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1. Introduction and scope 

 

Peat is a low density, highly compressible soil that occurs at the surface or may be buried at 

depth. Peat is essentially an organic, non-mineral soil resulting from the decay of organic 

matter. In the UK peat deposits are widespread occurring in a wide variety of upland and 

lowland environments covering all parts of the country (Figure 1). Peat accumulates 

wherever suitable conditions occur such as in areas of high (excess) rainfall and where 

ground drainage is poor leading to high water tables. In these waterlogged areas peat 

develops where the rate of dry vegetative matter accumulation exceeds the rate of decay. 

Physiochemical and biochemical processes associated with wetland conditions ensure that the 

accumulating organic matter decays very slowly safeguarding plant structures that remain 

partially intact for long periods of time (Bell, 2000). In the UK, temperate peat accumulates 

slowly, typically 0.2 to 1 mm yr-1 with local rates varying depending on the topography and 

hydrology of the peat mire (Charman, 2002).  

 

In the engineering community, peats and organic soils are well known for their high 

compressibility and long term settlement and, in terms of engineering properties, peat is 

notoriously difficult to deal with which prompted Powrie (1997, p.16) to comment that: ‘ ... 

[organic soils] should not be relied on for anything, except to cause trouble’. To an engineer 

peat and organic soils are extremely soft, wet, unconsolidated surficial deposits which pose a 

range of geotechnical problems for sampling, settlement, stability, in situ testing, stabilisation 

and construction.  

 

The link between the compressibility of peat, its shear strength properties and the risk of 

bearing capacity failure has not been explored in detail; although the mechanism has been 

suggested for some peat failures (Lindsay and Bragg, 2005). Peat soils are highly organic, 

highly compressible and generally possess low undrained strength and their compression / 

settlement may take a considerable amount of time to stabilise (Huat et al., 2014). Estimating 

the geotechnical properties of peat is notoriously difficult because published values are 

relatively few and testing of peat using standard geotechnical tests is fraught with problems 

(Long, 2005; Dykes Long and Boylan, 2012). Nevertheless, published data (e.g. Dykes 2008) 

suggest that peat in its undisturbed state has little strength with undrained shear strength 

values typically varying 5-20 kPa (Long, 2005; Huat et al., 2014). These values vary with the 

vegetation composition of the peat (particularly fiber content) and the degree of humification; 

but also are affected by the method of testing (Boylan et al., 2008). Given the high 

compressibility and low strength of peat, local shear failure may occur when compression / 

compaction gives rise to vertical displacements which exceed the shear strength (bearing 

capacity) of the soil (Knappett and Craig, 2012). Shear failure may result where differential 

displacements of surface peat occur between the area experiencing compression (loading) and 

the adjacent unloaded peat. In peatlands such sites typically include construction 

embankments / waste heaps; roads and tracks; and foundations such as wind turbine bases. 
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Although such failures are local in origin due to the sensitive nature of peat stability, under 

the right site conditions, these may rapidly propagate in to runaway failures. 

 

Therefore in engineering practice there is a tendency to either avoid construction on these 

soils or if this is not possible, remove or replace the peat material. However in many 

countries, including the UK, peat extends over a substantial part of the terrestrial biosphere 

and peatlands are under increasing pressure for their land use (Figure 1). In lowland areas, 

particularly in the distal parts of populated deltas and estuaries, peat is common and, due to 

compaction, may cause land subsidence resulting in damage to infrastructure  and land 

inundation by the sea (van Asselen et al., 2009). 

 

In the UK, there is growing public awareness of the effect of ground conditions on safety and 

property values and increasing pressure from government to provide environmental 

information (Royse, 2011). Information about geological hazards and, in particular, the 

identification of areas which are susceptible to ground movement is needed (BGS, 2010; 

Figure 1a). The British Geological Survey as part of its UK hazard assessment programme 

has summarised key information on compressible ground. Their definition is: 

“Ground is compressible if an applied load, such as a house, causes the fluid in the pore 

space between its solid components to be squeezed out causing it to decrease rapidly in 

thickness (compress). Peat, alluvium and laminated clays are common types of deposits 

associated with various degrees of compressibility. The deformation of the ground is usually 

a one-way process that occurs during or soon after construction.” 

Peatlands are considered areas of compressible ground and given the widespread occurrence 

of peat deposits in the UK (Figure 1b) pose a large potential hazard as a compressible soil.  

 

Peat soils are well known for landslide related hazards and in the UK  and Ireland these have 

been widely reported and documented (Warburton et al., 2004; Dykes and Warburton, 2007; 

Boylan et al., 2008, Dykes  2009)). However far less is known about the hazards posed by 

peat compression and the potential problems associated with this. Therefore the aim of this 

chapter is briefly review the engineering background to peat compression; describe the 

occurrence of peat soils in the UK; provide examples of the compression hazards associated 

with these deposits; and consider some  of the ways these can be mitigated.  

 

 

2. Engineering background: peat consolidation and compression 

 

A number of characteristics distinguish peat as an engineering material. These include a high 

but variable natural water content (c. 500-1500%), very high organic content (loss on ignition 

25-100%), significant fibre content, low specific gravity (bulk density), high voids ratio (5-

15), high initial permeability, high compressibility and low strength (Edil, 2001). Although 

peat deposits are highly variable, the degree of humification (the extent of biochemical 

decomposition of plant remains) is a key factor determining the overall behaviour of peat. 

Table 1 outlines the von Post scheme of characterising peat deposits based on humification. 

The end members of this scale go from highly fibrous deposits with insignificant 

decomposition to amorphous peat with no discernible plant remains. This distinction has been 

used by MacFarlane and Radford (1965) and MacFarlane (1969) to broadly categorise the 

engineering behaviour of peat into fibrous and amorphous granular deposits. Further division 

of the scale in to three categories which characterise broad divisions of peat are based on 

Fibre content (Fc) and the von Post scale (Edil 2001; Table 1):  
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1. Fibric:  >67% Fc ,  von Post  H1-H3 

2. Hemic:  33 - 67% Fc ,  von Post  H4-H6 

3. Sapric:  <33% Fc, von Post H7-H10 

 

Numerous other classifications of organic soils exist and there is no overall standardised 

scheme (Myślińska, 2003). 

 

Table 1 near here 

 

In many peats water content by volume may typically vary between 75-98 % (Hobbs, 1986) 

making peat extremely susceptible to rapid compression. Water may be held in peat in three 

main phases: intercellular water in macropores; interparticle (intracellular) water in 

micropores; and adsorbed or bound water. The typical proportions of these will vary 

depending on the peat type. Commonly, active bog peat exhibits a two-layered structure 

(Ivanov, 1981; Ingram, 1982). The lower layer, which is in general continually saturated and 

is composed of older, more humified peat, is known as the catotelm; whilst the more aerated 

upper layer, which typically lies above the lowest water table limit, is called the acrotelm. 

 

Figure 2a shows the gas, water and solid components, and their volume relationships, for a 

peat core under Sphagnum vegetation (Rydin and Jeglum, 2006). In the upper layers 

(acrotelm) gas volume near the surface is around 85% but decreases to zero at just below the 

water table. Below the water table, extracellular and intracellular water make up 90% of the 

volume. The proportion of solid peat increases with depth as the partial decayed plant 

material becomes increasingly humified and compressed. Total pore spaces in peat vary 

between 78-93 % (Rydin and Jeglum, 2006) with porosity decreasing as humification, bulk 

density and the degree of compaction increase. The hydrological functioning of peat is  

strongly controlled by the structure of the peat matrix which in turn is  highly susceptible to 

compression and deformation (Price and Schlotzhauer, 1991). This novel property of peat 

means that volume changes to a peat mass may occur over timescales which are characteristic 

of hydrological events due to rapid readjustments of the peat pore structure (Kennedy and 

Price, 2005). 

 

The presence of gas trapped in peat has important implications for the surface hydrology of 

peat bogs affecting both microclimate and ecohydrology (Strack et al., 2006). Equally, the 

physical properties of peat itself, including permeability, rate of consolidation and pore 

pressure, are also affected (Macfarlane, 1969). Trapped gas arises due to the slow 

decomposition of organic matter below the water table which generates CH4 (methane - 

marsh gas) and lesser amounts of N and CO2. Typically the free gas content of peat varies 

between approximately 5-10 %. Originally biogenic peat gas was thought to originate in deep 

peat but more recent studies (e.g. Kellner et al., 2005) have demonstrated the presence of 

shallow pressurised gas pockets in shallow peat (< 1m). Biogenic gases (mainly CH4) are 

released from peat by diffusion, by vascular plant transport or ebullition. Recent work by 

Comas et al. (2014) has shown that biogenic peat gas can be stored in both deep and shallow 

peat depending on the physical properties of the peat matrix and in particular the presence in 

the peat stratigraphy of wood layers or abrupt transitions in humification which produce 

confining layers which temporarily entrap gas. Results comparing the gas content of two 

bogs, one with woody peat with distinct wood layers and one with a more homogenous peat, 

showed that the gas  contents were 10.8% and 5.7% respectively; the woody peat having the 

high biogenic gas content (Comas et al., 2014). Although the presence of gas in peat has been  

recognised for a long time it is only recently with the advent of more sophisticated subsurface 
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mapping technology (e.g. Ground Penetrating Radar) that the extent and distribution of gas is  

been precisely determined. 

 

2.1 Compression of peat 

 

When peat is subject to an increase of compressive stress (load) the resulting compression or 

settlement consists firstly of immediate elastic compression (immediate settlement), then 

primary compression (consolidation) and eventually secondary compression. Peat can 

compress and consolidate both slowly and rapidly. Slow compression and consolidation 

allow time for the peat body to respond to the applied load allowing pore water pressures to 

dissipate and the peat to improve strength and bearing capacity. Alternatively rapid loading, 

with or without actual compression, may result in a rapid increase in pore water pressure and  

potential shear  failure (Huat et al., 2014). The factors controlling the compressibility of peat 

include permeability, natural water content, void ratio, fibre content, peat structure and inter-

particle chemical bonding (Hobbs, 1986; Carlsten, 1988; Mesri and Ajlouni, 2007). 

Permeability is commonly regarded as the most important engineering property of peat 

because it controls the rate of consolidation of peat under load and ultimately the strength of 

the material (Hobbs, 1986).  

 

Over time peat will undergo settlement and Figure 2b shows a schematic time settlement 

relationship in a soil element undergoing vertical loading (Aysen, 2005). The consolidation 

(vertical compression) of a soil can be divided into three main stages (Day, 2000): 

1. Si – Initial compression occurs immediately a load is applied and is often estimated from 

the observed settlement of structures or predicted from the theory of elasticity. If this 

occurs without any change in the amount of water in the soil (elastic settlement) this may 

lead to undrained shear deformation or plastic flow due to loading. 

2. Sc – Primary consolidation – the compression of the soil under load which occurs as 

excess pore water pressures dissipate over time. 

3. Ss – is a third stage which represents settlement under a constant effective vertical stress 

and is termed secondary consolidation or secondary compression. This is the component 

of settlement which occurs after all the excess pore pressures have dissipated and is 

sometimes referred to as drained creep. The exact mechanisms of secondary consolidation 

are not well known but appear related to colloid-chemical interactions and small residual 

excess pore pressures (Aysen, 2005). In peat soils it is generally accepted that this  

secondary phase of compression is associated with the rearrangement of vegetative 

fragments and plant structures into a denser matrix (Huat et al., 2014). 

 

The compression index (Cc) describes variation of the voids ratio (e) as a function of the 

change in effective vertical stress (σ’v) plotted on a logarithmic scale (Fratta et al., 2007): 

 

          (1) 

 

Cc represents the deformation character of a particular soil during primary consolidation (Sc) 

and in peat soils the plotted curves are very steep indicating a high compression index 

typically in the range 2 to 15 (Huat et al., 2014). Clays are typically less than 1.0.  

 

Figure 3 shows a plot of percentage natural water content (Wo) and compression index (Cc) 

for soft clay/silt deposits and peats (from Mesri et al., 1997). Peat deposits are clearly 

distinguishable from clays and silts, displaying significantly higher natural water content and 
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corresponding compression index values. This relates to the high void ratio that is 

characteristic of peat. As peat accumulates, high void ratios develop because the plant 

remains that make up the peat consist of low density particles, fibres and platy structures that 

create a porous medium with a high water storage capacity (Table 2). Because Cc is directly 

related to the secondary compression index Cα (Huat et al., 2014) peat deposits also have 

correspondingly high values of Cα which occurs during secondary consolidation (Ss): 

 

          (2) 

 

Compressibility of peat can therefore be summarised using the Cα/Cc concept (Huat et al., 

2014) with peat values showing the highest values of natural soils (Table 2) which appears to 

depend on the deformability, including the compressibility, of the soil particles / matrix 

(Mesri et al., 1997). 

 

Table 2 near here 

 

Once loaded, peat settles and consolidates. However, the duration of primary consolidation is 

very short as a result of the high permeability of the peat deposits and typically this is 

completed within a few weeks or months (MacFarlane, 1969; Mesri et al., 1997). Hence peat 

should be loaded slowly so that the reduction in strength due to raised pore water pressures is 

kept to a  minimum; if it is loaded too quickly the peat will shear and fail. Once the initial 

phase of primary consolidation is complete consolidation proceeds at a much slower rate in a 

state of secondary compression which is linear with the log of time (Equation 2). The large 

magnitude and short duration of ‘primary consolidation’ and the continuous long-term 

‘secondary compression’ distinguish peat soils from their mineral counterparts (MacFarlane, 

1969; Fox and Edil, 1996; Fox et al., 1999). The high porosity and low bulk density is  

thought to account for the dramatic phase of initial compression and the continued 

deformation of the solid material in the peat results in the long term secondary compression.   

 

Figure 4shows the variation of the water content (%) of UK mire peats with bulk density 

(Hobbs, 1986) for both bog and fen peats. This serves to emphasise the variability in these 

properties that commonly occur in UK, which mirrors that from other parts of the world.  The 

presence of mineral soil components (fen peats) generally reduces water content and hence 

variability, therefore bog peats have higher and more variable water contents. Above about 

600% water content the curves in Figure 4 flatten and indicate that the specific gravity and 

water content do not particularly influence bulk density. The primary influence is the degree 

of saturation or gas content (Bell, 2000) which in turn depends on the structure and degree of 

humification of the peat. For example, amorphous granular peat which has undergone greater 

humification will have a high bulk density and low void ratio resulting in considerable 

secondary compression. Conversely more fibrous, less humified peats will be more 

susceptible to primary consolidation (Bell, 2000, Mesri and Ajlouni, 2007). 

 

Variation in the compression index (Cc) with water content (%) is show in Figure 5. This 

diagram compares UK fen and bog peat and other international examples (Hobbs, 1986). In 

Figure 5 UK fen peat can be distinguished from UK bog peat and Hobbs (1986) proposed two 

criteria based on water content (w): 

 

Cc = 0.0065w   [bog peat]        (3) 
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Cc = 0.008w   [fen peat]        (4) 

 

Although these functions discriminate the two main categories of peat it should be noted 

there is a transition between the two types, there is considerable scatter around these 

relationships (Figure 5) and the number and range of samples tested is relatively few. 

Nevertheless the range of these general relationships are consistent with the behaviour of 

these types of peat although in the transition zone (e.g.1000% water content) the bog peat has 

a marginally lower compression index value than fen peat, which is contrary to basic 

understanding and predictions based on other geotechnical properties (e.g. Liquid limit) 

(Hobbs, 1986).  

 

This highlights a significant issue in understanding the consolidation behaviour of peat which 

was identified in early research e.g. Barden (1968). That is, amorphous well humified peats 

have properties that are more closely related to clay soils rather than fibrous peats whose 

properties are similar to those just described. However, Berry and Poskitt (1972) and Berry 

and Vickers (1975) developed a general one dimensional consolidation theory for amorphous 

and fibrous peat which was validated with experimental testing. Understanding of the 

engineering properties of fibrous peat and peat engineering in general is now well developed 

as part of engineering science (Carlsten, 1988; Mesri and Ajlouni, 2007).  

More recently work by Mesri and Ajlouni (2007) has demonstrated an approximate linear 

relationship between Cc with initial water content (wi): 

 

Cc = wi / 100           (5) 

 

A similar relationship was also noted by and Long and Boylan (2014) who suggest that for  

Irish peat samples the Cc = wi / 125 was more appropriate which is equivalent to equation (4) 

above for fen peat. 

 

Therefore, due to these special properties peat differs greatly from other engineering soils 

inasmuch as initial settlement may occur very quickly leading to rapid and unpredictable 

failure; primary consolidation may also be large and rapid; and secondary compression, 

typically negligible in inorganic soils, may be significant over an extended timescale. 

 

 

3. UK Peatlands: extent and occurrence  

 

In 2011 the UK Joint Nature Conservation Committee provided an assessment of the state of 

UK Peatlands (JNCC, 2011). This important report summarised the extent, location and 

condition of peat soil and peatlands, vegetation, land cover, land use, management and a 

range of environmental influences. In their report, the  JNCC estimate peat covers around 4 

million km2 or 3% of the world land area and in Europe, recent estimates of the extent of 

peatlands are approximately 515,000 km2 (JNCC, 2011). In the UK the extent of peat is not 

easily defined because there is little consistent UK wide information on peatlands (maps or 

statistics) and reconciling the various descriptions and classifications to provide a unified 

picture of the state of UK peatlands represents a significant challenge (JNCC, 2011).  

 

Different minimum depth and % organic matter content thresholds are used for differentiation 

between mineral, peaty (organo-mineral) and peat soils in Scotland, England and Wales, 



Geological Hazards in the UK  Peat Compression and failure 

 

7 
 

and Northern Ireland. In the different soil classification schemes ‘deep peaty soils’ in 

England Wales and Northern Ireland and Scottish ‘peat soils’ are taken to be broadly 

equivalent although criteria differ: 

 England and Wales: minimum depth 0.4 m, minimum organic matter content 20% 

 Northern Ireland: minimum depth 0.5 m, minimum organic matter content 40% 

 Scotland: minimum depth 0.5 m minimum % organic matter content 60% 

 

Figure 1b shows the extent of peat and peaty soils in the UK. Although the peat deposits are 

characterised slightly differently depending on National mapping strategies (e.g. in England 

they categorised in to four main deposits: deep peaty soils, wasted former deep peats, shallow 

peaty soils and soils with pockets of deep peat) the map shows the general extent of these 

soils in the UK. Table 3 summarises the extent of such soils. 

 

Table 3 near here 

 

The striking characteristic of Table 3 is that about a third (79,390 km2) of the UK is underlain 

peat or organic rich soils. Clearly there is a strong country bias with the majority of these 

soils occurring in Scotland but nevertheless significant deposits occur throughout the UK. 

The distribution clearly reflects areas of high rainfall and poor drainage with a clear bias to 

the wetter west of the UK. Peat soils typically occur in the wet uplands (North Pennines) and 

poorly drained lowland (e.g. Somerset levels) (Figure 1b). 

 

Figure 6 is a schematic showing cross-section and plan views of key hydromorphological 

mire types found in peatlands (Charman 2002). Although a multitude of different peatland 

classification systems exist the scheme shown in Figure 6 is useful because it provides a 

general description of the local water table (hydrological) conditions and underlying 

topography (morphology) prevalent in key mire types typical of temperate environments such 

as those in the UK. It also provides a basic illustration of the difference between a bog which 

is fed by rain or snow falling directly on its’ surface and a fen which is influenced by water 

from outside its own limits (Charman, 2002). Typically, but not exclusively, bogs  are 

ombrotrophic and tend to be acid with low nutrient status; whilst fens are minerotrophic 

receiving greater mineral nutrients from groundwater and surface runoff and thus have a  

higher trophic status  and are more alkaline (Rydin and Jeglum, 2006). The importance of this 

in terms of understanding the engineering behaviour of peats is that the topographic and 

hydrological variety implicit in Figure 6 produces peats which are highly variable in their 

depth, stratigraphy and microscopic physical properties (Hobbs, 1986); properties that factor 

in the compression and settlement characteristics of the peat. As suggested by Gould et al. 

(2002) ‘The ability of the engineer to recognise potential problems due to the presence of 

compressible organic soils requires familiarity with the geology, topography, and 

development history of an area.’ 

 

 

4. Geological hazards associated with peat compressibility 

 

There are a range of geological hazards related to compressible soils (BGS, 2010; 2014). 

However with peat soils the range of hazards  might be broadly classified in terms of upland / 

lowland settings and whether the soil is loaded due to road construction, erecting structures 

(e.g. buildings in general but in the uplands in particular wind turbines); dumping of waste 

(e.g. quarrying/ mining); or implementing large engineering schemes (e.g. reservoir 

construction, gas terminal). Although the peat compression process is similar whether on 
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upland or lowland peat (subject to material constraints) the potential consequences can differ 

in the two environments due to the depth of the peat and local topography (Figure 6). Here 

we concentrate on examples from upland environments that illustrate the range of  potential 

hazards associated with compression and  bearing capacity failures in upland peats. However, 

firstly this section begins with some general background on the subsidence of organic soils. 

 

4.1 Subsidence of peat 

 

Compression of peat is part of the general subsidence of organic soil systems. These systems 

undergo subsidence from densification (loss of buoyancy, shrinkage and compaction); loss of 

mass (biological oxidation, burning, hydrolysis/leaching, erosion and mining) and direct 

loading (road construction, utilities, buildings and waste dumping) (Stephens et al., 1984; 

Cooke and Doornkamp, 1990; Wösten et al., 1997). The significance of the latter, which 

forms the focus of this chapter, needs to be viewed in the context of these other factors that 

have an impact on peat wastage. The best example of this in a UK context is the detailed 

record of peat wastage  recorded at the Holme Post at Holme Fen (Figure 1) in the East 

Anglian Fenlands from 1848 to 1978 (Hutchinson, 1980, Waltham, 2000) (Figure 1). Using 

archival evidence Hutchinson (1980) was able to produce a precise chronology of lowering of 

the peat surface in relation to the Holme Post, a cast-iron column footed into clay below the 

peat, which served as a datum for evaluating surface changes. It was shown that land 

drainage using artificial pumps resulted in four distinct phases of surface lowering. During 

initial lowering shrinkage appeared to be the dominant factor in controlling surface lowering 

(0.2 m per year) as the bog was rapidly drained. However as time went on rates of lowering 

in the partially drained bog slowed (0.01 m per year) and biochemical oxidation became the 

predominant process. Such processes continue to affect these low  lying peat soils  resulting 

in risks  to road subsidence (  

 

Evaluating the relative importance of the factors resulting in mire surface lowering and 

compression is a complex problem and one which is common in many peatland settings. 

Kool et al. (2006) considered the importance of oxidation and compaction of a collapsed peat 

dome in Central Kalimantan caused by logging and agricultural drainage. Although they 

found it difficult to quantify these effects precisely they concluded that compaction appeared 

to be more important factor governing loss of peatland structure than oxidation. It is therefore 

important to acknowledge in any study of compressible peat soils that this is only one factor 

that governs the dynamics and stability of these complex organic soil systems. 

 

4.2 Derrybrien Landslide, Wind farm construction, County Galway 2003. 

 

The catastrophic peat mass movement that occurred at the Derrybrien wind farm 

development on 16 October 2003 captured the attention of all stakeholders with interests in 

the uplands and put on hold a wind farm industry that was rapidly expanding across many 

upland areas (Lindsay and Bragg, 2005) (Figure 7).  The initial peat slide (estimated volume 

450,000 m3) failed on 16 October and travelled 2.5 km from the south-facing slope of 

Cashlaundrumlahan Mountain (365 m) originating in the vicinity of two partially constructed 

turbine bases (Figure 7a). The peat came to rest on 19 October at 195 m altitude but was re-

activated by heavy rain on 28 October. It then moved another 1.5 km to the Owendalulleegh 

River where it became highly fluidised and continued to flow downstream into Lough Cutra, 

which was the source of the domestic water supply. The initial impacts along the  

downstream run-out track (Figure 7b)included loss of land, obstruction of roads, pollution of 
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the domestic water supply and the death of an estimated 100, 000 fish (Lindsay and Bragg, 

2005; Bragg, 2007). 

 

Although engineering investigations were undertaken to evaluate the cause of the failure 

there was no clear conclusion reached amongst the consulting engineers. Investigations by 

peatland specialists however (Lindsay and Bragg, 2005) suggests that the failure may have 

resulted either from loading by excavation machinery or from the release of water into 

heavily-fissured peat or a combination of both. In addition loading due to the concrete turbine 

foundations also appears to have triggered local failures (Bragg, 2007) (Figure 7a). Following 

the incident at Derrybrien there was far greater awareness of the construction problems that 

are inherent when building on peat. Although these were well known elsewhere (MacFarlane, 

1969) a greater consciousness was triggered in the UK resulting in much better planning and 

implementation of improved guidelines e.g. Guidelines for the risk management of peat slips 

on the construction of low volume / low cost roads over peat (MacCulloch, 2006; Munro and 

MacCulloch, 2006) and greater research into the mechanism that can trigger peat failures 

(Long, 2005; Dykes and Warburton, 2007; Long and Boylan; 2012). 

 

4.3 Direct loading by quarry waste, Harthope Quarry, North Pennines UK  

 

Figure 8 shows an historic RAF air photograph of Harthope Quarry, North Pennines UK 

(Figure 1) taken in June 1953. The image shows the area of the main quarry (A) and spoil / 

waste heaps which have been dumped on the surface of the adjacent blanket peat (B). The 

loading of the peat has triggered a series of six main peat failures (C) emanating from the 

quarry area. Peat depths in this area are approximately 1.5 m and the morphology of these 

failures is still evident on the ground today. Based on the air photograph evidence the type of 

peat mass movement appears to be a peat flow as described by Dykes and Warburton (2007) 

and is consistent with a head loading type failure implying that the rapid compression of the  

peat was significant in initiating this pattern of landslides. This is borne out by the general 

observation that ‘peat slides’ are a more common form of peat failure in the North Pennines 

(Warburton et al., 2004) and peat flows are unusual. Three key features, identified from 

Figure 8 give clues to the mechanism of peat failure. Firstly, the morphology is clearly a flow 

rather than a slide suggesting failure did not extend to the mineral substrate. Secondly the 

failure paths are relatively short (c. < 100m) and terminate in lobes suggesting these represent 

a local failure at the slope head (site of loading) whose flow path was rapidly attenuated 

downslope indicating the hydrological conditions necessary to promoting failure across the  

whole slope were not present (Warburton et al., 2004). Thirdly, the failures are adjacent to 

one another emanating from the point loading by the individual waste heaps at the head. This  

contrasts with the majority of peat slides in the region which general occur singularly along 

line of preferred drainage, although these may be loosely clustered in response to regional 

hydrological conditions (Evans and Warburton, 2007).    

 

4.4 Failure during upland road construction, North Pennines, UK 

 

Figure 9 shows a peat slide triggered by moorland road construction over an area of blanket 

peat, close to Burnhope Seat in the North Pennines, UK (Figure 1).  The failure occurred in 

August 2006 during the construction phase of the road works. The floating road construction 

was excavated directly into the peat which in the vicinity of the failure was approximately 1.1 

to 1.3 m deep, consisting of an upper fibrous peat overlying a more humified basal peat unit. 

The road was approximately 3.8 m wide and back filled with a coarse aggregate mix to a 

depth of about 0.5 m over a wire mesh which was laid in the construction trench. 
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Observations at the time of failure suggest that the aggregate truck which was hauling the 

road fill had just passed over the point of failure when the slope gave way and the driver was 

fortunate not to get caught up in the  landslide.  The failed mass slid down slope and entered 

the local stream course at the base of the slope discharging peat debris downstream into a 

drinking water reservoir. It is clear from the inset shown in Figure 9(b) that a 25 m section of 

road was transported down the slope during the failure from the top left to lower right of the 

picture remaining largely intact whilst in transit.  

 

In this example the road was of a simple construction designed to be low cost for low 

volumes of traffic (mainly for shooting parties) but illustrates some of the potential 

challenges facing road building on peat. In this example, high water content, high 

compressibility and low strength all appear to be significant factors in the failure. Firstly, at 

the point of failure the road traversed a natural moorland ‘flush’ where the peat was slightly 

deeper and was very wet, even during the summer, due to preferred seepage of groundwater 

along the flush. Secondly, the construction method used conventional coarse aggregate to 

backfill the road excavation which was grounded in peat. This did not take advantage of 

using lightweight fill materials and it is estimated the haulage tricks were running 20 t loads 

over the newly constructed road with no period of consolidation (Munro, 2004). Thirdly, the 

peat in this locality consisted of approximately 0.7 m of fibrous peat over about 0.6 m of 

amorphous peat which overlaid a coarse stone clayey substrate. Approximately 0.3 m above 

the base of the amorphous peat there was pronounced water seepage zone which appeared to 

be the zone of the failure. Given these characteristics, it is clear the road was very unstable at 

this point along its route and failure was almost inevitable. 

 

These three case studies clearly illustrate the importance of compressible soils in affecting 

hazards in upland peat areas and highlight the important interactions between human 

activities and sensitive peat soils. However, it is also worth emphasising that more subtle 

indirect actions on upland peat soils might modify the water table which can lead to 

additional problems. For example, in addition to compression caused by direct loading by 

engineering structures or waste, in natural and drained peatlands, changes in the height of the 

water table can cause changes in the effective stress which are large enough to significantly 

alter peat volume and alter hydraulic parameters (Price et al., 2005). However determining 

how peat compressibility relates to the physical properties of peat and the consequent 

hydraulic behaviour remains a complex task (Hobbs, 1986; Bell, 2000; Price et al., 2005). 

This is significant for hazard assessment in two main ways: 

1) Soil testing of peat to determine the geotechnical and physical properties does not 

necessarily lead to an enhanced understanding of peat compression because these properties 

cannot be readily used to assess the hazard posed (see later discussion). 

2) The sensitive relationship between water table fluctuations and peat consolidation is an 

important consideration when planning engineering structures over peat as water tables are 

frequently disturbed particularly during the construction phase. This may have immediate and 

possible long-term effects and as such represents a secondary hazard related to the primary 

hazard of direct loading of the peat surface (Munro, 2004).      

 

 

5. Mitigation of the hazards posed by compressible peat soils 

 

Peat is highly compressible and has a low bearing capacity and generally considered one of 

the worst foundation materials by practicing engineers. Typically, the costs of construction 

over peat are approximately 40% more expensive than over competent ground (Nichol, 
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1998), and ongoing maintenance/remediation costs can exceed initial project costs (Gould et 

al., 2002). Furthermore peat is highly heterogeneous and displays non-linear behaviour which 

often conflicts with theories and engineering practices used on mineral soils (Carlsten, 1988; 

Long, 2005).  

 

In terms of mitigating the hazards posed by compressible peat soils three main approaches are 

possible: 

1. Greater understanding of the properties of compressible soils and dissemination of good  

practice to engineers e.g. review of settlement of peat soils Long and Boylan (2014). 

2. Non-structural mitigation such as land use zoning and development planning e.g. 

GeoSure (BGS, 2014). 

3. Structural mitigation and improved engineering practice e.g. design of low volume roads 

over peat the ROADEX project (Munro, 2005; MacCulloch, 2006). 

 

Long and Boylan (2013) provide one of the most recent reviews of predicting the settlement 

of peat soils. Their aim was to offer guidance to engineers who are required to make 

prediction of 1D compression of structures founded on peat and in particular identifies good 

practice in laboratory testing and the methods of calculation. Using a range of laboratory data 

(14 sites) and full scale loading case studies (five sites) they demonstrate that the Cα/Cc law 

of compressibility generally applies and an average value for the compressibility ratio of 

0.072 (Table 2). Long and Boylan concluded that although peat properties were highly 

variable, conventional staged construction with surcharge loading could be successfully 

applied to peat soils  

 

These results to some extent confirm earlier laboratory testing by other engineers seeking to 

understand the in situ behaviour of peat as an embankment foundation material (e.g. Lefebvre 

et al., 1984). Geotechnical testing of peat samples in the laboratory is only one of a series of 

approaches used to determine the site characterisation of peat for engineering purposes (Edil, 

2001; Long and Boylan, 2012). Edil (2001) concludes that a combination of methods using 

extensive sampling to define site variability; in situ tests (modified vane shear and 

penetration tests: Long and Boylan, 2012); laboratory testing for mechanical properties; and, 

where possible, the use of test fills (full scale loading test)  provide a reasonable approach to 

dealing with problematic organic deposits (Magnan, 1994). 

 

In the UK, engineers are well aware of the challenges facing construction projects over peat. 

An early example from Ward et al. (1955) describes a slip in a flood embankment in 1948 

constructed over a thin peat layer as part of the River Don channel diversion scheme. More 

recently Nichol and Farmer (1998) describe the settlement problems associated with the main 

A5 trunk road as it traverses a peat bog at Pant Dedwydd in central North Wales. The road 

which was originally constructed in 1819 has suffered continuous maintenance problems and 

safety issues resulting from long term settlement. The solution has been to add successive 

layers of ashphalt which provide a short-term solution but only increase the loading which 

only adds to the problems in the longer-term. Nichol and Farmer (1998) using geotechnical 

tests confirmed the sensitive nature of the peat to compression and water loss (shrinkage) but 

also demonstrated that areas of extreme subsidence were associated with willow scrub 

patches growing in roadside ditches which contribute to subsidence by extracting water from 

the peat beneath the highway. Experience in Ireland is more widespread given the more 

common occurrence of peat across both upland and lowland environments (Long and Boylan, 

2013). However, wherever peat occurs in small pockets or over entire regions engineers must 

be aware of its hazardous consequences (Nichol, 2001). 
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The British Geological Survey as part of its UK hazard assessment programme provides 

information about geological hazards and, in particular, the identification of areas which are 

susceptible to ground movement including compressible soils and peat (Figure 1a). Natural 

ground stability (GeoSure) national datasets provide geological information about potential 

for compressible ground to be a hazard. This assessment is based on 1:50 000 scale digital 

maps of superficial and bedrock deposits combined with information from the BGS 

Superficial Drift Thickness data and engineering reports. This is one of six different GIS 

layers, each representing a different potential natural ground stability hazard in Great Britain. 

Layers include: shrink swell (volume change in swelling clays); landslides (slope instability); 

soluble rocks (dissolution); collapsible deposits (when loaded); running sand (loosely packed 

sands fluidised by water); and compressible ground (soft materials that compress when 

loaded). For mapping compressible deposits, a digital geological map is used to select 

deposits with regard to their compressibility potential, e.g. peats and lake deposits are highly 

compressible, whereas bedrock is unlikely to be compressible (Royse, 2011). Each polygon 

from the digital map is then scored according to its susceptibility to compressibility. This was 

then combined with thickness of the superficial deposit and the two scores combined to give 

the overall hazard susceptibility rating (Royse, 2011).  

 

Results translate in to five categories of hazard rating A-E (Table 4) and each category 

contains advice for the public and specialist on the appropriate actions and risk control 

measures that are potentially required. Typically, buildings constructed on compressible soils 

may experience structural damage to foundations; cracks in the walls, floors or ceilings, 

tilting of walls and strains or breaks in connections to water, gas and electricity supplies 

(BGS, 2014).  

 

Table 4 near here 

 

Engineering methods for peatland areas have evolved considerably over the last few decades 

and engineers now have a range of structural techniques and engineering practices at their 

disposal. These include: preloading and surface reinforcement; excavation and replacement 

methods; drainage systems; injection and deep mixing stabilisation; cement/stone columns; 

and geomaterials and lightweight fill (Huat et al., 2014). The choice of method differs 

depending on the nature of the construction project and the budget available. Typically, 

preconsolidation or preloading is used in road projects to increase shear strength and reduce 

the long-term compression of peat soils (Carlsten, 1988). The principle involves loading the 

peat with a load that is in excess of the final load that will be carried by the peat. This is 

allowed to settle until the design settlement of the planned load is reached. The excess load or 

surcharge is then removed and construction is then completed (MacFarlane, 1969). Some of 

the advantages of this method are that reduced fill material is used, peat excavation is not 

necessary and disposal of excavated peat is not required.  

 

A good example where knowledge of loading methods is essential is in the construction of 

floating roads over peat.  As part of the ROADEX Project, which is a technical cooperation 

between roads organisations across northern Europe, the engineering of low cost roads over 

peat was investigated. This is summarised in three reports which deal with bearing capacity 

problems on low volume roads constructed on peat (Munro 2004); provide guidelines for the 

risk management of peat slips on the construction of low volume/low cost roads over peat 

(MacCulloch, 2006); and provide a discussion of the main issues to be considered when 

planning rehabilitation measures for floating roads over peat (Munro and MacCulloch, 2006). 
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Collectively the three reports provide useful practical guidance for the local planners, 

construction engineers and road maintenance engineers that can be used to address common 

problems of peatland roads, and avoid the failure of such projects (see earlier example). 

 

 

6. Conclusion 

 

It has been demonstrated that peat is a highly compressible geological material whose 

consolidation and rheological behaviour is dependent on the permeability and distribution of 

water within the peat. Depending on the structure of the peat and degree of humification, the 

water content and type of water (intercellular, interparticular or adsorbed) this will influence 

the time-dependent behaviour of this type of organic deposit. It is also apparent that there is 

no single, simple relationship between the magnitude and rate of compression of peat and 

loading. Generalisations can be  made about gross differences between broad peat types 

(fibrous versus amorphous peat) and some useful progress has been made in developing 

engineering guidelines but overall peat is intrinsically a complex and highly variable  

geotechnical material and as such adds uncertainty to our understanding of its geological 

hazards. Coupled to this source of uncertainty is the additional uncertainty that the extent of 

mapped peat deposits in the UK is subject to considerable error due to inconsistencies in the 

definition of peat soils between individual countries and differences in available data (JNCC, 

2011). Hence different mapping agencies, steered by different objectives, produce different 

estimates of the extent and occurrence of significant peat deposit.  

 

Mitigating compression and bearing capacity failure hazards in peat soils is therefore a 

difficult process, however, a combination of improved understanding of the properties of 

compressible peat; better mapping and land use zoning; and appropriate construction will 

mitigate risk. Therefore rather than rely on specific geographical knowledge of peat extent to 

guide local decisions, engineers and environmental scientists should be aware of the general 

occurrence of peat, be able to recognise it and have knowledge of its geotechnical / 

environmental behaviour so that appropriate strategies can be selected. Finally, failures 

resulting from peat compression are locally generated but due to the sensitive nature of 

blanket peat these can result in runaway failures that pose a far greater risk. 
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Figures and Tables 

 

 

 

 
 

Figure 1. (a) Compressible ground potential map (map modified from British Geological 

Survey, 2014) (b) Peat and peaty soils of the United Kingdom (map modified from JNCC 

2011). Numbers indicate key sites discussed in the text: (1) Holme Fen, (2) Derrybrien and 

(3) North Pennines (Burnhope and Harthope). 
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Figure 2.  (a) Water, gas and solid material volume  relationships in a  peat core under 

Sphagnum capillifolium  (b) Typical time settlement relationship for a saturated soil under a 

vertical load (modified from Rydin and Jeglum, 2006; Aysen, 2005) 

 

 

 

 

 

 
 

Figure 3.  Plot of percentage natural water content (Wo) and compression index (Cc) for soft 

clay/silt deposits and peats (from Mesri et al., 1997).  
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Figure 4. Variation of the water content (%) of UK mire peats with bulk density (After 

Hobbs, 1986). 

 

 

 

 
 

Figure 5.  Variation in the compression index (Cc) in peat with water content (%). 

Comparison between UK fen and bog peat and other international examples (After Hobbs, 

1986). 
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Figure 6. Illustration (cross-section and plan) of key hydromorphological mire types found in 

temperate peatlands like the UK (After Charman, 2002). 

 

 

Figure 7. The Derrybrien wind farm development site. (a) Disturbed ground in the vicinity of 

a wind turbine foundation showing the exposed peat and mineral substrate. (b) The main 

landslide run-out track downstream of the failure site (Photographs courtesy of Olivia Bragg). 
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Figure 8. June 1953 RAF air photograph of Harthope quarry, North Pennines UK.  The image 

shows the main quarry area (A) and spoil heaps which have been dumped on the surface of 

the adjacent blanket peat (B) resulting in a series of peat failures (C) due to the vertical 

loading.   
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Figure 9. (a) A peat slide triggered by moorland road construction over an area of blanket 

peat in the North Pennines, UK. (b) Inset shows 25 m section of road which was transported 

down slope during the failure from the top left to lower right of the picture. 
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Table 1. Humification of peat (modified from von Post, 1922, Hobbs, 1986) 

 

Degree of 

humification 

Decomposition Plant structure Content of 

amorphous  

material 

Material extruded when 

squeezing (passing 

between fingers) 

H1 None Easily identified None Clear, colourless water 

H2 Insignificant Easily identified None Yellowish water 

H3 Very slight Still identifiable Slight Brown, muddy water; 

no peat 

H4 Slight Not easily 

identified 

Some Dark brown, muddy 

water; no peat 

H5 Moderate Recognisable, 

but vague 

Considerable Muddy water and some 

peat 

H6 Moderately 

strong 

Indistinct (more 

distinct after 

squeezing) 

Considerable About one  third of peat 

squeezed out; water dark 

brown 

H7 Strong Faintly 

recognisable 

High About half 0f peat 

squeezed out; any water 

very dark brown 

H8 Very strong Very indistinct High About two thirds  of 

peat squeezed out; also 

some  pasty water 

H9 Nearly 

complete 

Almost 

unrecognisable 

 Nearly all of peat 

squeezed out as a  fairly 

uniform paste 

H10 Complete Not discernible  All peat passes between 

the  fingers; no free 

water visible 

 
 

 

Table 2. Peat properties and compressibility ratio data (modified from Mesri et al., 1997). 

 

Peat Type Water Content (% of 

dry weight ) 

Vertical coefficient of 

permeability (m s-1) 

Cα / Cc 

Fibrous  peat 850 4 x 10-6 0.06-0.10 

Amorphous  to 

fibrous  peat 

500-1500 10-7 – 10-6 0.035-0.078 

Canadian Muskeg 200-600 10-5 0.090-0.10 

Fibrous  peat 613-886 10-6 – 10-5 0.06-0.085 

Fibrous  peat 660-1590 5x10-7 – 5x10-5 0.06 

Fibrous  peat 610-850 6x10-8 – 1-7 0.052 

Long and Boylan 

(2014) – Irish peat 

c. 350-1000  0.072 
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Table 3. Summary of the extent of peat (organic-rich soils) (in ha) in the UK based on soil 

map data (modified form JNCC, 2011).  

 

 Shallow peaty or 

organo-mineral 

(ha) 

Deep peaty or 

organic soils (ha) 

Total peaty 

soils (ha) 

% of UK land 

area 

England 738 618 679 926 1 418 544 5.8 

Wales 359 200 70 830 430 030 1.7 

Northern Ireland 141 700 160 902 302 602 1.2 

Scotland  3 461 200 2 326 900 5 788 100 23.6 

TOTAL 4 700 718 3 238 558 7 939 276 32.3 
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Table 4. British Geological Survey compressible ground hazard rating key (BGS, 2010; 

2014).  

 

 Hazard rating Advice for public Advice for specialist 

A No indicators for 

compressible 

deposits identified. 

No actions required to 

avoid problems due to 

compressible deposits. 

No special ground investigation required 

or increased construction costs or 

increased financial risk due to potential 

problems with compressible deposits. 

B Very slight 

potential for 

compressible 

deposits to be 

present.  

No actions required to 

avoid problems due to 

compressible deposits. 

No special ground investigation required. 

Unlikely to be increased construction 

costs or increased financial risk due to 

potential problems with compressible 

deposits. 

C Slight possibility of 

compressibility 

problems.  

Take technical advice 

regarding settlement 

when planning 

extensions to existing 

property.  

New build — Consider possibility of 

settlement during construction due to 

compressible deposits. Unlikely to be 

increase in construction costs due to 

potential compressibility problems.  

Existing property — No significant 

increase in insurance risk due to 

compressibility problems.  

D  Significant potential 

for compressibility 

problems.  

Avoid large differential 

loadings of ground. Do 

not drain or dewater 

ground near the 

property without 

technical advice. 

New build — Assess the variability and 

bearing capacity of the ground. May need 

special foundations to avoid excessive 

settlement during and after construction. 

Consider effects of groundwater changes. 

Extra construction costs are likely.  

Existing property — Possible increase in 

insurance risk from compressibility if 

lowered groundwater levels drop due to 

drought or dewatering. 

E Very significant 

potential for 

compressibility 

problems. 

Avoid large differential 

loadings of ground. Do 

not drain or dewater 

ground near the 

property without 

technical advice. 

New build — Assess the variability and 

bearing capacity of the ground. Probably 

needs special foundations to avoid 

excessive settlement during and after 

construction. Consider effects of 

groundwater changes. Construction may 

not be possible at economic cost.  

Existing property — Probable increase 

in insurance risk from compressibility due 

to due to drought or dewatering unless 

appropriate foundations are present. 

 
 

 

 


