to do this without compromise to its ability to cope
adequately with data in which factorial structure is clearly evident. Its recognition has markedly
increased the palette of formats through which we can describe real data.
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G
D C

1 2 3 4 5 6 7 8

1 792 824 813 792 792 907 792 835
1 2 772 772 782 698 665 1115 835 870

3 782 803 752 620 835 847 560 585

1 803 803 715 803 813 858 907 882
2 2 752 772 772 782 743 933 792 824

3 715 707 835 715 673 698 734 681

1 715 724 743 627 752 858 762 724
3 2 792 715 813 743 613 824 847 782

3 762 606 743 681 743 715 824 681

1 673 946 792 743 762 894 792 649
4 2 657 743 690 882 772 813 870 858

3 690 245 493 707 289 715 813 312

1 634 715 707 698 715 772 1048 870
5 2 649 724 803 665 752 824 933 835

3 724 627 421 483 405 536 405 312

Table 1: Dental gold data.

Source df Mean Square

(1) 1 65118387

D 4 54394
C 2 298808
G 7 31477

DC 8 32930
DG 28 7458
CG 14 14984

DCG 56 9969

Table 2: Standard analysis of variance table for the dental gold data.



(1) 737

D 48 43 5 -37 -59

C 49 50 -100

G -9 -22 -12 -27 -48 84 58 -23

-16 -22 38
-6 -34 40

DC -53 -25 78
32 35 -67
43 45 -88

6 36 9 -54 27 87 -114 2
-14 3 6 14 12 -34 -26 39

DG 24 -38 37 -30 10 -26 12 11
-17 -34 -30 105 -44 23 67 -70

1 33 -22 -35 -5 -51 60 18

-54 38 -20 -26 29 -12 16 29
CG -53 -20 -3 -6 -30 31 11 70

107 -18 24 32 1 -19 -27 -99

30 -47 18 81 -34 -70 13 9
15 -36 -26 -28 -98 99 67 8

-45 83 8 -53 132 -29 -80 -17

57 -39 -82 19 -2 -3 36 14
32 15 -15 4 13 56 -46 -58

-89 24 97 -23 -11 -53 10 45

15 8 0 -27 23 74 -62 -31
DCG 64 29 25 40 -85 -31 0 -42

-79 -36 -25 -13 62 -44 62 73

-28 182 73 -90 44 18 -131 -68
-49 33 -51 25 108 -111 -51 96
77 -215 -22 65 -152 93 182 -28

-74 -104 -9 16 -31 -19 144 76
-62 -40 67 -41 62 -13 31 -3
136 144 -58 24 -31 32 -175 -73

Table 3: Separate subtables for mean decomposition of the dental gold data.



(1) 771

D 20 1 0 -10 -57

C 1 0 -65

G -9 0 1 -17 -18 95 38 43

0 -19 0
30 -11 0

DC -48 0 9
0 0 -146
0 27 -208

9 32 25 -46 0 26 -38 0
0 0 -4 17 0 -60 0 36

DG 0 -39 27 -42 28 -30 0 -43
-80 -1 -58 149 0 17 33 -109
-72 0 0 0 0 0 116 0

0 0 -9 0 18 20 0 0
CG 0 -17 14 -11 0 -12 38 51

56 0 0 25 -16 0 -11 -172

0 0 4 63 0 -26 0 0
0 -15 -30 0 -89 234 25 4
0 45 0 -68 143 0 -155 -12

9 0 -76 0 10 0 66 0
0 28 0 32 0 149 -45 -67

-39 0 131 -17 0 -44 0 67

0 39 0 -38 0 49 0 0
DCG 30 0 0 42 -168 0 0 -40

0 -70 0 0 34 -65 82 138

0 185 96 -151 0 0 -41 -47
-15 0 -28 0 29 -48 0 112

173 -304 0 0 -227 53 203 0

0 0 0 0 0 -58 179 112
-11 0 47 -48 29 0 0 0

308 186 -21 34 -2 0 -179 0

Table 4: Separate subtables for fibian decomposition of the dental gold data. Identified exotic entries
are in bold.



(1) 771

D 20 1 0 -10 -5

C 1 0 0

G -9 0 1 -17 -18 21 38 43

0 -19 0
30 -11 0

DC -48 0 9
0 0 -24
0 27 -24

9 32 -25 -46 0 26 -38 0
0 0 -4 17 0 -60 0 36

DG 0 -39 27 -42 28 -30 0 -43
-80 -1 -58 149 0 17 33 -109
-72 0 0 0 0 0 116 0

0 0 -9 0 18 20 0 0
CG 0 -17 14 -11 0 -12 38 51

56 0 0 25 0 -16 -11 -8

0 0 4 63 0 -26 0 0
0 -15 -30 0 -89 48 25 4
0 45 0 -68 48 0 -44 -12

9 0 -76 0 10 0 66 0
0 28 0 32 0 48 -45 -67

-39 0 48 -17 0 -44 0 67

0 39 0 -38 0 49 0 0
DCG 30 0 0 42 -44 0 0 -40

0 -70 0 0 34 -65 82 48

0 48 96 -44 0 0 -41 -47
-15 0 -28 0 29 -48 0 48
48 -44 0 0 -44 53 48 0

0 0 0 0 0 -58 48 48
-11 0 47 -48 29 0 0 0

48 48 -21 34 -2 0 -44 0

Table 5: Separate subtables for the half-Winsorized fibian decomposition of the dental gold data.
Replacement values are in bold.



(1) 781

D 16 10 -19 -18 10

C 1 2 -3
G -27 -14 -9 -12 -26 0 63 25

11 -18 7
22 -19 -3

DC -34 9 25
5 4 -9

-3 23 -20

33 38 16 -60 -17 46 -73 17
14 5 -14 9 -1 -47 -22 56

DG 43 -44 35 -45 -30 -14 8 -12
-42 -1 -33 124 -6 34 10 -86
-47 1 -3 -29 -6 -18 77 25

-21 18 -8 -5 21 13 -1 -17
CG -21 -13 9 -6 -12 -1 20 24

43 -5 0 12 -9 -13 -20 -7

-2 -27 5 60 5 -34 -7 1
5 -21 -15 -5 -61 30 43 23

-3 48 9 -56 56 5 -36 -23

24 -20 -67 -2 4 4 52 5
12 19 12 17 8 32 -44 -55

-35 1 55 -14 -12 -36 -8 50

-9 36 -4 -40 -2 57 -37 -1
DCG 25 14 6 33 -27 -6 -16 -28

-16 -49 -2 7 29 -51 53 29

-5 38 74 -26 4 5 -49 -41
-22 2 -45 7 48 -62 9 63
27 -40 -29 19 -52 56 40 -21

-7 -26 -9 8 -11 -32 41 37
-20 -14 42 -52 32 6 8 -3
28 40 -34 45 -21 26 -49 -35

Table 6: Inner subtables from the mean re-decomposition of the half-Winsorized fibian decomposition
of the dental gold data in Table 5.



(1) 781

D 16 10 -19 -18 -42

C 1 2 -68

G -27 -14 -9 -12 -26 73 63 25

11 -18 7
22 -19 -3

DC -34 9 25
5 4 -131

-3 23 -204

33 38 16 -60 -17 46 -73 17
14 5 -14 9 -1 -47 -22 56

DG 43 -44 35 -45 -30 -14 8 -12
-42 -1 -33 124 -6 34 10 -86
-47 1 -3 -29 -6 -18 77 25

-21 18 -8 -5 21 13 -1 -17
CG -21 -13 9 -6 -12 -1 20 24

43 -5 0 12 -9 -13 -20 -170

-2 -27 5 60 5 -34 -7 1
5 -21 -15 -5 -61 216 43 23

-3 48 9 -56 151 5 -147 -23

24 -20 -67 -2 4 4 52 5
12 19 12 17 8 133 -44 -55

-35 1 138 -14 -12 -36 -8 50

-9 36 -4 -40 -2 57 -37 -1
DCG 25 14 6 33 -151 -6 -16 -28

-16 -49 -49 7 29 -51 53 119

-5 175 74 -132 4 5 -49 -41
-22 2 -45 7 48 -62 9 127

152 -299 -29 19 -234 56 195 -21

-7 -26 -9 8 -11 -32 172 101
-20 -14 42 -52 32 6 8 -3

288 178 -34 45 -21 26 -183 -35

Table 7: The additive decomposition of the dental gold data in which each emboldened entry is the
sum of its inner value from Table 6 and its exotic supplement, and the other entries are inner values.



Standard Inner Signed exotic
Label Df MS MS labels

D 4 54394 6978 −D5
C 2 298808 206 −C3
G 7 31477 13768 +G6

DC 8 32930 4218 −D4C3 −D5C3
DG 28 7458 7068
CG 14 14984 2253 −C3G8

DCG 56 9969 2253 13+ 6−

Table 8: Robust analysis of variance table (including the standard analysis) of inner mean squares
summarizing the inner subtables resulting from the half-Winsorized decomposition of the dental gold
data displayed in Table 6. There are 13 positive and 6 negative DCG exotics.

Label df MS Possible subtables to downsweep into (⇓) Action

common 1 65118387 54394(D) 298808(C) 31477(G) hold

D 4 54394 32930(DC) 7458(DG) ⇓ into DC
C 2 298808 32930(DC) 14984(CG) hold
G 7 31477 7458(DG) 14984(CG) hold

DC 12 40085 9969(DCG) hold
DG 28 7458 9969(DCG) ⇓ into DCG
CG 14 14984 9969(DCG) ⇓ into DCG

DCG 56 9969

Table 9: Application of Paull’s rule-of-two to the conventional mean squares for the dental gold data
of Table 1.

Label df MS
common 1 65118387

C 2 298808
G 7 31477

DC∗ 12 40085
DCG∗ 98 9968

Table 10: Final downswept conventional mean squares for the dental gold data following from
Table 9, where DC∗ results from pooling DC and D, and DCG∗ results from pooling DCG, DG and
CG.

Label df MS
common 1 73159398

DG∗ 39 8262
DCG∗ 80 2398

Table 11: Final downswept inner mean squares for the dental gold data, where DG∗ is the result of
pooling D, G and DG, and DCG∗ is the result of pooling D, C, DC, CG and DCG.



Ordered sizes Working values Scales Ratios
zi ci si si/s

208 1.770 117.5 2.73∗

146 1.304 111.9 2.60∗

48 1.020 47.0 1.09
30 0.801 37.4 0.87
27 0.615 43.9 1.02
19 0.448 42.4 0.98
11 0.293 37.5 0.87
9 0.145 62.0 1.44

s = 43.1∗∗

∗ These ratios exceed the cutoff value K = 1.5, so that the corresponding cell entries −208 and −146
are identified as exotic.
∗∗ 43.1 is the middle-median of the eight scales; that is, the median of 47.0, 37.4, 43.9, 42.4.

Table 12: Calculations for identifying exotic entries in the DC subtable of the fibian decomposition
of the dental gold data given in Table 4.

All 5 3 dentists and Next to Worst
Golds dentists 2 compactions worst dentist dentist Comments (range)

6 95 105 143 148 high in each (53)
7 38 28 77 80 moderately high (52)
3 1 0 0 25 neutral (25)
2 0 −10 9 33 neutral (43)
4 −17 −10 −17 0 possibly low (17)
5 −18 0 −50 −52 moderately low (52)
1 −9 −10 −42 −16 weak trend (33)
8 43 33 9 −33 strong trend (76)

Compactions
1 1 20 0 17 small (20)
2 0 0 0 0 neutral (0)
3 −65 −160 −277 strong trend (212)

Table 13: Gold and compaction effects from fibian analyses of the G× C tables of four analyses.


