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Abstract. The hypergraph partitioning problem has many applications
in scientific computing and provides a more accurate inter-processor
communication model for distributed systems than the equivalent graph
problem. In this paper, we propose a sequential multi-level hypergraph
partitioning algorithm. The algorithm makes novel use of the technique
of rough set clustering in categorising the vertices of the hypergraph. The
algorithm treats hyperedges as features of the hypergraph and tries to
discard unimportant hyperedges to make better clustering decisions. It
also focuses on the trade-off to be made between local vertex matching
decisions (which have low cost in terms of the space required and time
taken) and global decisions (which can be of better quality but have
greater costs). The algorithm is evaluated and compared to state-of-
the-art algorithms on a range of benchmarks. The results show that it
generates better partition quality.

1 Introduction

A hypergraph is a pair: a set of vertices and a set of hyperedges. Each hyperedge
is a subset of the vertex set (there is no restriction on its size). The hypergraph
partitioning problem asks, roughly speaking, for a partition of the vertex set such
that the vertices are evenly distributed amongst the parts and the number of
hyperedges that intersect multiple parts is minimised. A tool to solve this probem
is called a partitioner. Hypergraph partitioning has applications in many areas of
computer science such as data mining and image processing.

The hypergraph partitioning problem is a generalisation of the graph parti-
tioning problem (in which the edges of a graph are subsets of the vertex set of size
two contrasting with hyperedges whose size is unbounded), and provides a more
natural way of representing the relationships between objects inherent in many
problems [14]. The removal of the constraint on edge size, however, increases
the practical difficulty of partitioning [13]. As both the graph and hypergraph
variants of the partitioning problem are NP-hard [12], a number of heuristic
algorithms have been proposed [10, 17]. In this paper, we propose and evaluate a
new algorithm.

Our serial Feature Extraction Hypergraph Partitioning (FEHG) algorithm is
of a type known as multi-level. It has three distinct phases: coarsening, initial
partitioning and uncoarsening. During coarsening vertices are merged to obtain



hypergraphs with progressively smaller vertex sets. After the coarsening stage,
the partitioning problem is solved on the smaller hypergraph obtained in the
initial partitioning. During uncoarsening, the coarsening stage is reversed and the
solution obtained on the small hypergraph is used to provide a solution on the
input hypergraph. We describe some of the problems of multi-level partitioning
that motivate our study:

1. Heuristics for multi-level hypergraph partitioning focus on finding highly-
connected clusters of vertices that can be merged to form a coarser hypergraph.
This requires a metric of similarity, the evaluation of which requires the
recognition of “similar” vertices. As the mean and standard deviation of
vertex degrees are usually high (and so the similarity of pairs of vertices is
typically low), it is often a problem to define and measure the similarity [9].

2. There can be redundancy in modelling scientific problems with hypergraphs
and it is desirable to remove it. In [13], an attempt to reduce the storage
overhead of saving and processing hypergraphs is presented, but the strategy
can increase either the storage requirement or the running time in some cases.

3. Decision making for matching vertices (that will be merged) is usually done
locally. Global decisions are avoided due to their high cost and complexity
though they give better results [21]. All proposed heuristics reduce the search
domain and try to find the vertices to be matched using some degree of
randomness. This degrades the quality of the partitioning by increasing the
possibility of getting stuck in a local minimum. A better trade-off is needed
between the low cost of local decisions and the high quality of global ones.

Highlights of our contribution:

– We propose a new serial multi-level hypergraph partitioning algorithm which
gives significant quality improvements over state-of-the-art algorithms.

– We use rough set based clustering techniques for removing redundant at-
tributes while partitioning and so make better clustering decisions.

– We provide a trade-off between global and local clustering methods by
calculating sets of core vertices (a global decision) and then traversing these
cores one at a time to find best matchings between vertices (a local decision).

– We show that solely relying on a vertex similarity metric can result in major
degradation of the partitioning quality for some hypergraphs and different
coarsening methods should be considered.

In the next section, we briefly review partitioning algorithms and software
tools. In Sect. 3, we give a technical introduction to the Hypergraph Partitioning
Problem. In Sect. 4 we introduce FEHG. In Sect. 5 we evaluate the algorithm and
report results of a simulation comparing FEHG to state-of-the-art algorithms.
Finally in Sect. 6, we conclude with comments on ongoing and future work.

2 Related Work

We provide a brief review of algorithms, tools, and applications of hypergraph
partitioning; the reader is referred to [21] for an extensive survey. We note that,



in general, there is no partitioner recognized to perform well for all types of
hypergraphs as there are always trade-offs such as those between quality and
speed [21]. Partitioning algorithms can be serial [16, 4] or parallel [8], iterative
move-based [10] or multi-level [5], static [22] or dynamic [5], recursive [8] or
direct [1], and finally they can work directly on hypergraphs [16] or model them
as graphs and use graph partitioning algorithms [17].

Few software tools are available for hypergraph partitioning and there is
no unified framework for hypergraph processing. One popular tool designed for
VLSI circuit partitioning is hMetis1 [16]. The algorithms are based on multi-
level partitioning schemes and support recursive bisectioning (shmetis, hmetis),
and direct k–way partitioning (kmetis). Examples of tools that are designed for
specific applications are MLPart2 and Mondriaan3, designed for VLSI circuit
partitioning and rectangular sparse matrix-vector multiplications, respectively.
The emphasis of MLPart is on simplicity of design and Mondriaan uses the idea
of 2D matrix partitioning to enhance performance [22]. PaToH 4 [4] is a multi-
level recursive bipartitioning tool designed for serial hypergraph partitioning. It
supports agglomerative (vertex clusters are formed one at a time) and hierarchical
(several clusters of vertices can be formed simultaneously) clustering algorithms.
Zoltan5 [8] is developed for parallel applications. Its library includes a range of
tools for problems such as dynamic load balancing and graph and hypergraph
colouring and partitioning. Both static and dynamic hypergraph partitioning are
supported as are multi-criteria load balancing and processor heterogeneity.

There are a wide range of applications for hypergraph partitioning (see, for
example, [20]) including classifying gene expression data, replication management
in distributed databases [6] and high dimensional data clustering [15].

3 Definitions

3.1 Hypergraph Partitioning

A hypergraph H = (V,E) is a pair consisting of a finite set of vertices V , with
size |V | = n and a multi–set E ⊆ 2n of hyperedges with size |E| = m. For a
hyperedge e ∈ E and vertex v, we say e contains v, or is incident to v, if v ∈ e;
this is represented by e . v. The degree of a vertex is the number of distinct
incident hyperedges and the size of a hyperedge |e| is the number of vertices it
contains. The hypergraph is simply a graph if every hyperedge has size two.

Definition 1. Let k be a non–negative integer and let H = (V,E) be a hyper-
graph. A k–way partitioning of H is a collection of sets Π = {P1, P2, · · · , Pk}
such that ∪ki=1Pi = V , and ∀Pi, Pj ⊂ V, 1 6 i 6= j 6 k, we have Pi 6= ∅,
Pi ∩ Pj = ∅.
1 http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview
2 http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Partitioning/MLPart/
3 http://www.staff.science.uu.nl/ bisse101/Mondriaan/mondriaan.html
4 http://bmi.osu.edu/umit/software.html
5 http://www.cs.sandia.gov/zoltan/



We say that v ∈ V is assigned to a part P ∈ Π if v ∈ P . Let ω : V 7→ N and
γ : E 7→ N be weight functions for the vertices and hyperedges. The weight of P
is defined as ω(P ) =

∑
v∈P ω(v). A hyperedge e ∈ E is said to be connected to

P if e ∩ P 6= ∅. The connectivity degree of e is the number of parts connected to
e and is denoted by λe(H,Π). A hyperedge is cut if it connects to more than
one part. We define the cost of a partition Π of H as∑

e∈E
(γ(e) · (λe(H,Π)− 1)).

The connectivity objective is to find a partition Π of low cost. Let Wave be
the average weight of the parts: that is Wave =

∑
v∈V ω(v)/k. The balancing

requirement asks that all parts of the partition have similar weight: that is, given
imbalance tolerance ε ∈ (0, 1), it is required that

Wave · (1− ε) 6 ω(P ) 6Wave · (1 + ε), ∀P ∈ Π. (1)

The hypergraph partitioning problem is finding a minimum cost partition Π
of H that satisfies the balancing requirement.

3.2 Rough Set Clustering

Rough set theory was introduced by Pawlak in 1991 as an approach to under-
standing fuzzy and uncertain knowledge [19]. It provides a mathematical tool to
discover hidden patterns in data; it can be used, for example, for feature selection,
data reduction, pattern extraction. It can deal efficiently with large data sets [2]
by extracting global information that resides in the data.

Definition 2. Let U be a non-empty finite set of objects (called the universe).
Let A be a non-empty finite set of attributes. Let V be a multi-set of attribute
values such that Va ∈ V is a set of values for each a ∈ A. Let F be a mapping
function such that F(u, a) 7→ Va,∀(a, u) ∈ A × U. Then I = (U,A,V,F) is
called an information system.

For any B ⊆ A there is an associated equivalence relation denoted IND(B)
and called a B-Indiscernibility relation:

IND(B) =
{

(u, v) ∈ U2 | ∀b ∈ B, F(u, b) = F(v, b)
}
. (2)

When (u, v) ∈ IND(B), it is said that u and v are indiscernible under B
and this is represented as uRv. Furthermore, the equivalence class of u with
respect to B is [u]B = {v ∈ U | uRv}. The equivalence relation provides a
partitioning of the universe and it is represented as U/IND(B) or simply U/IND.
Thus, for every X ∈ U, and with respect to B ⊆ A, a B–lower and B–upper
approximation can be defined for X, by, respectively, BX = {x | [x]B ⊆ X}
and BX = {x | [x]B ∩X 6= ∅}. BX contains objects that belong to X with
certainty and BX contains objects that possibly belong to X. We describe a
hypergraph H = (V,E) with an information system IH = (V,E,V,F) such that
Ve ∈ [0, 1],∀e ∈ E and the mapping function is defined as:

F(v, e) =
f(e)∑
∀e′.v γ(e′)

, where f(e) = γ(e) if e . v and is otherwise 0.



3.3 Hyperedge Connectivity Graph

We use rough set clustering in our algorithm to make better clustering decisions
in hypergraphs. We will need a measure of similarity of a pair of hyperedges, a
function sim(·). Different similarity measures, such as Jaccard Index or Cosine
Measure, can be used. Similarity is scaled according to the weight of hyperedges:

for two ei, ej ∈ E the scaling factor is
γ(ei)+γ(ej)

2×maxe∈E(γ(e)) .

Definition 3. For a given similarity threshold s ∈ (0, 1), the Hyperedge Con-
nectivity Graph (HCG) of a hypergraph H = (V,E) is a graph Gs(V, E) where
V = E and two vertices vi, vj ∈ V are adjacent if, for the corresponding hyperedges
ei, ej ∈ E we have sim(ei, ej) > s.

We discuss the importance of the choosing the similarity threshold in Sect. 5.

4 The Algorithm

The proposed algorithm is a recursive multi–level algorithm composed of coars-
ening, initial partitioning and uncoarsening phases.

4.1 The Coarsening

The process of coarsening involves finding a sequence of hypergraphs H =
(V,E) , H1 =

(
V 1, E1

)
, . . . ,Hc = (V c, Ec) such that each hypergraph has fewer

vertices than its predecessor and the coarsest hypergraph Hc has fewer vertices
than a predefined threshold. We say Hi is the hypergraph found at the ith level

of coarsening. The compression ratio of successive levels i, j is defined as
|V i|
|V j | . We

use vertex matching to match a pair of vertices and merge them to form a coarser
vertex. The best pair is chosen using the Weighted Jaccard Index defined by:

J (u, v) =

∑
{e.v ∧ e.u} γ (e)∑
{e.v ∨ e.u} γ(e)

, v, u ∈ V , and ∀e ∈ E. (3)

This is similar to non-weighted jaccard index in PaToH which is called Scaled
Heavy Connectivity Matching. The algorithm first constructs HCG graph defined
above. by traversing H using Breadth-First Search (the graph itself does not
need to be saved). A partition ER of the hyperedges of H is then obtained where
each part contains hyperedges that belong to the same connected component
of HCG. The size and weight of each eR ∈ ER is the number of hyperedges it
contains and the sum of their weights, respectively. If we represent a hypergraph
with an information system, a reduced information system IRH

(
V,ER,VR,FR

)
is constructed based on ER. A vertex is incident to eR ∈ ER if at least one of its
incident edges e ∈ H is in eR. In addition VR

eR ⊆ N,∀eR ∈ ER and the mapping
function is defined as:

FR(v, eR) = |{e . v ∧ e ∈ eR, ∀e ∈ E }| . (4)



Fig. 1: An example of the coarsening procedure. (a) The sample hypergraph. (b) HCG
using weighted jaccard index in (3) and similarity threshold s = 0.5. (c) The reduced
information system, and (d) Remaining attributes after removing superfluous attributes
for clustering threshold c = 0.5.

The next step is to remove superfluous attributes from ER. A clustering
threshold c ∈ [0, 1] is defined and the mapping function of (4) is transformed to:

Ff (v, eR) =

{
1, if FR(v,eR)

|{e.v,∀e∈E}| > c

0, otherwise.
(5)

At this point we have a reduced information system If and we use this to find
clusters of vertices using rough set clustering techniques. Using the indiscernibility
relation defined in (2), the equivalence relation between vertices (Sect. 3.2), and
the mapping function F f of (5), U/IND(ER) provides a partitioning of the vertex
set V . The parts are called the cores of the hypergraph. Cores of unit size as well
as vertices whose F f(v, eR) = 0, ∀eR ∈ ER are categorised as non–core vertices
and they will be processed after core vertices. The cores are visited one at a time
and they are searched locally to find the best matching pairs according to (3).
The larger the mean vertex degree in the hypergraph is, the larger denominator
we get in (5) and this makes it difficult to choose a clustering threshold. As a
result, large mean vertex degrees produce more cores of unit size and this causes
the number of vertices that belong to cores to be small compared to |V |.

To maintain a certain compression ratio between two successive levels of the
coarsening, we perform a random matching of the non–core vertices. An example
of the coarsening procedure is given in Fig. 1.

4.2 Initial Partitioning and Uncoarsening

In the initial partitioning phase, a bipartitioning on the coarsest hypergraph Hc

is found using a number of algorithms. An output is selected to be projected
back to the original hypergraph: if many outputs fulfill the balancing requirement
then the one with lowest cost is chosen else it is the output that comes closest to



Table 1: Tested hypergraphs and their specifications
Hypergraph Description Rows Columns Non-Zeros Structure1 NSC2

CNR–2000 Small web crawl of Italian CNR domain 325,557 325,557 3,216,152 USYM 100,977
AS–22JULY06 Internet routers 22,963 22,963 96,872 SYM 1
CELEGANSNEURAL Neural Network of Nematode C. Elegans 297 297 2,345 USYM 57
NETSCIENCE Co-authorship of scientists in Network Theory 1,589 1,589 5,484 SYM 396
PGPGIANTCOMPO Largest connected component in graph of PGP users 10,680 10,680 48,632 SYM 1
GUPTA1 Linear Programming matrix (A×AT ) 31,802 31,802 2,164,210 SYM 1
MARK3JAC120 Jacobian from MULTIMOD Mark3 54,929 54,929 322,483 USYM 1,921
NOTREDAME Barabasi’s web page network of nd.edu 325,729 325,729 929,849 USYM 231,666
PATENTS–MAIN Pajek network: mainNBER US Patent Citations 240,547 240,547 560,943 USYM 240,547
STD1–JAC3 Chemical process simulation 21,982 21,982 1,455,374 USYM 1
COND–MAT–2005 Collaboration network, www.arxiv.org 40,421 40,421 351,382 SYM 1,798
1 NSC stands for the number of strongly connected components.
2 SYM stands for symmetric and USYM stands for unsymmetric.

meeting the balancing requirement. The algorithms used are random partitioning
(randomly assign vertices to parts), linear partitioning (linearly assign vertices
to parts), and a modification of the FM algorithm [10]. During uncoarsening,
we try to refine the quality of the partitioning by moving the vertices across the
partition boundary. A vertex is on the boundary if at least one of its incident
edges is cut by the bipartitioning. The FM algorithm and its variants have been
shown to be successful for the refinement process [8, 16] and we use a modified
version of FM or Boundary FM algorithm.

5 Evaluation

We have compared our algorithm (FEHG) with PHG (the Zoltan hypergraph
partitioner) [8], hMetis [16], and PaToH [4]. These algorithms achieve k-way
partitioning by recursive bipartitioning. The evaluated hypergraphs listed in
Table 1 are from the University of Florida Sparse Matrix Collection [7]. They
are from a variety of applications with different specifications and include both
symmetric and non–symmetric instances, and hypergraphs with different numbers
of strongly connected components, etc. Each matrix in the table is treated as a
hypergraph. We use the column-net model where each row of the matrix corre-
sponds to a vertex and each column corresponds to a hyperedge [8]. The weights of
vertices and hyperedges are set to unity. The evaluated tools have different input
parameters that can be selected by the user. For our case, we use default settings
for the comparison: shmetis is the default partitioner selected for hMetis, PaToH
is initialised by setting SBProbType parameter to PATOH SUGPARAM DEFAULT, and
the coarsening algorithm for PHG is set to agglomerative. All of them use a
variation of FM for the refinement and uncoarsening phase.

FEHG has two input parameters: the similarity threshold to construct HCG,
and the clustering threshold from (5). The values chosen for these parameters
can have a large impact on the quality of the partitioning. We describe how
calculate the similarity threshold when the Jaccard Index is used for measuring
the similarity between hyperedges.

The Clustering Coefficient (CC) is a graph theory measure determined by
the degree to which a node clusters with other nodes of the graph or hypergraph.



Different methods for finding CC in hypergraphs have been proposed [18]. Given
a hypergraph H = (V,E), we define CC for a hyperedge e ∈ E as:

CC(e) =


∑
{e′∩e6=∅}

((
1− (|e|−1)−|e∩e′|

|e|−1

)
·γ(e′)

)
∑
{v∈e}

∑
{e′′.v} γ(e

′′) , ∀e′, e′′ ∈ E\e, if |e| > 1

0, otherwise.

(6)

The CC of the hypergraph is calculated as the average CC over all hyperedges.
We calculate CC at the start of the algorithm. As the structure of the hypergraph
changes at each level of coarsening, we readjust its value instead of recalculation.
As proposed in [11] to analyse Facebook social networks and theoretically inves-
tigated in [3] on sparse random intersection graphs, the clustering of nodes in
hypergraphs is inversely correlated with average vertex degree. Based on this, we
readjust CC’s value according to the variation of average vertex degree from one
level of the coarsening to the next. Finally, CC value of the hypergraph is set as
the similarity threshold at each coarsening level.

Figure 2a depicts the variation of similarity threshold for each coarsening
level of a tested graph CNR–2000. Both the readjusted value and the actual
value are shown. The readjusted value provides a lower bound for the actual
value and it is about 50% of its value from the third iteration onward which is
sufficient for feature reduction. In Fig. 2b, the percentage of the edges whose
clustering coefficients are at least equal to the similarity threshold along with
normalised variation of edge size and its standard deviation (STD) is represented.
As the partitioner gets close to the coarsest hypergraph we have small average
size of hyperedges (2.09) and small average vertex degrees (2.47) but larger vertex
degree standard deviation (14.33); most of the vertices share very few hyperedges
so clustering decisions are difficult. As we see, the automatic readjustment still
catches the possible similarities. In general we achieve a cut size 50 for CNR–2000.

In our evaluation we found that variation of the similarity threshold has
higher impact on the quality of the partitioning than the clustering threshold.
The reason is that hyperedges with higher CC value are more likely to cluster
with others and they get higher coefficient in (4) and tend to be included in the
final reduced information system in (5). This reduces the effects of clustering
threshold variations. Therefore, we remove each eR ∈ ER of unit size (refer to
Sect. 4.1) and we set the clustering threshold to 0 in (5) for the others. For
example, edge partitions C2 and C4 are removed from the table in Fig. 1c. For
all tested hypergraphs, the algorithms are each run 20 times and the average and
best cut sizes are reported. Simulations are done with 2% imbalance tolerance in
(1) and the number of parts are {2, 4, 8, 16, 32}. The final imbalance achieved by
the algorithms are not reported because the balancing requirement was always
met by all algorithms. The simulation results as well as standard deviation
from the average cut are reported in Table 2. The latter could be used as a
measure of the robustness of the algorithms specifically when they give close
partitioning quality. The values are normalised with the best cut generated among
all algorithms except the standard deviation. According to the results, FEHG
performs very well compared to Zoltan and hMetis and it is competitive with



(a) Similarity Threshold (b) Change vs. edge size and its STD

Fig. 2: (a) Readjusted similarity threshold s for the test hypergraph CNR–2000 accord-
ing to (6) compared to its recalculation at each coarsening level. (b) The percentage of
the hyperedges whose CC is more than s and comparison to normalised edge size edge
and its standard deviation (STD).

Fig. 3: Variation of vertex degree and its standard deviation when FEHG makes extra
effort for achieving maximum vertex similarity matching vs normal matching

PaToH. For example in Noterdame and Patents-Main, FEHG achieves a superior
quality improvement compared to Zoltan and hMetis. In another simulation,
we investigate whether relying only on a vertex similarity metric is enough to
achieve better partition quality. When two vertices are matched, we refer to their
similarity degree as the roughness of the match and it is calculated using (3).
Matching pairs of vertices with higher similarity degree at each level of coarsening
means higher average roughness of the matched vertices in that level. According
to the algorithms that investigate vertex similarity metrics, an algorithm would
be better if it yields higher average roughness for levels of coarsening compared
to the others [21]. Furthermore, the decision about the vertex similarity is made
locally in those algorithms without collecting global information. In FEHG, we
refer to the average roughness of core vertices as core roughness. We consider
two scenarios for our test while we find a pair match for non–core vertices: in
the first one, a match is allowed for a non–core vertex if the roughness of the
match is at least equal to the core roughness. In the second scenario we allow
non–core vertex to be matched to any vertex as long as the roughness of the
match is greater than zero. In the first scenario, the emphasis is on finding
vertices with higher similarity as is the case for similarity metric based methods
and it guarantees higher average roughness compared to the second scenario
during levels of coarsening. The test is done on the hypergraphs and the result



Table 2: Quality comparison of the algorithms for different part sizes and imbalance
factor 2% with normalised values.
Graph Algorithm Number of Parts

2 4 8 16 32
AVE STD BEST AVE STD BEST AVE STD BEST AVE STD BEST AVE STD BEST

FEHG 1.11 34 1.00 1.02 32 1.00 1.04 25 1.01 1.01 30 1.00 1.01 28 1.03
AS-22JULY06 PHG 2.90 86 2.46 1.77 92 1.56 1.64 78 1.36 1.43 87 1.34 1.37 90 1.32

hMetis 1.34 0 1.95 1.19 7 1.30 1.16 12 1.18 1.04 23 1.06 1.09 27 1.04
PaToH 1.00 4 1.43 1.00 16 1.03 1.00 20 1.00 1.00 37 1.00 1.00 43 1.00

Best Value 136 – 93 355 – 319 629 – 599 1051 – 995 1591 – 1529

FEHG 1.00 2 1.00 1.09 9 1.00 1.10 15 1.06 1.11 16 1.08 1.07 17 1.03
CELEGANSNEURAL PHG 1.07 6 1.00 1.04 8 1.03 1.02 9 1.00 1.06 12 1.00 1.00 18 1.00

hMetis 1.17 0 1.21 1.00 5 1.05 1.00 0 1.04 1.00 2 1.02 1.00 6 1.00
PaToH 1.01 0 1.04 1.00 0 1.06 1.03 0 1.07 1.03 0 1.06 1.05 0 1.05

Best Value 79 – 77 195 – 184 354 – 342 548 – 536 773 – 769

FEHG 1.37 63 1.00 1.71 131 1.07 1.59 226 1.41 1.53 218 1.45 1.63 217 1.51
CNR–2000 PHG 35.88 552 45.62 12.48 760 9.17 5.73 569 4.84 3.54 477 2.98 2.42 530 2.02

hMetis 12.19 74 18.82 8.24 163 8.43 5.08 240 4.71 3.46 238 3.29 2.66 231 2.50
PaToH 1.00 3 1.71 1.00 37 1.00 1.00 48 1.00 1.00 62 1.00 1.00 85 1.00

Best Value 81 – 45 244 – 202 569 – 509 1014 – 911 1927 – 1830

FEHG 1.00 28 1.00 1.00 58 1.00 1.00 87 1.00 1.01 88 1.02 1.01 82 1.00
COND–MAT–2005 PHG 1.17 37 1.17 1.11 84 1.10 1.05 94 1.05 1.03 112 1.03 1.02 105 1.01

hMetis 1.05 14 1.07 1.11 75 1.12 1.11 81 1.12 1.11 129 1.10 1.01 122 1.01
PaToH 1.02 39 1.02 1.03 193 1.03 1.00 98 1.00 1.00 153 1.10 1.00 178 1.00

Best Value 2134 – 2087 5057 – 4951 8609 – 8485 12370 – 12150 16270 – 16150

FEHG 0.0 0 0.0 0.0 0 0.0 2.00 1 1.50 1.50 2 1.00 2.08 2 1.81
NETSCIENCE* PHG 0.0 0 0.0 0.0 0 0.0 1.50 1 1.00 1.40 2 1.00 1.87 2 1.5

hMetis 2.0 0 2.0 5.0 0 5.0 4.22 1 3.50 1.75 0 1.75 1.99 2 1.87
PaToH 0.0 0 0.0 0.0 0 0.0 1.00 0 1.00 1.00 0 1.00 1.00 0 1.00

Best Value 0 – 0 0 – 0 2 – 2 8 – 8 16 – 16

FEHG 2.12 8 1.27 1.00 23 1.00 1.04 18 1.00 1.00 16 1.08 1.00 18 1.00
PGPGIANTCOMPO PHG 13.23 48 1.83 1.44 65 1.04 1.25 45 1.04 1.02 53 1.00 1.08 46 1.00

hMetis 9.7 3 9.61 1.46 11 1.71 1.04 13 1.40 1.31 24 1.40 1.26 25 1.27
PaToH 1.00 0 1.00 1.04 0 1.27 1.00 7 1.04 1.02 2 1.15 1.08 5 1.06

Best Value 18 – 18 242 – 200 419 – 400 695 – 617 956 – 930

FEHG 1.00 60 1.00 1.00 55 1.00 1.00 80 1.00 1.00 115 1.00 1.00 15 1.00
GUPTA1 PHG 1.58 67 1.45 1.31 146 1.24 1.15 204 1.04 1.07 253 1.04 1.09 58 1.05

hMetis 1.73 2 1.82 1.61 10 1.69 1.58 58 1.64 1.60 137 1.57 1.51 643 1.48
PaToH 1.22 32 1.17 1.08 43 1.09 1.04 84 1.05 1.05 95 1.07 1.08 120 1.09

Best Value 486 – 462 1466 – 1384 3077 – 2893 5342 – 5134 8965 – 8519

FEHG 1.01 6 1.01 1.02 18 1.01 1.01 23 1.00 1.00 83 1.00 1.06 132 1.07
MARK3JAC120 PHG 1.00 4 1.01 1.02 15 1.02 1.02 27 1.00 1.00 53 1.00 1.72 106 1.78

hMetis 1.00 13 1.00 1.00 15 1.02 1.00 29 1.00 1.30 217 1.00 4.20 214 1.78
PaToH 1.00 0 1.02 1.00 11 1.00 1.00 17 1.00 1.26 248 1.20 1.00 267 1.00

Best Value 408 – 400 1229 – 1202 2856 – 2835 6317 – 6245 3142 – 2944

FEHG 0 0 0 1.00 9 1.00 1.12 40 1.12 1.09 116 1.03 1.06 119 1.07
NOTREDAME* PHG 4326 0 4326 158.56 124 288.69 13.82 67 16.78 2.09 75 3.06 1.72 78 1.78

hMetis 880 84 707 67.92 65 129.92 10.98 108 12.65 3.36 143 3.37 2.23 129 2.30
Patoh 24 1 22 1.90 8 3.31 1.00 27 1.00 1.00 52 1.00 1.00 62 1.00

Best Value 0 – 0 27 – 13 316 – 259 1577 – 1484 3142 – 2944

FEHG 1.20 180 1.00 1.03 275 1.01 1.05 270 1.03 1.00 327 1.00 1.00 342 1.00
PATENTS–MAIN PHG 12.49 1286 13.19 2.52 1736 2.30 1.79 1749 1.65 1.42 1575 1.38 1.23 1602 1.18

hMetis 2.38 36 2.77 1.16 70 1.24 1.26 115 1.43 1.26 161 1.31 1.21 231 1.22
PaToH 1.00 70 1.02 1.00 145 1.00 1.00 217 1.00 1.00 220 1.00 1.01 306 1.00

Best Value 643 – 528 3490 – 3198 6451 – 6096 11322 – 10640 16927 – 16460

FEHG 1.01 260 1.00 1.00 246 1.03 1.00 424 1.00 1.00 549 1.00 1.00 557 1.00
STD1–JAC3 PHG 1.15 227 1.08 1.16 377 1.10 1.18 748 1.13 1.28 768 1.35 1.33 801 1.29

hMetis 1.05 105 1.00 1.52 1649 1.03 1.54 2057 1.23 1.70 2330 1.53 1.71 2995 1.51
Patoh 1.00 125 1.00 1.08 506 1.00 1.16 700 1.14 1.00 827 1.26 1.30 945 1.29

Best Value 1490 – 1371 3735 – 3333 7616 – 6167 13254 – 11710 22242 – 21200
* When the minimum cut for the average or best cases are zero, the values shown are actual cut values rather than normalised values.

for CNR-2000 is reported in Fig. 3. According to the results, the first scenario
causes high fluctuations of vertex degree standard deviations while the second
scenario produces a smooth change. We achieve average cuts of 490 and 110 for
CNR–2000 for the first and second scenarios, respectively.

The agglomerative clustering of Zoltan and hMetis give 25.54 and 8.89 times
worse quality. PaToH also produces good average quality of 81 using absorption
clustering using pins and hyperedge clustering. The variations in vertex degree
or its standard deviation causes problems for clustering algorithms, making it
hard to make good clustering decisions because of the increased conflicts between
local and global decisions. Consequently, finding vertices with higher similarity
for matching can not be relied on for every hypergraph and it does not always
gives a better partitioning cut. In addition, gathering some global information
before making clustering decisions can give a major quality improvement and
decreases the unexpectedness of the partitioning cut as depicted in Table 2.



6 Conclusions and Future Work

We have proposed a multi–level hypergraph partitioning algorithm based on
feature extraction and attribute reduction using rough set clustering techniques.
The algorithm clusters hyperedges using different similarity metrics and a simi-
larity threshold and tries to removes less important hyperedges. An automated
calculation of this similarity threshold is proposed. The hypergraph is then
transformed into a reduced information system. Employing the idea of Rough
Set clustering, the algorithm calculates the partitioning of the objects in the
reduced information system based on indispensability relations and core sets
of vertices with globally high similarities. Then cores are searched locally for
vertex matchings. Evaluating the algorithm in comparison to the state-of-the-art
algorithms has shown improvements in quality of the partitioning for tested
hypergraphs. Future work is to implement parallel versions of the algorithm.
Using a special distribution of vertices and hyperedges among processors and the
ideas of rough set theory, we are focusing on proposing a scalable partitioner.
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