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9 What Can Bayesian Statistics Do For
Archaeological Predictive Modelling?

Andrew Millard’

9.1 Introduction

The BBO Baseline Report sets out the rationale for developing archaeological
of the proposals and 1o developing some more detailed proposals about the poten-
tial for Bavesi istical modelli iehi Baainct 0 L 2t 9
In the world of predictive modelling for archaeological heritage management it
seems to me that we must deal with four sine guae non:

* The First Law of Geography®: ‘Everything is related to everything else, but
near things are more related than distant things';

* What might be called the First Law of Staustics: always inspect your data
before analysing them;

= All archaeological samples are biased;

* Our understanding of the variables and processes which influence where sites
are located is very poor.

Only the last of these might change, and whatever modelling approach we adopt
we must be cognisant of all of them.

9.2 Bayesian statistics

Bayesian statistics differs from Classical statstics in allowing the explicit incor-
poration of subjective prior beliefs into our statistical analysis. The philosophical
basis for this cannot be explored here*; the mathemarical basis is Bayes’
Theorem, which may be stated in various ways:

prior + newinformation - revised _l
knowledge knowledge '

prior

belief belief

p(parameters) x p(dawm | parameters) = p(parameters | data)
p(data)

|
x likelihood x posterior "
l

where p(*) represents the probability of something taking a particular value
and p(+|*) represents the probability of something given the truth or value of
something else.

If appropriate mathematical forms are chosen for the prior probability and the
likelihood, then the posterior probability takes the same form as the pnor, and
it is possible to simply and directly update our knowledge. This happy situation
is known as conjugacy. Although Bayes’ theorem was published in the 18% cen-
tury Bayesian approaches were a minor part of statistical analysis until recently,
as most real-world problems cannot be expressed adequately in a conjugate
form and calculation of posteriors in non-conjugate problems requires complex,
Itidi ional i <

169



Predictive Modelling for Archaeological Heritage Management: A research agenda

In the last couple of decades Bayesian statistical analysis has undergone an
enormous amount of development as new computational techniques have
opened up areas which were previously inaccessible. The main driver has been
the development of Markov-Chain Monte Carlo (MCMC) techniques for
simulating from a posterior probability distribution. Fundamentally the tech-
nique is an algorithm for repeatedly drawing possible values of the variables
involved, using random numbers to move from the current set of values to a
new set chosen according to the probability distribution. It is not necessary to be
able to write down a full mathematical expression for the posterior probability
distribution: knowledge of prior probabilities and the likelihood suffices. It can
be demonstrated that this leads to a set of samples which are a very good esti-
mate of the required distribution, and they can be plotted as a histogram or
summarised as a mean and standard deviation etc. A general overview of the
current methods at a reasonably accessible level for the mathemarically literate
is given by Congdon?, but this does not fully cover Bayesian spatial statistics for
which more specialist volumes® should be consulted. There is a wide range of
methods with applications to continuous spatal data, and to spatially discrete
data aggregated at the level of irregularly shaped administrative units such as
counties or electoral wards (particularly for the health literature). There are
both correlative and explanatory methods, with a complexity well beyond any
archaeological spatial model I have seen.

9.3 Why adopt a Bayesian approach to predictive modelling?

... 1t 1s impossible to separate opinions (prior beliefs), data and decisions/actions. In the
‘classical’ approach, our opinions influence our procedures in all sorts of subtle and little-
understood ways, for example in choosing the significance level of a hypothesis rest. It’s
better 1o be as explicit as we can about our prior beliefs, and let the theory take care of
how they interact with data to produce posterior beliefs, rather than to let them lurk at
the backs of our minds and cloud a supposedly ‘objective’ belief. This way the Bayesian
approach can be more than just a nice piece of mathematies.

(Orton 2003)

The Baseline Report sets out a primary reason for using Bayesian approaches,
that is incorporation of expert prior knowledge in a formal and transparent

way into the predictive models, thus making them more rigorous and of higher
quality’. However, there are a number of additional advantages of Bayesian
models that address other problems and questions raised in the Baseline Report.
A distinction is drawn in the Baseline Report between models with probabilistic
and possibilistic outputs®. A Bayesian model will be of the former type, which

in my opinion has some advantages. Not only can the output be used straight-
forwardly in testing the model with new data, but the quantitative nature of the
statements resulting from such a model can feed into further analyses. For
example, in a project covering a large area, statements of the probability of
finding sites or particular types of site can be used directly to estimate the likely
number of sites and to prepare budgets. However, on smaller development
projects, probability statements are less likely to be of direct use and it is more
likely that some sort of preliminary investigation (“assessment’ in the English
Heritage jargon) will be needed. In this case the methodology developed by
Orton and Nicholson? can use a probability statement to design an assessment
to ensure with a specific confidence level that, if no archaeological remains are
found, there are none there. A probabilistic statement thus has the desirable
property of being able to directly feed into an algorithm for designing fieldwork
strategies for assessment or mitigation.

Another feature of Bayesian models is that they can handle missing observations
in straightforward manner, providing that some prior probabilities for the obser-
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vations have been specified. This is likely to be advantageous in modelling and
predicting from multivariate archaeological survey data, as one missing value at
a survey point does not have to lead to the loss of all the information from other
observables at that point, as would happen in many classical statistical analyses
(for example, with PCA a full set of measurements for every survey point would
be required).

A final advantage is that hierarchical models can be constructed which allow the
aggregation of differing but similar classes of samples in a single analysis without
assuming that they are identical. This could allow models to be built which
account for chronological and functional subsets of sites in the landscape, whilst
achieving the sample sizes necessary to achieve useably small posterior

confidence ranges.

9.4 Some comments on the past use of statistics in predictive models

Inductive models!'® tend not to have any prior weighting of variables, although
we do have some idea before the analysis which are likely to be most important,
and indeed the selection of variables is in some cases a judgement of relevance.
The weights are derived ‘solely’ from the training data. Deductive models'!
may err in the other direction: there is a prior specification of the weights of the
variables in the prediction, but no quantitative method (and sometimes not
even a formal method) for updating the weightings in the light of the data. The
model is a rigid statement of prior beliefs. It would be much better to combine
the two approaches in a system thart allows us to specify weightings according
to our prior knowledge and expert judgement based on other regions, or other
types of sites, and then modify them using observed data for the study area.
This is what a Bayesian model can do in one of several ways. One possibility is
to assign prior weights explicitly, as in the deductive approach, but adding some
statement of uncertainty so that their probability distributions can be modified
using the data. An alternative, which is easier to specify, but less flexible to
apply, is to use our prior knowledge to rank the variables in order of importance
but without specific weights. Training data can then be used to determine the
weights subject 1o maintaining their rank order.

Almost without exception the predictive modelling studies I have seen use a
logistic regression to relate multiple environmental and other variables to the
probability of site occurrence. I presume that this is because of the ready availa-
bility of logistic regression in GIS programs. In fact logistic regression is one of
a class of regressions known as quantal response models which link a set of varia-
bles of any data types via a linear equation to a probability value. In general

the equations take the form:

link(p) = B,x, + Byx, +Psxy + .. + B3,

with weights B, attached to variables x. The link function may be any suitable
function which maps the zero to one range of p, the probability of site occur-
rence, to the linear predictor range of -2 to +; it describes the probability
distribution of the linear predictor. As well as a logistic distribution using the
log-odds link function [logit(p) = In(p/(1-p))], two other commonly used
distributions are the normal distribution with a probit link function (inverse
cumulative normal distribution) and the extreme value distribution with the
complementary log-log link function [cloglog(p) = In(-In(1-p))]. The choice of
link function affects the results of the regression in terms of the weights (in an
10 B.g., Warren & Asch 2000. inductive model), model predictions and goodness-of-fit. Hence the use of
logistic regression is not as neutral as the Baseline Report, following Gibbon'?,
implies when it says that it makes ‘no assumptions about the form of the darta’.
12 Gibbon 2002. Whilst this is true, assumptions are made about the probability distribution of

11 E.g., Dalla Bona 2000.
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the linear predictor derived from the data, and, importantly, about the indepen-
dence of the variables. More sophisticated quantal response models modify the
linear predictor to allow for ‘interaction terms’ of the form B xx, or explicitly
allow for the covariance of variables via covariance of the B,. Archaeological
predictive models (Bayesian or Classical) could benefit from these modifica-
tions, to allow, for example, for the interaction of slope and soil type in
preventing/enabling settlement.

Using a linear predictor also has other limitations, which necessitate invoking
the first law of statistics and examining the data before it is used. A continuous
or interval variable with a bimodal distribution will fit badly in a linear model
with a unimodal link function. Further, some of our data may be circular in
form, notably aspect. If aspect is measured as an angle from north and a north
aspect is favoured for settlement then the distribution will be bimodal at small
and large angles (close to 0° and 360°). Circular data might be adequately
modelled via a transformation, e.g. using sin(6) and cos(0) as predictors, but

it would be even better to drop the linear equation and use circular staristics
such as a von Mises distribution.

In other cases the assumption that, all other things being equal, the probability
of a site is symmetrically distributed with respect to a variable does not hold.
For example, how does the probability of settlement depend on depth to the
water table? It is clearly zero for large negative depths (i.e. deeply submerged
areas), it might be small for small positive and negative depths representing
areas where pile dwellings are possible, and then as dry ground is reached it
increases to a constant value regardless of whether the water table depth is 1m
or 100m. This is poorly described by a probability function which is not zero

at any depth, peaks at a particular depth and then declines as large depths

are reached.

Two previous papers have considered the possibilities of a Bayesian approach

to archaeological predictive modelling. Van Dalen uses a simple application of
Bayes theorem to modify the predictions of an ‘at random’ location model using
a set of variables!3. His method arrives at zero probability for many cells because
it fails to account for the stochastic nature of the sample, and thus the possi-
bility that sites are present on a particular soil type but have not been observed
due to the (small) sample size. The method as applied also only works for varia-
bles of categorical and ordinal scales, but could be combined with a quantal
response model for interval and ratio variables. Van Dalen’s other proposal is
that it is not always the immediate gualities of the site location, but also those of
nearby locations which influence its position. He attempts to account for this by
a form of kernel density estimate creating ‘buffers’ around sites in a geometric
model. Kernel density estimates could equally be applied in his Bayesian
approach'd.

Verhagen proposes to use a beta distribution to model prior expert opinion on
the proportion of sites within the study area falling in a particular land unit'’.
This has the advantage of being conjugate to a binomial likelihood based on the
number of sites inside and outside the unit, so that the calculation of a posterior
probability distribution in the form of a revised beta distribution is very easy.
However, although there are multiple land units containing between them a
certain number of observed sites, Verhagen treats them separately. The poste-
rior beta distributions derived for the land units do not take account of the
multivariate nature of the problem. If one draws values of the proportions from
the entire set of beta distributions then there is no guarantee that they will have
the required sum of unity. A better approach would be to model the numbers of
sites in the set of land units as a multinomial distribution, where the conjugate
prior is a Dirichlet distribution. The same prior parameters as Verhagen derived . pare the work of Lucy et al.
for the beta distributions can be combined as the set of parameters of the 2002.

Dirichlet, and the marginal posteriors remain the same.

13 Van Dalen 2000.

15 Verhagen 2001.
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9.5 On autocorrelation and covariance in predictive models

As repeatedly noted in the Baseline Report, archaeological predictive models
have consistently failed to account for spatial autocorrelation in the predictor
variables and thus observations are assumed to be independent, covariance is
ignored, and the predictive power of the model is overestimated. When this is
done, locations similar to known site locations are assigned probabilities of
being sites which are too high and locarions similar to known non-sites are
assigned probabilities which are too low. The nature of the problem is well
illustrated by the methods and data of Warren and Asch'®. In their survey area
they report that there are 59 identified sites, but in their grid of 5473 cells to be
modelled as site or non-site, there are 265 site cells. Each site therefore occupies
~4.5 cells, but this appears not to be fully accounted for in the predictive model-
ling. Although the training set is chosen with cluster sampling to avoid the
problem of cells from a given site occurring in both training and test datasets,
no account is taken of the fact that each training site contributes several data
points. The possibilities for improving the predictive power of models will be
limited until spatial autocorrelation is taken into account.

If time is to be considered within a predictive model either as archaeological
periods or more precisely as dates, then temporal autocorrelation might need
to be considered as well, as sites tend to persist at one locaton. Accounting for
this in a model with high temporal resolution will introduce a good deal more
complexity. In constructing a model we need to find a balance berween the
level of detail needed for planning purposes and the complexity of producing
the model.

When environmental variables are mapped it is not usually with the aim of
recording them at archaeological sites. For archaeological purposes it is therefore
often necessary to use interpolated vaniables (e.g. in a digital elevation model
constructed from irregularly spaced survey points) as part of the predictive
process. The process of interpolation assumes the existence of autocorrelation
and uses it to interpolate, hence interpolated data is inherently autocorrelated.
This autocorrelation is (or should be) deducible from the interpolation algorithm.
Further transformations of interpolated data will introduce further complications
in the structure of the autocorrelation, and if they require the use of more than
one interpolated point (e.g. in going from elevation to slope) then additional
autocorrelation is introduced. If we can, we should account for these
autocorrelations in predictive modelling.

The Baseline Report suggests'” that to deal with spatial autocorrelation we
could use technigues such as PCA to ‘de-correlate’ our set of variables, at the
expense of real-world interpretability. It seems to me that we should embrace
the autocorrelation and use it via explicitly spatial statistics. We are better off
modelling our autocorrelation than trying to get around it with a generic tool
whose assumptions may not match the properties of our data, and which trans-
forms the data into a form to which we cannot apply our understanding of past
processes. For example, we have sufficient knowledge of medieval settlement
patterns to know that if a village occurs at a particular location, then there is
unlikely to be another village within 2 or 3 km, and that area will likely have
been occupied by fields. As distance from the known village increases from 3
km, there is an area with an increased chance of finding another village, but

as distance increases to tens of kilometres, the location of the known village
becomes less relevant to the probability of finding another village. This pattern
of anti-correlation, correlation and declining correlation with distance would be
difficult to capture in any generic tool. We might however attempt to represent
it by kriging with an appropriate semi-variogram (see the section on ‘modelling
autocorrelation’ below).

One interesting aspect of spatial correlation is raised in the Baseline Report

in the guise of complex types'®, which are essentially statements of the spatial
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correlation of different archaeological components. Their definition is
complicated, hence the suggested need for an expert system, but in terms of
a predictive model the resulting statements may be translated into probability
statements which can be combined with statistical analysis of the location to
predict the likelihood of a site occurring, and perhaps surviving. A simple
example could be that a find of a quern-stone implies a high probability of
the presence of a domestic site, but this statement should be qualified by

the other characteristics of the location.

9.6 A conceptual model for the processes of archaeological site location
and discovery

In order to have an effective predictive model we need to make sure that the
underlying ideas are as good as we can make them, clearly articulated and open
to discussion and improvement. In this vein I present a possible process model
for the location, preservation and discovery of archaeological sites (figure 1).
Each of the steps in the process must be modelled if we are to use our biased
archaeological samples and incomplete knowledge of the factors determining
site location to make inferences about the buried archaeological record. In order
to make inferences several components must be in place:
1 We must have a list of relevant variables which is at least fairly complete;
the list given in figure 1 is intended to be illustrative and far from exhaustive
2 We must model how these variables influence site location. The current
default model, which I have critiqued above, is a logistic regression with linear
predictor. However for some variables we may be able to do better, at least
with representing the general form of the dependence.

The other components have received less attention from archaeological pre-

dictive modellers, but seem to me to be equally key to what we want to do:

3 We need to model the taphonomy and survival of sites. This depends on
some of the same variables as in the list of (1) but certainly includes additional
variables, including later human activities. For example, soil type and topo-
graphic variables might satisfactorily predict the location of a Neolithic long-
house, but its survival will depend on the location (in three dimensions) of
post-medieval cellar-digging and 5% century BC coastal erosion.

4 If we had perfect or even good models at this stage then this purely deductive
approach might suffice, but in reality we need to calibrate, adapt and test
our models using observations of the presence and absence of archaeological
remains. These observations may in some cases be truly representative or
random samples derived from dedicated surveys, but in a heavily populated
and researched country like the Netherlands, the majority of the data will be
non-representative in a variety of ways. If we can get some handle on the
observational biases, then we should include an observation component in
our model to relate the ‘preserved sites’ to the ‘observed sites’.

In practical terms for archaeological heritage management we may not need

to be very sophisticated in our modelling of the relationships of points (2), (3)
and (4), as is shown by the fact that predictive models in the past have been
reasonably successful with simple linear predictor functions. The form of the
relationships is the province of enquiry for explanatory models, and whilst
correlative models may draw on the understanding from such enquiry they may
get away with forms of relationship which are workable rather than realistic'?.
That said, the more realism we can build into our models the less we will run
into various problems of bias and error in the results.
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9.7 A Bayesian model for the processes of archaeological site location
and discovery .

What might a Bayesian statistical version of the above conceprual model look
like? I will expound this with a highly simplified model, and indicative equations
only, even so it will appear fairly complicated. In each of the subsections that
follow, the first part expounds the ideas behind the model and may suffice as an
explanation for non-mathematical readers. The notation is explained in table 1.
It is easiest to consider the processes in reverse order, followed by aspects of
covariance and autocorrelation. At each stage in the modelling the use of a
Bayesian hierarchical model allows us to write equations which assume that we
have perfect knowledge from the next stage, but ultimately the model includes

Table 1 Summary of notation in
the uncertainties from each stage.

section 9.7.

Variable Meaning

1 time or date in the past

X Y2 coordinates in three-dimensional space
Discovery

D(x,y.z) the discovery of a site at a particular place, xyz, (D=1) or failure to discover a site (D=0)

S(x.y.z.t) the survival of a site at a particular place, xyz, from a particular time, t, (S=1) or non-survival of a site that once
existed (S=0)

T site type " a ¢ iate classificati .

U modemn land use } e = -

) mean probability of finding a site given that it survives

a, weighting for land-use U used to modify ¢ to give the actual probability of finding a surviving site
Survival

E(x.y.zt) the existence of a site at a particular place, xyz, at a particular time, t, (E=1) or absence of a site (E=0)

P, probability that a site has survived natural destructive processes

P probability that a site has survived destructive human activities

R a collection of variables related to natural destructive processes

c a collection of variables related to destructive human activities

By coefficients in a logistic regression relating R to p, which may depend on site type and date
Site type and location

P, probability of a site being created at a specific place and time given environmental variables

P, probability of a site being created at a given vertical position (a complex function of location and date)

v the sel of environmental variables that determine site location

i coefficients in a logistic regression relating V to p, which may depend on site type and date

Modelling the parameters of the process

: the coefficient for a specific environmental variable for a particular site type and date

p the collection of all ;s for a particular site type and date

the mean value through time of f§, for a specific environmental variable and particular site type

the collection of all ys for a particular site type

M the mean value over all site types of v, for a specific environmental variable

the collection of all Ms

the standard deviation of the values of , for an environmental variable and site type (constant across all such
type-variabie pairs)

E the standard deviation of the values of v, for an environmental variable (the same for all such variables)
b covariance matrix for values of B, (subsumes values of os}

b covariance matrix for values of y, (subsumes values of o, )

Autocorrelation
£(xy) deviation from mean when predicting p, from R at a particular location
deviation from mean when predicting p,. from V at a particular location
the collection of values £, and &, across all locations of interest
] vector of zeroes representing the mean values of £
T covariance matrix expressing the autocorrelation of ¢ in space
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Archaeological site discovery and recording

The process that we ought to know most about is how archaeologists discover
and record sites that have survived from the past. In fact we seem to have little
knowledge of this, probably because we (and our predecessors) have not
bothered to think carefully and record how we do that part of archaeological
practice which is discovering sites. As we have a large amount of data already
available to us, it is worthwhile investigating how we got it and thus how we can
use it. We know that different areas have been prospected to greater or lesser
degrees, and can model this. A very simplified model might say that archaeo-
logists have worked in most areas of the Netherlands, but because prospecting
is easier in open countryside than in wooded or urban areas, the probabilities
of a site having been found when it survived in open country, woodland and
urban areas differ. We do not know the absolute values of these probabilities
but prior estimates of the ratios of these parameters could be derived from
experts using the methods outlined by Verhagen?. Other factors that might be
similarly modelled include soil type, and the site’s period and type. Ultimately
we write model equations for the chance of a site’s discovery, relating this to
information about its survival and type, and the modern land use.

More formally we have an equation for p(D(xy,2) | S, T, U), (where D=site
discovery, S=site survival, T=site type, U=modem land use, etc) and prior
probabilities for the parameters in the equation. For the example above, we

might have
p(D(xy52) | S(x3,2,0), T, U, ¢, @) = ¢ x

where: ¢ is the mean probability of finding a site, which we might guess as being
small but not too small and write a prior of ¢ ~ Beta(1,3); and a, is a weighting
depending on land use with a prior estimate given by the appropriate term from
the vector a given by a ~ Dirichlet(a), with the values of a derived from expert
opinion. Where some areas have been subject to sampling by systematic survey,
¢ and a should be modelled separately for those areas.

The survival of sites

Again this is an under-researched area. We have some basic ideas about
destructive processes that remove sites, such as cellar digging, gravel extraction,
ploughing and erosion. Several EU funded projects have investigated the effect
on various archaeological materials of soil and other environmental factors®!,
and their data might be useful in establishing the variables relevant ro damage
by slow, natural processes. As these processes are so poorly understood we
probably have to fall back on modelling their effects via a quantal response
model. We end up with an equation for the probability of site survival expressed
in terms of information about the existence of the site in the past, the variables
that relate to natural destructive processes and human activity on the site since
it was created.

We seek to calculate p(S(x,y,2,1) | E, T, R, C) where E is the existence of a site
in the past, R are the variables relating to natural destructive processes and C
are variables relating to human activity and hence include E(T, ¢') for later
periods than z. If we approximate natural processes and later human activities
as independent, then:

p(8(x.y,2,1) | E T, R: C; BR: Eg_) =Pr X Pe 20 Verhagen 2001.
with logit(py) = B(T50)T R + e (x). 21 The most recent being bone: Kars
& Kars 2002; Kars 1998,
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The coefficients fi; in the logistic regression of R are given as a function of site
type and date, as this will alter the effects of the natural processes. The model-
ling of these parameters is most effectively done in a hierarchical manner, for
which see below. The probability relating to later human activity, p., will be
more complex in expression as activities which give rise to sites will be modelled
in the next stage, but activities such as ploughing will not. The error term
ex(x,y) is discussed below as it incorporates structure accounting for spatial
autocorrelation.

The location and type of sites

This is the part of the model whose structure is of interest to explanatory
modellers. The possibilities here are 1o adopt some sort of explicit model with
specified relationships between the variables and the probability of a site, or a
non-parametric relationship such as a quantal response model. Land evaluation
is suggested in the Baseline Report as a possible explicit method for modelling
land-use on the basis of ecological and socioeconomic data and confronting
these with archaeological data to predict activity areas®?. Land evaluation has
never actually been developed sufficiently for predictive modelling, though if it
could be made to work it would be very useful for giving realistic (rather than
arbitrary) mathematical forms to the variable-site link in a process model.

For the moment I simply offer the common logistic quantal response model,
but with the addition of hierarchy:

p(ECyszt), T IV, t, 2, Bys &) = py X P,

with logit(p,) = B, (T,0)T V +¢,(x).
The depth at which a site is found depends on where it is and the period of the
site, 0 p, is a complex function of 7 and (x,y). Modelling of this will depend on
the palaeo-geographical modelling for the Holocene areas of the Netherlands.
Note, however, that only a probabilistic statement is required, which allows for
areas where our knowledge is uncertain. The prior distribution of 7 could reflect
expectations of the different relative numbers of sites created at different items/

periods. The error term &,,(x,v) is discussed below as it incorporates structure
accounting for spatial autocorrelation.

Summary of model equations

A summary equation for posterior probabilities of the parameters in the full
model where we have site/non-site observations is:

P(Bys Bes Eps €v» 8@ VR, C | D(x, 3, 2, ), T, U) =
P(D(x52) | S(x.3,2,0); ¢, @, U) x p(¢) x p(a)
x p(SGxs2,0) | E, T, By, £, R, ©) x p(Bg) x pleg(xy))
x p(E(xys2,0), T Iz, 2, Bys €y V) x p(1) x p(2) x p(By)
x p(ey(xy)) x p(V(x.9)) x p(R(x,3)) % p(C(x,3))
The final line allows for our sets of variables influencing site location and

survival to be incompletely known for a location: we then need to give some
22 This volume, pp. 62-4. prior probabilities for the various possible values.
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Finally the real interest in a predictive model is not the discovered sites but
the surviving sites, so that we can maximise our site discovery rate. We use the
posterior estimates of the parameters derived above to predict site survival at

a new location (x'y) where we have no observations, integrating out the
parameters relating to site discovery:

p(SEY\2y), T, ' IV, R, C, S\n ﬁg: s Ey) =
Joo PSE'W5250) | E, T, R, C, By)
x p(E(x'\y,2t) T" 1V, 1, 2, ﬂv) Ey)

xp(z V,R,C, U, B\r: ﬂ;p Eps By, $, @ |D{xaysz;f)) T) d¢ da

Hierarchical model for the parameters of the process

It is in the modelling of the parameters of the process which relate the
observable variables to the chances of site survival (8, By, ¢, @) that a Bayesian
approach has one of its major advantages. This approach allows us to use prior
knowledge to increase the precision of our posterior, as has been discussed
above and elsewhere?®. It also allows the modelling of the many possible com-
binations of variables, site types and periods in more complex ways than either
treating them all as independent (there is rarely enough data to do this), or
lumping all sites and periods together (which we know is unrealistic). This
alternative is a hierarchical model which recognises that there is a close rela-
uonship berween the factors influencing sites of the same type bur different
periods, whilst allowing for some differences between them. It considers that
there is a distribution of parameters, for sites of a particular type but different
periods, so that information from one period gives us some (but less)
information about other periods.

We need to specify prior probability distributions which express our prior beliefs
about similarities between periods and site types respectively. If we decided that
the similarities are primarily within periods and then secondarily between periods
this hierarchy would be reversed. More complex hierarchies can also be devised,
for example, if we believe that for the post-medieval period the use of new
methods of land reclamation makes the distribution of sites utterly different to
preceding periods, then the relevant sub-set of parameters can be modelled with
a separate prior. Similarly we might decide that the location of ‘religious’ sites is
influenced by our variables in a different way to settlement sites, in which case
(religious) has a separate prior. However the number of special cases should
not be multiplied too far, or we lose the beneficial effects of the hierarchy.

A simple and often adopted approach is to model the distribution of values of
the coefficients as independent and normally distributed, so that

BT, 1) ~ Normal(y(T), o)

where values of 7 represent the various possible environmental variables. We
may further believe that all types of sites are related in their parameters, so that

Y (T) ~ Normal(M,, o)

with prior probability distributions for M,, o, and 0.

The modelling of these parameters can also allow us to account for temporal

correlation between variables. Instead of treating the parameters as indepen-

dent, we can model the whole set of parameters as drawn from a multivariate 23 Verhagen 2001; Orton 2000a,
distribution with an explicit statement of covariance: 2000b.

178



24 Tschan 1999.

9 - What Can Bayesian Statistics Do For Archaeological Predictive Modelling?

B(T, ) ~ MVNormal (y(T), %)
Y(T) ~ MVNormal(M, Zv)

where now our prior distributions for £, and ¥ _ include terms for the covariance
of variables. Our prior for M could have further structure linking the mean
values of parameters as well as their variances.

The elicitation of prior information on this hierarchical structure could become
complicated. However, it might suffice to obtain information on the relative
strengths of the relationships between the influence of variables across site types
and periods, and then introduce a scaling factor with a very broad prior distri-
bution to represent our lack of knowledge of the absolute values.
Object-oriented GIS** would appear to offer a similar view of hierarchy in
certain circumstances, but OOGIS seems to be little developed and not to offer
anything in the way of spatial statistics which acknowledge its hierarchical view
of objects.

Modelling awtocorrelation

I have argued above that site locations are spatially autocorrelated. To model
this we have to allow that the random errors €,(x,y) and €,(x,y) in our regres-
sion equations above are not independent at all points, but are more similar to
the values at nearby points. This is done by specifying a relationship between
their values at different points. Two popular methods (of the many available)

are:

« kriging, which assumes that the covariance between any two points j and %
in continuous space depends on a function (the semi-variogram, y) of the
distance (h;) between them. A variety of models are possible depending on
the choice of semi-variogram function. We then write

£ ~ MVNormal(0, 1), with T, = o? and T, = o’ - 2y(hy)

+ simultaneous autoregressive methods for discrete areas, which specify the
co-variance between areas in terms of a spatial correlation, p, and a weighting
matrix, W. Variety in these models derives from the possibilities for defining
the weights, which may be based on distances, shared boundary lengths or
simply whether areas are neighbours or not. The equations are rather more
complicated than for kriging:

€ ~ MVNormal(0, 1), with t=0*(l-pW) ' (I-pWT)"!

where / is the identity matrix.

I am unclear about which expression of spatial covariance would be more suitable
for archaeological predictive models. Kriging certainly has simpler calculations,
and might suffice for a first approximation of spatial autocorrelation.

Model implementation

The model outlined here is fairly complex statistically and would need specialist
research to ensure that the necessary MCMC computations could be carried
out efficiently. It might be that simplifications could be made to the discovery
sub-model (e.g., reducing it to a series of beta distributions) and site survival
could be rolled into the same modelling equations as site creation. In doing
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this we would need to recognise that pragmatic simplifications are being made;
they would be the target for the next round of model improvement.

9.8 Testing models

Statistical modellers recognise that all models are imperfect representations

of the real world and are therefore subject to the problem of mis-specification

10 a greater or lesser degree. The mis-specification is allowed for, together with
random variation that cannot be modelled, by the variance terms included in
the equations for the error terms. Part of the aim of model criticism, testing

and refinement is to reduce the size of these terms. This may be done in simple
models by examining the difference between predictions and observations to see
if there is correlation of the residuals with some variable, which may or may not
have fearured in the prediction.

More complex models are tested and refined with a variety of procedures. How
well they fit to the data may be expressed using some measure of fit, and models
that fit too badly may be rejected (analogous to the use of p-values in classical
statistics). Such measures of fit may be used simply for rejection of bad models,
but they may also be used to help in model criticism and alteration in developing
a model, or in comparing models. Data may be used to test the model directly as
well, either by withholding some data from the ‘training’ data for the model, or by
collecting new data and seeing how well it is predicted. Withheld data is of course
available within the context of the IKAW revision, but new data will be collected
in the future though not specifically for model testing. Some new data might be
particularly useful for testing aspects of the model. For example, resurvey by the
same method of an area will provide a test of the discovery model and lead to
refinement of its parameters. With an explicit discovery model in place we can
incorporate new information in a more rigorous way even though it is not col-
lected with the intention of model testing. Future samples for testing need not be
acquired by random or even representative sampling. The requirement becomes
simply that our specification of how they were acquired is much more careful
than it has been in the past.

Model comparisons depend on measures of fit, but may be useful in a variety of
ways. They can be used within an overarching model to compare what happens
when sub-models are altered, for example, removing a hierarchical description,
or simplifying some part of the model. In these circumstances they may indicate
that a model is more complex than is necessary or than is justified by the nature
of the data. Model comparisons are also useful for comparing different prior
estimates of the parameters, if we believe that the differences between different
prior estimates are not reconcilable or if we do not know what mathematical
form to give to the uncertainty in those estimates.

9.9 Looking forwards

Statistics, whether Bayesian or classical, ts just a tool. The ‘big’ questions are the
archaeo-political ones. By separating out and creating a sound methodology for dealing
with the technical issues, we can focus attention on these ‘big’ issues, such as: What is
a ‘sigmificant archaeological remain’? What is an acceptable risk of its unrecorded
destruction? How do these answers vary according the location, period and nature of

the remains?

(Orton 2003)
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