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Abstract. Outer joins are ubiquitous in many workloads but are sensitive to load-
balancing problems. Current approaches mitigate such problems caused by data
skew by using (partial) replication. However, contemporary replication-based
approaches (1) introduce overhead, since they usually result in redundant data
movement, (2) are sensitive to parameter tuning and value of data skew and (3)
typically require that one side is small. In this paper, we propose a novel parallel
algorithm, Redistribution and Efficient Query with Counters (REQC), aimed at
robustness in terms of size of join sides, variation in skew and parameter tuning.
Experimental results demonstrate that our algorithm is faster, more robust and
less demanding in terms of network bandwidth, compared to the state-of-the-art.

1 Introduction

Outer joins are popular in complex queries and frequently used in OLAP [1, 2] and
large-scale data analysis, to name but a few applications. Unlike inner joins, the oper-
ation does not discard tuples from either relation that do not match with tuples in the
other [3]. For example, for a left outer join ( ./) between two inputs R and S on their
attributes a and b, the following query returns not only the matched tuples in the form
of <x,a,y>, but also <x,a,null>, when values do not match.
select R.x R.a S.y
from R left outer join S on R.a = S.b (Query 1)

Currently, as for inner joins, implementations for distributed outer joins utilise one
of two distributed patterns [4]: redistribution-based and duplication-based outer joins.
To study the core performance characteristics of these approaches, we focus on analyz-
ing the parallelism within a single outer join operation between two relations R and S
on an n-node system (assuming both R and S are in the form of <key, value> pairs
and |R| < |S| in the following).

For redistribution-based approaches, parallel outer joins contain three phases: par-
tition, redistribution and local outer joins. In the first phase, the relations Ri and Si,
initially arbitrarily partitioned across each computation node i, are partitioned into dis-
tinct sets Rik and Sik (k ∈ [1, n]) respectively, according to the hash values of their
join key attributes. Each of these sets is distributed to a corresponding remote node
k in the second phase. After that, the sequential outer joins of local fragments com-
mence. This scheme can achieve near linear speed-up under ideal balancing conditions



for distributed systems [5]. However, when the processed data has significant attribute
value skew, the join performance will dramatically decrease due to the emergence of
computational hot spots [6].

Duplication-based distributed outer joins differ significantly from inner joins. There
are two distinct stages involved: (1) An inner join between R and S, composed by a
duplication and local inner join phase in which the former phase duplicates (broadcasts)
Ri at each node to all other nodes, and the latter is the same as that for sequential
inner joins, formulating the intermediate results Ti at each node i; (2) An outer join
between R and T , which is similar to the redistribution-based method described above.
The duplication in this method can efficiently reduce hot spots resulting from attribute
value skew. Nevertheless, this operation is costly and only suitable for small-large table
outer joins. Additionally, such a scheme will still encounter performance bottlenecks
when there exists join product skew [7], because in such scenarios the redistributed T
could be very large (e.g. Cartesian product) or suffer from skew itself.

As data skew occurs naturally in various applications [8], and join performance is
challenged by large scale data in the era of Big Data, it is important for practical data
systems to perform efficiently in such contexts. In this work, we propose a new outer
join algorithm, redistribution and efficient query with counters (REQC), for robustly
and efficiently processing large-large table outer joins on distributed architectures. We
summarize the contributions of this paper as following:

– We apply the join geography of semijoins to parallel outer joins on distributed
systems. We find that this semijoin-like scheme is better suited for skew handling
in massive distributed joins.

– We further develop the semijoin-based scheme into the REQC algorithm, in order
to increase performance and robustness.

– Experimental results on 192 cores and 1 billion tuples indicate that our method is
both efficient and robust. Moreover, we compare our approaches with five different
baselines taken from the literature which we implement on the same platform. Our
findings indicate that our method is faster, more robust and requires less network
communication, across a range of skew and parameter values.

The rest of this paper is organized as follows: In Section 2, we report on related
work. We present our REQC algorithm in Section 3 and its detailed implementation
in Section 4. We evaluate our approach in Section 5 while we conclude the paper and
suggest directions for future work in Section 6.

2 Related Work

2.1 Related Work on Joins

Data skew is a significant problem for multiple communities, such as databases [9], data
management [10], data engineering [11] and web data [8]. Joins with extreme skew can
be found in the semantic web field (e.g. in [8], the most frequent item in a real-world
dataset appeared in 55% of entries).

Research in parallel joins on shared-memory systems [9] and GPUs [12] has already
achieved significant performance speedups through improvements in architecture at the
hardware-level of modern processors. Nevertheless, as applications grow in scale, their



associated scalability is limited by either the number of threads available or the system
memory and I/O.

Various techniques have been proposed for distributed inner joins to handle skew [7,
13–15]. Often, the assumption is that inner join techniques can be simply applied to
outer joins, as identified in [4]. However, applying such techniques for outer joins di-
rectly may lead to poor performance [16].

Current research on outer joins focuses on join reordering, elimination and view
matching [3, 17, 18]. State-of-the-art methods designed specific for outer join imple-
mentation achieve significant performance improvements [4], however, they are based
on the duplication-based method and cannot be applied to large-large table outer joins.

Distributed semijoins have been extensively studied, primarily in two domains: (1)
joins in P2P systems, for reducing network communication based on the high selectiv-
ity of a join [13], such as descrbied in [19]; (2) pre-joins in distributed systems which
seek to avoid sending tuples which will not participate in a join, such as the method de-
scribed in [7], for a common implementation, and [20], for application to the MapRe-
duce framework. In contrast, we apply a semijoin pattern with full parallelism to outer
joins on a distributed architecture directly, and propose our efficient and robust REQC
algorithm on this basis.

2.2 Details on the State-of-the-art

PRPD. Xu et al. [15] propose a hybrid distributed geography called PRPD (partial
redistribution & partial duplication) for inner joins, by combining the two conventional
patterns described. For a single skew relation S (assumeR is uniformly distributed), the
high skew tuples Sloc of S are retained locally and other tuples Sredis are redistributed
based on hashing. ForR, the tuplesRdup with keys contained in Sloc are broadcast to all
the nodes, and the rest Rredis are redistributed as normal. The final joins are composed
by Rredis on Sredis and Rdup on Sloc at each node.

As the high skew tuples of S are not redistributed at all and, instead, just a small
number of tuples from R are broadcast, the attribute value skew can be highly reduced.
This hybrid scheme has shown to be very efficient in processing inner joins, and could
be applied to outer joins directly. Nevertheless, we have to redistribute the results of
Rdup on Sloc in an outer join, which could be very costly: since Sloc is highly skewed,
the cardinality of the intermediate results can be very large. This condition will be
demonstrated in our evaluation in Section 5.
DER. Xu et al. [4] also propose another algorithm called DER (duplication and efficient
redistribution), aimed at optimizing outer joins. This method comprises two stages: (1)
Ri at each node i is duplicated to all the nodes to start inner joins. At this stage, not
only are the matched results T kept but also the ids of all non-matched rows in the table
R; (2) Only the recorded ids are redistributed according to their hash values and, then,
the final join results are assembled on that basis.

In fact, this optimization provides for an efficient way to extract non-matched results
of an outer join. Notice that the join in the first stage of the conventional duplication-
based scheme is an inner join instead of an outer join. The reason for this is that the
duplication could bring either redundant or erroneous non-matched outputs. To alleviate
this problem, redistributing the intermediate results is adopted. In comparison, DER
uses a clever way around this: non-matched tuples of R are redistributed and these
tuples are indicated by a row-id from the table R. As such, the redistributed part is



small and network communication and computational workload are greatly reduced.
The experimental results show that the DER algorithm can achieve significant speedups
over competing methods.

As DER must broadcast R, it is designed to work best for small-large table outer
joins. When associated with the PRPD algorithm, the broadcasted partRdup is typically
small. As identified by [16], we can integrate DER into PRPD to fix the cardinality
problem as described for Rdup on Sloc previously. The experiments in [16] have shown
that this hybrid method (referred to PRPD+DER) is efficient on handling skew in large-
large outer joins. Regardless, we will demonstrate that our proposed REQC algorithm
can outperform this optimized technique.
QC. Recently, Cheng et al. [21] introduced a novel parallel join approach called query-
based distributed joins, for handling data skew of inner joins on distributed architec-
tures. An approach on that basis named query with counters (QC) [16] specified for
outer-joins proved to be faster than the state-of-the-art in the presence of highly-skewed
data. Regardless, the method performs bad when processing low-skew data. In compari-
son, the proposed REQC approach further refines that basic algorithm and we will show
that this new method is more robust and also capable of higher performance than [16]
in our evaluation in Section 5.

3 Our Approach

3.1 Semijoin for Outer Joins

The approach of semijoin-based distributed joins is shown in Figure 1(a), where the
two communication patterns (redistribution and retrieve) makes it different from the
conventional join approaches and the commonly-used semijoins. Under such a scheme,
the implementation of the outer join in Query 1 is organized as the following four steps:

1. Tuples in Ri at each node i are redistributed to remote nodes based on the hash
values of their attributes a. This process is shown as 1© in the figure.

2. The unique keys1 πb(Si) of Si at each node i are sent to the corresponding node as
well, according to their hash values. This process is shown as 2© in the figure.

3. All received tuples
⋃n

i=1Rik at each node k probe all received keys
⋃n

i=1 πb(Sik),
organizing the matched results Tk and output the non-matched results. After that,
each key fragment πb(Sik) probe Tk and send back the matched tuples to node i.
The process of sending these back is shown as 3© in the figure.

4. The returned tuples join with tuples of Si at each node to produce matched results.

The final outer join results are composed from the output of the non-matched part
in Step 3 and the matched part in Step 4. As we only distribute the unique keys of
S, this scheme can be very efficient for handling data skew in distributed outer joins.
More exactly, (1) even when S is high skewed, each node will receive only one key (or
maximum of n keys if these tuples appear on the n nodes); and (2) each transferred key
is treated the same in the following look-up operations. We will exam the performance
of this approach in our later evaluations.

1 Here, we use the operator πb for presenting the duplicate-removing projection on the join
attribute b of the relation S.
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Fig. 1. The semijoin-based outer join approach and our proposed REQC method. The dashed
square refers to the remote computation nodes and objects.

3.2 REQC Algorithm

To distinguish the matched and the non-matched tuples and then send the former back
to the requester, we implement {[

⋃n
i=1Rik n

⋃n
i=1 πb(Sik)]n πb(Sik)} at each node

k as described in the third step of the above method. This process is complex and could
be time costly, since there is significant computation involved. In the meantime, when
S has low skew, the two-sided communication of large numbers of transferred keys
and returned tuples can become costly, decreasing the join performance. To remedy
these problems, we propose our REQC algorithm, shown in Figure 1(b), based on three
optimizations:

1. Tuples in each Si are first divided into two parts before the joins: (a) the non- or
low-skewed part S′i, is hash-redistributed to all the nodes, and (b) the high-skewed
part hi, using the semijoin-based scheme.

2. Each received tuple fragment S′ik and key fragment πb(hik) probes the received
tuples

⋃n
i=1Rik at each node k. To identify the non-matched results, a counter is

added to each tuple and it increases by one when this tuple is probed. Then, the
non-matched tuples will be the ones with the counter value still at zero after all
probings.

3. Only the retrieved values are sent back during the probing process of the key frag-
ments, and the value is set to null when a key’s probes have failed. The transferred
keys are kept locally and the returned values follow the same sequence as these
keys. Then, the <key, value> pair can be easily rebuilt based on their sequence
(e.g. the index in an array), to compute the final join with hi at each node i.

With these optimizations, we can efficiently improve the performance of the semijoin-
based approach as follows: (1) even when S shows low skew, all tuples will be redis-
tributed, avoiding the two-sided communications issue and consequently improving the
robustness; (2) a simple probe operation is applied to the retrieval of the matched results
for πb(hik), which is much simpler than the previously mentioned join operations; (3)
only values rather than entire tuples are returned, therefore the inter-machine commu-
nication is reduced. Though we also return the non-matched values as nulls, bringing
additional communication, the number of πb(hi) is always very small, making this ef-
fect negligible.

We refer to our algorithm as redistribution and efficient query with counters because
(1) the process of transferring keys to remote nodes and retrieving the corresponding



values looks like a query; (2) counters are used to distinguish non-matched results;
and (3) only tuples corresponding to keys with high skew are processed by querying.
We refer to the algorithm with only the latter two optimizations as QC (query with
counters) [16]. As shown in our later evaluation, QC is always faster than the semijoin-
based approach, implying that the introduction of counters is itself beneficial for such
operations.

Moreover, compared with the state-of-art techniques PRPD+DER [4, 15] described
in Section 2, our approach does not involve any redundancy in join (or lookup) oper-
ations, because our method is totally duplication-free and all nodes only receive the
tuples that they will eventually use. This should make the approach more efficient, and
we will conduct a detailed performance comparison in Section 5. Additionally, the join
framework of our approach is more straightforward and can be applied to other kinds
of joins directly (e.g. the returned null can be applied directly for right outer-joins and
the counters for anti-joins etc).

4 Implementation

In this section, we present a detailed implementation of the proposed REQC approach.
We compare our algorithm with the state-of-art techniques PRPD+DER [4, 15]. Since
[4, 15] do not provide any code-level information, and in the interests of making a
fair comparison, we have implemented all these methods with the parallel language
X10 [22].

4.1 Pre-partitioning of Skew Tuples

We have to measure the local skew so as to partition the relation S at each node for our
algorithm as well as the PRPD+DER method. Efficient skew measurement is beyond
the scope of this work. As we are more interested in a high performance in-memory
implementation we add two pre-processing steps before each test: (1) for each test pa-
rameterized by t, each node pre-reads the keys appearing more than t times into an
ArrayList and considers these the required skew keys; and (2) Tuples in Si at each
node i are divided into S′i and hi based on an assessment of the skewed keys, and each
of them is kept in an ArrayList as well. These pre-processing steps make our later
performance comparison more fair and meaningful because: (1) the total join perfor-
mance is very sensitive to the chosen skew keys and operations like sampling cannot
guarantee the same set of keys are selected, (2) the extra time cost for skew extraction
is removed, so that the focus is on the analysis of runtime performance only, and (3)
in a real system, there are opportunities to perform these operations as part of other
processing activities.

4.2 Parallel Join Processing

We describe our implementation at each node as the following four steps. As the local
join process is well studied and techniques such as the sort-merge and hash joins are
commonly used, we have selected the hash-join for our implementations.
R Distribution: As shown in Figure 2 lines 1-8, tuples of R at each computation node
are partitioned into n chunks, and each tuple is assigned according to the hash value of



its key by a hash function h(key) = key mod n. After that, all collected tuples in the
chunk R_c(i) is transferred to the remote node i. Note that the term here means the id
of current node.
Push Query Keys: Similar to the previous step, tuples of S′ are also hash-redistributed
to remote nodes. For the high skewed part h, tuples are kept in hashmap and only the
unique keys are pushed to remote nodes. Lines 9-21 of Figure 2 present the details of
this process. There, each HashMap in h_c supports the data structure of 1 → n map-
ping, so as to efficiently hold skewed tuples. In addition both the h_c and local_key_c
are kept in memory for computing the final joins, as mentioned in Section 3.2. We syn-
chronize the operation here to guarantee the completion of the data transfer at each node
before the next phase commences.
Return Queried Values: This phase starts after the grouped query keys have been
transferred to the appropriate remote nodes. The implementation at each node is similar
to a sequential hash join. For each received tuple of R, as shown in lines 22-27 of Fig-
ure 2, a <key,(value, 0)> pair is placed in the local hash table T, where the 0 means the
initialized counter = 0 of this tuple. After that, as shown in lines 28-40, the received
keys start to access T sequentially to obtain their values. In this process, if the mapping
of a key already exists, its value is retrieved, otherwise, the value will be considered as
null. In both cases, the value of the query key is placed into an array r_value_c so that
it can be sent back to the requester(s). All these processes take place in parallel at each
node, and we also synchronize the operations here.
Result Lookup: The join results of the high skewed tuples at each node can be looked-
up after all the values of the query keys have been pushed back. Since the query keys
and their respective values are held in order inside arrays, we can easily look up the
keys in the corresponding hash tables to organize the join results. In the meantime, the
received tuples of S′ probe the hash table T to retrieve the matched results for the low
skewed tuples. After that step, we can easily scan the counter of each tuple in T to
organize the non-matched results. This process is described in lines 41-61 of Figure 2.
The entire join process terminates when all individual nodes terminate.

5 Evaluation

Platform. Our evaluation platform is the High-Performance Systems Research Cluster
located at IBM Research Ireland. Each computation unit of this cluster is an iDataPlex
node with two 6-core Intel Xeon X5679 processors running at 2.93 GHz, resulting in a
total of 12 cores per physical node. Each node has 128GB of RAM and a single 1TB
SATA hard-drive and nodes are connected by Gigabit Ethernet. The operating system
is Linux kernel version 2.6.32-220 and the software stack consists of X10 version 2.3
compiling to C++ and gcc version 4.4.6.
Datasets. Our evaluation is implemented on two relations R and S, which are both
two-column tables. We fix the cardinality of R to 64 million tuples and S to 1 billion
tuples and set both their key and payload to 8-byte integers. We assume that R and S
meet the foreign key relationship, namely every tuple in S is guaranteed to find exactly
one join partner in R [11], and we only add skew to S, following the Zipf distribution.
The skew tuples are evenly distributed on each computing node and the skew factor is
set to 0 for uniform, 1 for the low skew (top ten popular keys appear 14% of the time)



R Distribution:
1: Initialize R_c:array[array[tuple]](n)
2: for tuple ∈ list_of_R do
3: des← hash(tuple.key)
4: R_c(des).add(tuple)
5: end for
6: for i← 0..(n− 1) do
7: Push R_c(i) to r_R_c(i)(here) at node i

8: end for

Push Query Keys:
9: Initialize S’_c:array[array[tuple]](n)

h_c:array[hashmap[tuple]](n)
10: for tuple ∈ list_of_S′ do
11: des← hash(tuple.key)
12: S’_c(des).add(tuple)
13: end for
14: for tuple ∈ list_of_h do
15: des← hash(tuple.key);
16: h_c(des).put(tuple)
17: end for
18: for i← 0..(n− 1) do
19: Extract unique keys of h_c(i) to local_key(i)
20: Push local_key(i) to r_key_c(i)(here),

S’_c(i) to r_S’_c(i)(here) at node i
21: end for

Return Queried Values:
22: Initialize T :hashmap, r_value_c:array[value]
23: for i← 0..(n− 1) do
24: for tuple ∈ r_R_c(here)(i) do
25: Put <tuple.key, (tuple.value, 0)> into T
26: end for
27: end for
28: for i← 0..(n− 1) do // probing received keys

29: for key ∈ r_key_c(here)(i) do
30: if key ∈ T then
31: r_value_c.add(T .get(key).value)
32: T .get(key).counter++
33: else
34: r_value_c(i).add(null)
35: end if
36: end for
37: end for
38: for i← 0..(n− 1) do
39: Push r_value_c(i) to value_c(i)(here) at node i

40: end for

Result Lookup:
41: for i← 0..(n− 1) do // joins of high skew part h
42: for value ∈ value_c(here.id)(i) do
43: if value 6= null then
44: Lookup corresponding key over h_c(i)
45: Output matched results
46: end if
47: end for
48: end for
49: for i← 0..(n− 1) do // joins of low skew part S′

50: for key ∈ r_S’_c(here)(i) do
51: if key ∈ T then
52: Output the matched result
53: T .get(key).counter++
54: end if
55: end for
56: end for
57: for key ∈ T do
58: if T .get(key).counter == 0 then
59: Output non-matched results
60: end if
61: end for

Fig. 2. Implementation of proposed REQC algorithm at each node.

and 1.25 for high skew dataset (top ten popular keys appear 52% of the time). Joins
with such characteristics and workloads are common in data warehouses and column-
oriented architectures as well as being prevalent in recent studies [9–11].
Setup. In all experiments, we only count the number of matches, we do not actually out-
put join results. Moreover, for PRPD, PRPD+DER and our REQC algorithm, in which
skewed tuples need to be pre-extracted, we implemented a test series with different pa-
rameters t (recall that tuples where the key appears more than t times is considered as
skewed) for each dataset, as shown in Figure 4. When presenting results, we always
choose the t with the best runtime achieved.

5.1 Runtime

Performance. We examined the runtime performance of the six algorithms as de-
scribed previously: the conventional redistribution-based algorithm (referred to Hash),
PRPD [15], PRPD+DER [4, 15], semijoin-based outer joins (referred to as Semijoin),
QC [16] and the proposed REQC approaches. We implement our tests using 16 nodes
(192 hardware cores) of the cluster and present the results in Figure 3. It can be seen
that: (1) when S is uniform, the first three methods and REQC perform nearly the
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Fig. 3. Runtime comparison of the six algorithms under varying skew (192 cores).

same, much faster than Semijoin and QC; (2) with low skew, PRPD+DER and REQC
outperforms the other four algorithms; and (3) with high skew, the latter four algorithms
perform much better than Hash and PRPD.

We can also observe that the time cost of Hash and PRPD increases sharply with the
increase in data skew. In contrast, for the other four algorithms, it decreases. Moreover,
PRPD always performs the worst, meaning that the approach for inner joins cannot
be applied to outer joins directly. In the meantime, QC is always faster than Semijoin,
demonstrating that the latter two optimizations described in Section 3.2 do improve
join performance by themselves. Furthermore, runtime performance of PRPD+DER
and REQC changes much more gradually than the other four algorithms with increas-
ing skew, demonstrating their robustness under varying skew. Finally, it is also worth
highlighting that our proposed REQC approach is always faster than the state-of-the-art
PRPD+DER algorithm, about 24%-36% depending on skew value.
REQC vs PRPD+DER. We conduct a more detailed comparison of our REQC and
PRPD+DER, based on a series of tests with different parameters t, corresponding to
what the system considers a popular key. The results are presented in Figure 4(a)
and 4(b). It can be seen that REQC always outperforms PRPD+DER for any given
t. In addition, the runtime difference for different t values are only minor for our REQC
algorithm while those in PRPD+DER change more rapidly, demonstrating that our ap-
proach is more robust with respect to input parameters. In fact, tuning t would require
additional, more complex or costly operations, meaning that the performance difference
between the two approaches would be even greater for applications which include these
steps.

5.2 Network Communication and Load Balancing

Network Communication. We count a single key or payload as 1/2 of a tuple, and
record the average number of received tuples at each core for each algorithm as shown
in Table 1. We can see that Semijoin results in the highest number of tuples while the
other five algorithms receive the same number of tuples when the dataset is uniform.
This is expected, since (1) tuples in the first three algorithms and REQC are just simply
redistributed; (2) the number of transferred keys and the payload of QC is equal to the
number of tuples; and (3) Semijoin not only moves all the keys, but also all the retrieved
tuples. With an increase in skew, the average received tuples in the Hash and PRPD
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Table 1. Number of tuples (max/avg) received at each core using 192 cores (millions)

Max. / Avg. Hash PRPD PRPD+DER Semijoin QC REQC

skew=0 5.9 / 5.9 5.9 / 5.9 5.9 / 5.9 8.7 / 8.7 5.9 / 5.9 5.9 / 5.9
skew=1 62.4 / 5.9 62.4 / 5.9 3.5 / 3.5 3.0 / 3.0 2.1 / 2.1 2.3 / 2.3

skew=1.25 239.8 / 5.9 239.8 / 6.0 1.3 / 1.3 0.7 / 0.7 0.6 / 0.6 0.8 / 0.8

methods generally does not change. The reason is that all tuples are still redistributed
in Hash and PRPD needs to redistribute the large number of intermediate results. In
contrast, the other four show a significant decrease, as they do not move high skew
tuples. In addition, our REQC algorithm transfers less data than PRPD+DER.

We also track the detailed number of received tuples for different threshold t val-
ues for REQC and PRPD+DER and present the results in Figure 4(c). It can be seen
that in PRPD+DER that number first decreases and then increases, showing a trade-off
between the number of duplicated and redistributed tuples. For REQC, the number of
received tuples is always increasing, however, it is less than PRPD for any given t. In
our tests, the best performance achieved in REQC is always better than PRPD+DER.
For example, t = 4 for REQC and t = 64 for PRPD+DER in the condition skew = 1.
That is why REQC transfers less data than PRPD+DER in Table 1, notably 34%-38%
less, under skew.

Load Balancing. We analyze the load balancing properties of each algorithm based
on the maximum number of received tuples at each core. We can see that the first two
algorithms encounter serious load-balancing problems when the data exhibits skew. In
contrast, the latter four algorithms achieve perfect load balancing under varying skew.

5.3 Scalability

We finally test the scalability of our REQC algorithm. We implement our test on a
distributed architecture with 2 nodes (24 cores), 8 nodes, 12 nodes and 16 nodes (192
cores) on all three datasets. The detailed time-cost is shown in Figure 5, where each
step there is consistent with the implementation explained in Section 4.2.
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Fig. 5. The detailed time cost of the REQC algorithm with increasing the number of cores.

We can see that our algorithm generally scales well with the number of cores under
varying skew. More specifically when data is uniformly distributed, the second and
fourth step scale well and dominate the runtime. In addition, the time cost of the third
step is nearly 0, the reason is that there are no query keys for remote nodes. With low
skew, all four steps decrease with increase in the number of cores, and the second step
becomes the most expensive part of the execution. Moreover, for high skew, the second
step is always the dominating factor in performance. All of this demonstrates that the
query processing of the third step in our algorithm is very lightweight, and the process
in the second step (namely tuple hash-partitioning, local hash table building for high
skew tuples and data transfers) has a high impact on the join performance.

6 Conclusions

In this paper, we have introduced a new algorithm, redistribution and efficient query
with counters, for robustly and efficiently computing large-large table outer joins on
distributed architectures. We have presented a detailed implementation of our approach
and the experimental results demonstrate that our implementation is robust, efficient and
scalable. Furthermore, compared to state-of-the-art techniques [4, 15], our algorithm
always performs better with less network communication under skew conditions.

Data duplication is widely used in data engineering to reduce data movement and
load imbalance. As our algorithm is duplication-free, we anticipate that our proposed
method will not only be a supplement to existing schemes on parallel joins to minimize
runtime but also for other domains. We intend to apply our approach in the semantic
web domain, where workloads present very high skew [8].
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