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Abstract
We study the approximability of Minimum Constraint
Satisfaction Problems (Min CSPs) with a fixed finite
constraint language Γ on an arbitrary finite domain. The
goal in such a problem is to minimize the number of
unsatisfied constraints in a given instance of CSP(Γ).
A recent result of Ene et al. says that, under the mild
technical condition that Γ contains the equality relation,
the basic LP relaxation is optimal for constant-factor ap-
proximation for Min CSP(Γ) unless the Unique Games
Conjecture fails. Using the algebraic approach to the
CSP, we introduce a new natural algebraic condition,
stable probability distributions on symmetric polymor-
phisms of a constraint language, and show that the pres-
ence of such distributions on polymorphisms of each ar-
ity is necessary and sufficient for the finiteness of the in-
tegrality gap for the basic LP relaxation of Min CSP(Γ).
We also show how stable distributions on symmetric
polymorphisms can in principle be used to round solu-
tions of the basic LP relaxation, and how, for several ex-
amples that cover all previously known cases, this leads
to efficient constant-factor approximation algorithms for
Min CSP(Γ). Finally, we show that the absence of an-
other condition, which is implied by stable distributions,
leads to NP-hardness of constant-factor approximation.

1 Introduction
The constraint satisfaction problem (CSP) provides a
framework in which it is possible to express, in a nat-
ural way, many combinatorial problems encountered in
computer science and AI [11, 12, 19]. Standard exam-
ples of CSPs include satisfiability of propositional for-
mulas, graph colouring problems, and systems of linear
equations. An instance of the CSP consists of a set of
variables, a (not necessarily Boolean) domain of values,
and a set of constraints on combinations of values that
can be taken by certain subsets of variables. The aim
is then to find an assignment of values to the variables
that, in the decision version, satisfies all the constraints
or, in the optimization version, maximizes (minimizes)
the number of satisfied (unsatisfied, respectively) con-
straints.
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Since the CSP is NP-hard in full generality, a major
line of research in CSP tries to identify special cases that
have desirable algorithmic properties (see, e.g. [12, 13]),
the primary motivation being the general picture rather
than specific applications. The two main ingredients of
a constraint are: (a) variables to which it is applied,
and (b) relations specifying the allowed combinations
of values or the costs for all combinations. Therefore,
the main types of restrictions on CSP are: (a) structural
where the hypergraph formed by sets of variables ap-
pearing in individual constraints is restricted [20, 35],
and (b) language-based where the constraint language
Γ, i.e. the set of relations that can appear in constraints,
is fixed (see, e.g. [9, 11, 12, 19]); the corresponding
decision/maximization/minimization problems are de-
noted by CSP(Γ), Max CSP(Γ), and Min CSP(Γ), re-
spectively. The ultimate sort of results in this direc-
tion are dichotomy results, pioneered by [38], which
completely characterise the restrictions with a given de-
sirable property modulo some complexity-theoretic as-
sumptions. The language-based direction is consider-
ably more active than the structural one, and there are
many (partial and full) language-based complexity clas-
sification results, e.g. [5, 6, 8, 12, 15], but many central
questions are still open.

The CSP has always played an important role in
mapping the landscape of approximability of NP-hard
optimization problems. For example, the famous PCP
theorem has an equivalent reformulation in terms of
inapproximability of a certain Max CSP(Γ), see [2];
moreover, Dinur’s combinatorial proof of this theo-
rem [16] deals entirely with CSPs. The first optimal in-
approximability results [23] by Håstad were about prob-
lems Max CSP(Γ), and they led to the study of a new
hardness notion called approximation resistance (see,
e.g. [3, 24, 28]). The approximability of Boolean CSPs
has been thoroughly investigated (see, e.g. [1, 12, 21, 22,
23, 24, 25, 26]). Much work around the Unique Games
Conjecture (UGC) directly concerns CSPs [25]. This
conjecture states that, for any ε > 0, there is a large
enough number k = k(ε) such that it NP-hard to tell ε-
satisfiable from (1 − ε)-satisfiable instances of CSP(Γk),
where Γk consists of all graphs of bijections on a k-
element set. Many approximation algorithms for classi-
cal optimization problems have been shown optimal as-
suming the UGC [25, 26]. Raghavendra proved [37] that
one SDP-based algorithm provides optimal approxima-
tion for all problems Max CSP(Γ) assuming the UGC.
In this paper, we investigate problems Min CSP(Γ) on



an arbitrary finite domain that belong to APX, i.e. ad-
mit a (polynomial-time) constant-factor approximation
algorithm, proving some results that strongly indicate
where the boundary of this property lies.

Related Work. Note that each problem
Max CSP(Γ) trivially admits a constant-factor ap-
proximation algorithm because a random assignment of
values to the variables is guaranteed to satisfy a constant
fraction of constraints; this can be derandomized by the
standard method of conditional probabilities. Clearly,
for Min CSP(Γ) to admit such an algorithm, CSP(Γ) has
to be polynomial-time solvable.

The approximability of problems Min CSP(Γ) has
been studied, mostly in the Boolean case (such CSPs are
sometimes called “generalized satisfiability” problems),
see [1, 12]. We need a few concepts from propositional
logic. A clause is Horn if it contains at most one posi-
tive literal, and negative it contains only negative liter-
als. Let k -HORN be the constraint language over the
Boolean domain that contains all Horn clauses with at
most k variables. For k ≥ 2, let k -IHBS be the subset
of k -HORN that consists of all clauses that are nega-
tive or have at most 2 variables. It is known that, for
each k ≥ 2, Min CSP(k -IHBS) belongs to APX [12],
and they (and the corresponding dual Horn problems)
are essentially the only such Boolean Min CSPs unless
the UGC fails [14]. For Min CSP(2 -IHBS), which the
same as Min CSP(2 -HORN), a 2-approximation (LP-
based) algorithm is described in [22], which is opti-
mal assuming UGC. It is NP-hard to constant-factor
approximate Min CSP(3 -HORN) [21]. Let ,2 be the
boolean relation {(0, 1), (1, 0)}, Min CSP({,2}) is known
as MinUnCut. Min CSP(Γ) where Γ consists of 2-
clauses is known as Min 2CNF Deletion. The best
currently known approximation algorithms for MinUn-
Cut and Min 2CNF Deletion have approximation ratio
O(

√
log n) [1], and it follows from [26] that neither prob-

lem belongs to APX unless the UG conjecture is false.
The UGC is known to imply the optimality of the basic
LP relaxation for any Min CSP(Γ) such that Γ contains
the equality relation (in fact, even for the more general
Valued CSP) [18], extending the line of similar results
for natural LP and SDP relaxations for various optimiza-
tion CSPs [30, 34, 37]. An approximation algorithm for
any Min CSP(Γ) is also given in [18] (that was claimed
to match the LP integrality gap), but its analysis was
later found to be faulty [41].

Constant-factor approximation algorithms for Min
CSP are closely related to certain robust agorithms for
CSP that attracted much attention recently [6, 14, 32].
Call an algorithm for CSP(Γ) robust if, for every ε > 0
and every (1 − ε)-satisfiable instance of CSP(Γ) (i.e.
at most an ε-fraction of constraints can be removed to
make the instance satisfiable), it outputs a (1 − f (ε))-
satisfying assignment (i.e. that fails to satisfy at most
a f (ε)-fraction of constraints) where f is a function
such that f (ε) → 0 as ε → 0 and f (0) = 0. Note

that the running time of the algorithm should not de-
pend on ε (which is unknown when the algorithm is
run). CSPs admitting a robust algorithm (with some
function f ) were completely characterised in [6]; when
such an algorithm exists, one can always choose f (ε) =

O(log log (1/ε)/ log (1/ε)) for the randomized algorithm
and f (ε) = O(log log (1/ε)/

√
log (1/ε)) for the deran-

domized version. A robust algorithm is said to have lin-
ear loss if the function f can be chosen so that f (ε) =

O(ε). The problem of characterizing CSPs that admit a
robust algorithm with linear loss was mentioned in [14].
It is easy to see that, for any Γ, CSP(Γ) admits a robust
algorithm with linear loss if and only if Min CSP(Γ) has
a constant-factor approximation algorithm. We will use
this fact when referring to results in [14].

Many complexity classification results for CSP
have been made possible by the introduction of the
universal-algebraic approach (see [9, 11]), which ex-
tracts algebraic structure from a given constraint lan-
guage Γ (via operations called polymorphisms of Γ) and
uses it to analyze problem instances. The universal-
algebraic framework to study robust algorithms with a
given loss was presented in [14], this approach was also
used in [6, 32]. In this paper, we apply this framework
with some old and some new algebraic conditions to
study problems Min CSP(Γ). Our algebraic conditions
use symmetric operations, which appear naturally when
LP-based algorithms are used for CSPs; others recent
examples are [32, 40].

Contributions. Most of our results assume that Γ

contains the equality relation. We characterise problems
Min CSP(Γ) for which the basic LP relaxation has fi-
nite integrality gap. Our characterization uses the alge-
braic approach to CSP that has been extremely fruitful in
proving complexity classification results for CSPs. The
key notion in this approach is that of a polymorphism
which is, roughly, an operation preserving relations in Γ

(see [9, 11]). The characterizing condition is in terms of
stable probability distributions on symmetric polymor-
phisms of Γ. This condition can in principle be used
to design efficient constant-factor approximation algo-
rithms, provided one can efficiently sample from these
distributions. We show that this is possible for some ex-
amples that cover all cases where such algorithms were
previously known to exist.

We also strengthen our UG-hardness result to NP-
hardness for a class of Min CSPs. A near-unanimity
polymorphism is a type of polymorphism well known in
the algebraic theory of CSP [7, 11, 19], and its presence
follows from the existence of those stable distributions.
We show Min CSP(Γ) is NP-hard to constant-factor
approximate if Γ has no near-unanimity polymorphism.

2 Preliminaries
Let A be a finite set. A k-tuple a = (a1, . . . , ak) is any
element of Ak. A k-ary relation on A is a subset of Ak.
We shall use arity(R) to denote the arity of relation R.



An instance of the CSP is a triple I = (V, A,C ) with
V a finite set of variables, A a finite set called domain,
and C a finite list of constraints. Each constraint in C
is a pair C = (v,R) where v = (v1, . . . , vk) is a tuple
of variables of length k, called the scope of C, and R
an k-ary relation on D, called the constraint relation of
C. The arity of a constraint C, arity(C), is the arity of
its constraint relation. When considering optimization
problems, we will assume that each constraint has a
weight wC ∈ Q>0. It is known (see, e.g. Lemma 7.2
in [12]) that allowing weights in Min CSP(Γ) does not
affect membership in APX.

Very often we will say that a constraint C be-
longs to instance I when, strictly speaking, we should
be saying that appears in the constraint list C of I.
Also, we might sometimes write (v1, . . . , vk,R) instead
of ((v1, . . . , vk),R). A constraint language is any finite
set Γ of relations on A. The problem CSP(Γ) consists
of all instances of the CSP where all the constraint re-
lations are from Γ. An assignment for I is a mapping
s : V → A. We say that s satisfies a constraint (v,R) if
s(v) ∈ R (where s is applied component-wise).

The decision problem for CSP(Γ) asks whether
an input instance I of CSP(Γ) has a solution, i.e.,
an assignment satisfying all constraints. The natural
optimization problems for CSP(Γ), Max CSP(Γ) and
Min CSP(Γ), ask to find an assignment that maximizes
the total weight of satisfied constraints or minimizes the
total weight of unsatisfied constraints, respectively.

2.1 Basic linear program Many approximation algo-
rithms for optimization CSPs use the basic (aka stan-
dard) linear programming (LP) relaxation [14, 32, 40].
We use a natural adaption of this LP to Min CSPs.

For any instance I = (V, A,C ) of Min CSP(Γ), there
is an equivalent canonical 0-1 integer program. It has
variables pv(a) for every v ∈ V , a ∈ A, as well as
variables pC(a) for every constraint C = (v,R) and every
tuple a ∈ Aarity(R). The interpretation of pv(a) = 1 is
that variable v is assigned value a; the interpretation of
pC(a) = 1 is that v is assigned (component-wise) tuple
a. More formally, the program ILP is the following:

minimize:
∑

C=(v,R)∈C

wC · (1 − pC(R))

subject to:
pv(A) = 1 for v ∈ V;(2.1)

pC(A j−1 × {a} × Aarity(C)− j) = pv j (a)(2.2)
for C = (v,R) ∈ C , 1 ≤ j ≤ arity(C), a ∈ A.

Here, for every v ∈ V and S ⊆ A, pv(S ) is a
shorthand for

∑
a∈S pv(a) and for every C and every

T ⊆ Aarity (C), pC(T ) is a shorthand for
∑

a∈T pC(a).
If we relax this ILP by allowing the variables to take

values in the range [0, 1] instead of {0, 1}, we obtain the
basic linear programming relaxation for I, which we
denote by BLP(I). As Γ is fixed, an optimal solution to

BLP(I) can be computed in time polynomial in |I|.
For an instance I of Min CSP(Γ), we denote by

Opt(I) the value of an optimal solution to I, and by
OptLP(I) the value of an optimal solution to BLP(I).

For any finite set X, we shall denote by ∆(X) the
set of all probability distributions on X. Furthemore, for
any n ∈ N, we shall denote by ∆n(X) the subset of ∆(X)
containing every q ∈ ∆(X) such that q(x) · n is an integer
for every x ∈ X. To simplify notation we shall write
∆n and ∆ as a shorthand of ∆n(A) and ∆(A) respectively.
If p ∈ ∆(Ar) and p1, . . . , pr ∈ ∆(A) will say that the
marginals of p are p1, . . . , pr to indicate that for every
1 ≤ i ≤ r, and every a ∈ A, p(Ai−1 × {a} × Ar−i) = pi(a).

Restriction (2.1) of BLP(I) expresses the fact that,
for each v ∈ V , pv ∈ ∆(A). Also, (2.1) and (2.2) together
express the fact that, for each constraint C = (v,R), of
arity k, we have pC ∈ ∆(Ak) and that the marginals of the
pC distribution are consistent with the pv distributions.

Recall that the integrality gap of BLP for
Min CSP(Γ) is defined as

sup
I

Opt(I)
OptLP(I)

where the supremum is taken over all instances I of
Min CSP(Γ).

Theorem 2.1. ([18]) Let Γ be a constraint language
such that eqA ∈ Γ and let αgap be the integality gap of
BLP for Min CSP(Γ). For every real number β < αgap, it
is NP-hard to approximate Min CSP(Γ) to within a fac-
tor β unless the UGC is false. In particular, if the inte-
grality gap is infinite then there is no constant-factor ap-
proximation algorithm for Min CSP(Γ) unless the UGC
is false.

In fact, the result from [18] is more general because
it holds for [0, 1]-valued CSPs, i.e. when each constraint
is a function taking values in [0, 1], rather than only in
{0, 1}. The setting in [18] assumes that each variable in
an instance comes with its own list of allowed images
(i.e. a subset of A), but this assumption is not essential
in their reduction from the UGC.

2.2 Algebra Most of the terminology introduced in
this section is standard. See [9, 11] for more detail
about the algebraic approach to the CSP. An n-ary
operation on A is a map f : An → A. Let us now
define several types of operations that will be used in
this paper. We usually define operations by identities,
i.e. by equations where all variables are assumed to be
universally quantified.

• An operation f is idempotent if it satisfies the
identity f (x, . . . , x) = x.

• An operation f is symmetric if f (x1, . . . , xn) =

f (xπ(1), . . . , xπ(n)) for each permutation π on
{1, . . . , n}.



Thus, a symmetric operation is one that depends
only on the multiset of its arguments. Since there
is an obvious one-to-one correspondence between
∆n(A) and multisets of size n, n-ary symmetric
operations on A can be naturally identified with
functions from ∆n(A) to A.

• An n-ary operation f on A is totally symmet-
ric if f (x1, . . . , xn) = f (y1, . . . , yn) whenever
{x1, . . . , xn} = {y1, . . . , yn}.

• An n-ary (n ≥ 3) operation f on A is called an
NU (near-unanimity) operation if it satisfies the
identities

f (y, x, x . . . , x, x) = f (x, y, x . . . x, x) = · · · =

= f (x, x, x . . . x, y) = x.

An n-ary operation f on A preserves (or is a poly-
morphism of) a k-ary relation R on A if for every n (not
necessarily distinct) tuples (ai

1, . . . , a
i
k) ∈ R, 1 ≤ i ≤ n,

the tuple

( f (a1
1, . . . , a

n
1), . . . , f (a1

k , . . . , a
n
k))

belongs to R as well. Given a set Γ of relations on A,
we denote by Pol(Γ) the set of all operations f such that
f preserves each relation in Γ. If f ∈ Pol(Γ) then Γ is
said to be invariant under f . If R is a relation we might
freely write Pol(R) to denote Pol({R}).

Example 1. Let A = {0, 1}.

1. It is well known and easy to check that, for each
n ≥ 1, the n-ary (totally symmetric) operation
f (x1, . . . , xn) =

∧n
i=1 xi is a polymorphism of

3 -HORN.

2. It is well known and easy to check that, for each
k ≥ 2, constraint language k -IHBS, as defined in
Section 1, has polymorphism x ∧ (y ∨ z), but the
operation x ∨ y is not a polymorphism of k -IHBS.

The complexity of constant-factor approximation
for Min CSP(Γ) is completely determined by Pol(Γ), as
the next theorem indicates.

Theorem 2.2. ([14]) Let Γ and Γ′ be constraint lan-
guages on A such that Pol(Γ) ⊆ Pol(Γ′). Assume, in
addition, that Γ contains the equality relation. Then, if
Min CSP(Γ) has a constant-factor approximation algo-
rithm then so does Min CSP(Γ′).

Say that BLP decides CSP(Γ) if, for any instance I
of CSP(Γ), I is satisfiable whenever OptLP(I) = 0.

Theorem 2.3. ([32]) For any Γ, The following are
equivalent:

1. BLP decides CSP(Γ),

2. Γ has symmetric polymorphisms of all arities.

Note that symmetric polymorphisms provide a nat-
ural rounding for BLP(I), as follows. Let s be an op-
timal solution to BLP(I) in which all variables are as-
signed rational numbers such that, for some n ∈ N,
pv ∈ ∆n(A) for each variable v in I and pC ∈ ∆n(Aarity(C))
for each constraint C in I. Then each v can be assigned
the element f (pv) where f is an n-ary symmetric poly-
morphism of Γ. It is not hard to check (or see [32]) that
if OptLP(I) = 0 then this assignment will satisfy all con-
straints in I.

It was claimed in [32] that the conditions in Theo-
rem 2.3 are also equivalent to the condition of having to-
tally symmetric polymorphisms of all arities, but a flaw
was later discovered in the proof of this claim, and in-
deed a counterexample (see Section 3.2) was found by
G. Kun [31].

3 Results
We will formulate most of our results for constraint
languages Γ that contain the equality relation eq. We
make this restriction because some of the reductions in
this paper and some papers that we use are currently
known to work only with this restriction. We conjecture
that this restriction is not essential, that is, for any
Γ, Min CSP(Γ) admits a constant-factor approximation
algorithm if and only if Min CSP(Γ ∪ {eq}) does so
(though the optimal constants may differ).

As mentioned before, for any Γ, CSP(Γ) admits
a robust algorithm with linear loss if and only if
Min CSP(Γ) has a constant-factor approximation algo-
rithm. Hence, we can use results from Section 3 of [14]
and assume, without loss of generality, that Γ contains
the equality relation and all unary singletons, i.e., rela-
tions {a}, a ∈ A. Note that the latter condition implies
that all polymorphisms of Γ are idempotent.

3.1 Finite integrality gaps Theorem 2.1 provides ev-
idence that the BLP is optimal to design constant-
factor approximation algorithms for Min CSP(Γ). In
this subsection, we characterize problems Min CSP(Γ)
for which BLP has a finite integrality gap.

For p, q ∈ ∆, let dist(p, q) = maxa∈A |p(a) − q(a)|.
For a tuple a ∈ An, let da ∈ ∆n be such that each element
x ∈ A appears in a exactly n · da(x) times. For tuples
a,b ∈ An, define dist(a,b) = dist(da, db).

An n-ary fractional operation φ on A is any prob-
ability distribution on the set of n-ary operations on A.
For every real number c ≥ 0, call φ c-stable if, for all
a,b ∈ An, we have Prg∼φ{g(a) , g(b)} ≤ c · dist(a,b).

Theorem 3.1. For any Γ containing eqA, the following
are equivalent:

1. The integrality gap of BLP for Min CSP(Γ) is finite.

2. There is c ≥ 0 such that, for each n ∈ N, there is an



n-ary c-stable fractional operation φn on A whose
support consists of symmetric polymorphisms of Γ.

Example 2. Recall Example 1. It is known and not
hard to check that the operation fn is the only n-ary
symmetric polymorphism of 3 -HORN. By choosing
a = (1, 1, . . . , 1) and b = (0, 1, . . . , 1), it follows easily
that there is no c ≥ 0 such that 3 -HORN has a c-stable
distribution φn (as in Theorem 3.1) for each n. Hence,
the integrality gap of BLP for Min CSP(3 -HORN) is
infinite.

To prove Theorem 3.1 we need a few definitions
and intermediate results.

Let I be any weighted instance in Min CSP(Γ) with
variable set V . A fractional assignment for I is any
probability distribution, φ, on the set of assignments for
I. For a real number c ≥ 1, we say that a fractional
assignment φ for I is c-bounded if, for every constraint
C = (v1, . . . , vr,R) in I,

Pr
g∼φ
{g(v1), . . . , g(vr)) < R} ≤ c · (1 − wC)

where wC is the weight in I of constraint C. We will
apply it only to instances where wC ∈ [0, 1].

For every relation R ∈ Γ of arity, say r, and every
p1, . . . , pr ∈ ∆ define loss(p1, . . . , pr,R) ∈ [0, 1] to be
minp(1 − p(R)) where p ranges over all the probability
distributions on Ar with marginals p1, . . . , pr.

In a technical sense, function loss ’encodes’ the
contribution of each constraint in optimal solutions of
BLP. This is formalized in the following observation.

Observation 1. Let I be any instance of Min CSP(Γ)
and let C = (v1, . . . , vr,R) be any of its constraints. Then
1 − pC(R) = loss(pv1 , . . . , pvr ,R) holds in any optimal
solution of BLP(I).

For every n ∈ N, the n-th universal instance for Γ,
Un(Γ), is the instance with variable set ∆n containing
for every relation R of arity, say r, in Γ, and every
p1, . . . , pr ∈ ∆n, constraint (p1, . . . , pr,R) with weight
1 − loss(p1, . . . , pr,R). We write simply Un if Γ is clear
from the context.

The following is a variant of Farkas’ lemma (ob-
tained easily from Corollary 7.1f in [39]) that we will
use in our proofs.

Lemma 3.1. (Farkas’ Lemma) Let M be a m × n matrix,
b ∈ Rm. Then exactly one of the following two state-
ments is true:

• There is an x ∈ (R≥0)n with ‖x‖1 = 1 (‖x‖1 denotes
the 1-norm of x) such that Mx ≥ b.

• There is an y ∈ (R≥0)m with ‖y‖1 = 1 such that
yb > yM.

Theorem 3.1 follows directly from Lemmas 3.2 and
3.3 below.

Lemma 3.2. For every constraint language Γ and c ≥ 1,
the following are equivalent:

1. The integrality gap of BLP for Min CSP(Γ) is at
most c.

2. For each n ∈ N, there is a c-bounded fractional
assignment for Un.

Proof. This proof is an adaptation of the proof of Theo-
rem 4.2 in [40], and it also works for valued CSPs.

(2 ⇒ 1) Let I = (V, A,C ) be any instance of
Min CSP(Γ), and let pv(v ∈ V), pC(C ∈ C ) by any
optimal solution of BLP(I). We can assume that there
exists n ∈ N such that pv ∈ ∆n for every v ∈ V . For
every assignment g for Un, let sg be the assignment for
I defined as sg(v) = g(pv), v ∈ V .

Since (2) holds, it follows from Observation 1 and
the definition of c-boundedness that, for every constraint
C = (v1, . . . , vr,R) in I, we have

Pr
g∼φ
{(sg(v1), . . . , sg(vr)) < R} ≤ c · (1 − pC(R))

It follows that the expected value of sg is at most
c · OptLP(I). Consequently, there exists some sg with
value at most c · OptLP(I).

(1⇒ 2) We shall prove the contrapositive. Assume
that for some n ∈ N, there is no c-bounded fractional
assignment for Un. We shall write a system of linear
inequalities that expresses the existence of a c-bounded
fractional assignment for Un and then apply Lemma 3.1
to this system. To this end, we introduce a variable xg

for every assignment g for Un. The system contains,
for every constraint C = (p1, . . . , pr,R) in Un, the
inequality:

∑
g∈Gn

xg · 1[(g(p1), . . . , g(pr)) < R] ≤ c · loss(C)

where Gn is the set of all assignments for Un and
1[(g(p1), . . . , g(pr)) < R] is 1 if g(p1), . . . , g(pr)) < R
and 0 otherwise. Note that the system does not include
equations for xg ≥ 0 and

∑
g∈Gn

xg = 1 since this is
already built-in in the version of Farkas’ lemma that we
use.

Since there is no c-bounded fractional assignment
for Un it follows from Farkas’ Lemma that the system
containing for every g ∈ Gn inequality

(3.3)
∑

C=(p1,...,pr ,R)∈Un

yC · c · loss(C) <

<
∑

C=R(p1,...,pr ,R)∈Un

yC · 1[(g(p1), . . . , g(pr)) < R]

has a solution where every variable yC takes non-
negative values and it holds that

∑
C yC = 1. We can



also assume the value of every variable in the solution is
rational, since so are all the coefficients in the system.

Now consider instance I = (V, A,C ) where V = ∆n

and C contains, for every relation R ∈ Γ of arity, say r,
and every p1, . . . , pr ∈ ∆n, constraint C = (v1, . . . , vr,R)
with weight yC .

We shall construct a solution pv(v ∈ ∆n), pC(C ∈
C ) of BLP(I). For every v ∈ ∆n, set pv to v (note that
v is a distribution on A). For every C ∈ C set pC to the
distribution q with 1−q(C) = loss(C). Hence, the objec-
tive value of the solution of BLP(I) thus constructed is∑

C∈Un
yC · loss(C), which is c times smaller than the left

side of inequality (3.3). Furthermore, the total weight
of falsified constrains by any assignment g for I is pre-
cisely the right side of inequality (3.3). It follows that
the gap of instance I is larger than c.

For every set X, one can associate to every p ∈
∆n(X) the multiset p′ such every element x ∈ X occurs
in p′ exactly p(x) ·n times. In a similar way, one obtains
a one-to-one correspondence between the assignments
(resp. fractional assignments) for Un and the symmetric
operations (resp. fractional operations with support
consisting of symmetric operations).

Lemma 3.3. For every constraint language Γ containing
the equality relation, the following are equivalent:

1. There is c ≥ 1, such that for each n ∈ N, there is a
c-bounded fractional assignment for Un(Γ).

2. There is c ≥ 0 such that, for each n ∈ N, there is
an n-ary c-stable fractional operation on A whose
support consists of symmetric polymorphisms of Γ.

Proof. In this proof it is convenient to distinguish for-
mally between a multiset y (resp. operations, fractional
operation) and its associated distribution (resp. assign-
ment, fractional assignment) that, whenever X and n are
clear from the context, we shall denote by y′. The fol-
lowing observation will be useful.

Observation 2. For any assignment g for Un and any
distribution p ∈ ∆n(Ar), (g(p1), . . . , g(pr)) = g′(p′)
where p1, . . . , pr are the marginals of p and g′(p′)
denotes the r-ary tuple obtained applying the symmetric
n-ary operation g′ (corresponding to g) to the (n) tuples
in p′ component-wise.

(1) ⇒ (2) Assume that φ is a c-bounded fractional
assignment for Un. We claim that for every mapping
g in the support of φ, g′ is, in fact, a polymorphism of
Γ. Indeed, let R be any relation of arity, say r, in Γ,
let t1, . . . , tn ∈ R. We want to show that g′(t1, . . . , tn) ∈
R where g′(t1, . . . , tn) denotes the r-ary tuple obtained
applying g′ to t1, . . . , tn component-wise.

Let p ∈ ∆n(Ar) be the distribution associated to
multiset p′ = [t1, . . . , tn] and consider constraint C =

(p1, . . . , pr,R) on Un where p1, . . . , pr are the marginals

of p. By the choice of p we have p(R) = 1. Since φ is
c-bounded it follows that Prg∈φ{g(p1), . . . , g(pr)} < R) ≤
c · loss(C) ≤ 1 − p(R) = 0. Hence, (g(p1), . . . , g(pr)) ∈
R for every g in the support of φ. It follows from
Observation 2 that g′(t1, . . . , tn) = (g(p1), . . . , g(pr)) and
we are done.

We have just seen that the support of the fractional
n-ary operation, φ′, associated to φ consists of polymor-
phisms of Γ. Since, by definition, the support of φ′ only
contains symmetric operations, in order to complete the
proof it suffices to show that φ′ is (c · |A|)-stable.

Let p′1, p′2 ∈ An and consider constraint C =

(p1, p2, eqA) in Un where p1, p2 ∈ ∆n are the distribu-
tions associated to p′1 and p′2 respectively and eqA is
the equality relation on A. It is not too difficult to find
a distribution p on A2 with marginals p1 and p2 such
that 1 − p(eq) ≤ |A| · dist(p′1, p′2). A concrete example
can be obtained as follows. For very a ∈ A, let a1 =

max{p1(a) − p2(a), 0}, and a2 = max{p2(a) − p1(a), 0}.
Also, let d =

∑
a a1 =

∑
a a2. Then we define p as fol-

lows:

p(a, b) =

min{p1(a), p2(b)} if a = b
a1·b2

d if a , b

It is easy to verify that p satisfies the desired conditions.
Finally, we have

Pr
g′∼φ′
{g′(p′1) , g′(p′2)} = Pr

g∼φ
{(g(p1), g(p2)) < eqA} ≤

≤ c · loss(C) ≤ c · |A| · dist(p′1, p′2).

We note that this is the only part where the condi-
tion eqA ∈ Γ is required.

(2)⇒ (1). For every n ∈ N, let n′ be a multiple of n
to be fixed later, let φ′ be a c-stable fractional polymor-
phism of arity n′ whose support consists of symmetric
operations, and let φ be its associated fractional assign-
ment for Un′ . We shall prove later that, for every con-
straint C = (p1, . . . , pr,R) in Un (note, not in Un′ ), we
have

(3.4) Pr
g∼φ
{(g(p1), . . . , g(pr)) < R} ≤ 2 · r · c · loss(C)

Consider now the fractional assignment φ∗ on Un

where for every assignment f on Un, φ∗( f ) =
∑

g φ(g)
where g ranges over all assignments for Un′ that extend
f (that is, such that f (p) = g(p) for every p ∈ ∆n). It
follows from the definition φ∗ that

Pr
f∼φ∗
{( f (p1), . . . , f (pr)) < R} = Pr

g∼φ
{(g(p1), . . . , g(pr)) < R}

for every constraint (p1, . . . , pr,R) in Un. This gives a
way to construct, for every n ∈ N, a (2 · K · c)-bounded
fractional assignment for Un where K is the maximum
arity of a relation in Γ.

To finish the proof it only remains to prove inequal-
ity (3.4) for any constraint C = (p1, . . . , pr,R) in Un. Let



p be a distribution on Ar such that 1 − p(R) = loss(C)
is achieved. We can assume that loss(C) ≤ 1/2 since
otherwise there is nothing to prove.

Note that we can assume that p(t) is rational for
every t ∈ Ar. Let q be the distribution on Ar defined as

q(t) =

p(t)/p(R) t ∈ R
0 t < R

Consider constraint (q1, . . . , qr,R) where q1, . . . , qr are
the marginals of q. Since the number of constraints in
Un is finite we can assume that n′ has been picked such
that q ∈ ∆n′ (Ar). We claim that (g(q1), . . . , g(qr)) ∈ R
for any g in the support of φ. Indeed, if q′ = [t1, . . . , tn′ ]
is the multiset of tuples in Ar associated to q then by
Observation 2 (g(q1), . . . , g(qr)) = g′(t1, . . . , tn′ ) and the
latter tuple belongs to R because g′ is a polymorphism
of Γ.

We claim that dist(p′i , q
′
i) ≤ 2 · loss(C) for every

1 ≤ i ≤ r. Indeed, it follows from the definition of q and
the assumption that loss(C) ≤ 1/2 that

qi(a) ∈
[

pi(a) − loss(C)
1 − loss(C)

,
pi(a)

1 − loss(C)

]
⊆

⊆
[
pi(a) − loss(C), pi(a) + 2 · loss(C)

]
for every a ∈ A. We conclude that

Pr
g∈φ
{(g(p1), . . . , g(pr)) < R} ≤

≤ Pr
g∈φ
{∃i such that g(pi) , g(qi)} ≤ 2 · r · c · loss(C).

3.2 Algorithms Any sequence φn, n ∈ N, satisfying
condition (2) of Theorem 3.1 can be used to obtain a
(possibly efficient) randomized rounding procedure for
BLP, as follows. As we explained after Theorem 2.3,
if one has an optimal rational solution to BLP(I), one
can use a symmetric operation of appropriate arity n to
round this solution to obtain a solution for I. If the sym-
metric operation is drawn from a c-stable distribution
φn on n-ary symmetric polymorphisms (such as in The-
orem 3.1) then this procedure can be shown to give a
constant-factor approximation for Min CSP(Γ) (this fol-
lows from the proof of direction (2) ⇒ (1) of Theo-
rem 3.1). However it is not entirely clear how to ef-
ficiently sample from φn. We shall now give two ex-
amples of sequences of stable distributions that are nice
enough to admit efficiently sampling. The first of these
examples covers all problems Min CSP(Γ) that were
previously known to belong to APX.

Two classes of CSPs were introduced and studied
in [10], one is a subclass of the other. We need
two notions to define these classes. A distributive
lattice (L,∩,∪) is a (lattice representable by a) family
L of subsets of a set closed under intersection ∩ and
union ∪. We say that two constraint languages Γ1 =

{R(1)
1 , . . . ,R(1)

m } on domain A and Γ2 = {R(2)
1 , . . . ,R(2)

m } on

domain B, where the arities of corresponding relations
match, are homomorphically equivalent if there are two
mappings f : A → B, g : B → A such that for
all 1 ≤ i ≤ m, f (t1) ∈ R(2)

i for every t1 ∈ R(1)
i

and g(t2) ∈ R(1)
i for every t2 ∈ R(2)

i . The smaller
class consists of constraint languages Γ such that Γ is
homomorphically equivalent to a constraint language
Γ′ on some set L (of subsets) that has polymorphisms
∩ and ∪ where (L,∩,∪) is a distributive lattice. The
larger class is defined similarly, but we require Γ′ to have
polymorphism x∩ (y∪ z). Constraint languages k -IHBS
(defined in Section 1) belong to the larger, but not to
the smaller class (see Example 1). See [10] for other
specific examples of CSPs contained in these classes.
For the smaller class, Min CSP(Γ) was shown to belong
to APX in [32]. This result was extended to the larger
class in [14] (see Theorems 5.8 and 4.8 there). This
larger class is essentially the only class of constraint
languages Γ such that Min CSP(Γ) is currently known
to be in APX.

We will now show how stable distributions
on symmetric polymorphisms can be used to pro-
vide a constant-factor approximation algorithm for
Min CSP(Γ) for every Γ in this class. Observe that
if Γ and Γ′ are homomorphically equivalent then
Min CSP(Γ) and Min CSP(Γ′) are essentially the same
problem because there is an obvious one-to-one cor-
respondence between instances of Min CSP(Γ1) and
Min CSP(Γ2) (swapping R(1)

i and R(2)
i in all constraints)

and the maps f and g allow one to move between so-
lutions to corresponding instances without any loss of
quality. So, we can assume that A consists of subsets
of some set, and Γ has polymorphism x ∩ (y ∪ z) where
(A,∩,∪) is a distributive lattice.

Throughout the section, K will denote the maxi-
mum arity of a relation in such Γ. For every 1 ≤ h ≤ n,
let gh,n(x1, . . . , xn) be the n-ary symmetric operation on
A defined as ⋃

I⊆{1,...,n},|I|=h

⋂
i∈I

xi


Lemma 3.4. For all h, n ∈ N with

(
1 − 1

|A|K

)
n < h ≤ n,

we have gh,n ∈ Pol(Γ).

Proof. It is not difficult to see that x ∩ y is also a
polymorphism of Γ. Indeed, for every relation R and
every pair of tuples t, t′ ∈ R, we have that t∩ t′ = t∩ (t′∪
t′) and hence it belongs to R. We say that operation x∩y
is obtained from x∩ (y∪ z) by composition. Proceeding
in this way, we shall show that R has polymorphism
fh,n where fh,n(x0, x1, . . . , xn) is the (1 + n)-ary operation
defined as

x0 ∩ gh,n(x1, . . . , xn) = x0 ∩

 ⋃
I⊆{1,...,n},|I|=h

⋂
i∈I

xi




First, we observe that the m-ary operation x1∩ · · ·∩

xm preserves R as it can be obtained from composition



from x ∩ y by x1 ∩ (x2 ∩ (x3 ∩ · · · ∩ (xm−1 ∩ xm) · · · )).
In a bit more complicated fashion we can show that
x0 ∩ (x1 ∪ · · · ∪ xn) preserves R. If n = 3 it follows that
x0 ∩ ((x0 ∩ (x1 ∪ x2))∪ x3) is equal to x0 ∩ (x1 ∪ x2 ∪ x3)
(recall that ∪ and ∩ are the set union and intersection
respectively). The pattern generalizes easily to arbitrary
values for n. Finally, one obtains fh,n by suitably
composing x0 ∩ (x1 ∪ · · · ∪ xn) and x1 ∩ · · · ∩ xm.

Let R be a relation in Γ of arity, say, r and let
t1, . . . , tn be a list of (not necessarily distinct) tuples in
R. By the pigeon-hole principle, there exists a tuple t
appearing at least dn/|A|re times in t1, . . . , tn. It follows
from the choice of h and t, that for every I ⊆ {1, . . . , n},
with |I| = h, there exists i ∈ I such that t = ti. It then
follows that fh,n(t, t1, . . . , tn), which necessarily belongs
to R, is precisely gh,n(t1, . . . , tn)

For every n ∈ N, consider the n-ary fractional
operation φn with support

{
gh,n |

(
1 − 1

|A|K

)
n < h ≤ n

}
that distributes uniformly among the operations of its
support.

Lemma 3.5. There exists some c ≥ 0 such that φn is c-
stable for every n ∈ N.

Proof. Let a = (a1, . . . , an),b = (b1, . . . , bn) ∈ An.
Recall that from distributivity we assume that every
element a ∈ A is a subset of some set that we call
S . Note that , according to the definition of gh,n, an
element j ∈ S belongs to gh,n(a) if |a| j ≥ h where |a| j
is defined to be |{1 ≤ i ≤ n | j ∈ ai}|. Consequently, if
gh,n(a) , gh,n(b) then there exists some j ∈ S such that
|a| j ≤ h < |b| j or |b| j ≤ h < |a| j. It follows that

Pr
g∈φn
{g(a) , g(b)} ≤

1
n/|A|K

∑
j∈S

||a| j − |b| j| ≤

≤ |A|K · |S | · dist(a,b).

With the help of the sequence φn, we can ob-
tain a constant-factor approximation algorithm for
Min CSP(Γ). A different proof of this result was given
in [14].

Theorem 3.2. If a constraint language Γ has polymor-
phism x ∩ (y ∪ z) where (A,∩,∪) is a distributive lattice
then Min CSP(Γ) has a constant-factor approximation
algorithm.

Proof. Let I = (V, A,C ) be any instance of Min CSP(Γ)
and let pv(v ∈ V), pC(C ∈ C ) be an optimal solution of
BLP(I) with objective value OptLP(I). We can assume
that there exists some n ∈ N such that all the probabil-
ities in the solution are of the form n′/n where n′ is a
non-negative integer. Also we can assume that log(n) is
polynomial in the size of instance I.

Consider an assignment s for I obtained in the
following way: draw gh,n according to φn and assign

s(v) = gh,n(p′v) where p′v is any tuple such that every
a ∈ A appears exactly pv(a) · n times in p′v. It can be
shown (this is basically the proof of direction (2 ⇒ 1)
of Theorem 3.1) that there exists some c′ ≥ 1 such
that expected value of assignment s is c′ · OptLP(I). In
particular, c′ can be taken to be 2Kc where c is the
stability constant of φn.

We shall prove that there is a randomized
polynomial-time algorithm that constructs s. Recall that
we assume that every element a ∈ A is a subset of some
set that we call S . Hence, in order to compute gh,n(p′v),
it is only necessary to give an efficient procedure that
decides, for every j ∈ S , whether j ∈ gh,n(p′v). Note
that, according to the definition of gh,n, j ∈ gh,n(p′v) iff
the number, |p′v| j, of entries in tuple p′v that contain j is
at least h. This number can be easily computed from pv

as |p′v| j = n ·
∑
{a∈A| j∈a} pv(a).

We finish this subsection by introducing another
constraint language Γ such that Min CSP(Γ) admits a
constant-factor approximation algorithm. The interest
of this result is in the fact that it is the first known ex-
ample of a constraint language where Min CSP(Γ) has a
constant-factor approximation algorithm but is not in-
variant under totally symmetric polymorphisms of all
arities (i.e. Γ does not have the so-called width 1 prop-
erty [19]). This constraint language has domain A =

{−1, 0,+1} and contains relations R+ = {(a1, a2, a3) ∈
A3 | a1 + a2 + a3 ≥ 1} and R− = {(a1, a2, a3) ∈ A3 |

a1 + a2 + a3 ≤ −1}. This is the example of G. Kun [31]
that we mentioned after Theorem 2.3. It is easy to show
that this constraint language has no totally symmetric
polymorphism of arity 3.

However {R+,R−} have many symmetric polymor-
phisms. In particular, it is not difficult to see that, for all
h, n ∈ N with h < bn/3c, operation

sh,n(x1, . . . , xn) =


1 if h <

∑
i xi

0 if − h ≤
∑

i xi ≤ h
−1 if

∑
i xi < −h

preserves Γ. It is also easy to show that the n-ary
fractional operation with support {sh,n | h < bn/3c}
that distributes uniformly among the operations of its
support is 3-stable and that can be efficiently sampled.
Consequently, Min CSP({R+,R−}) has a constant-factor
approximation algorithm.

3.3 NP-hardness result We will now show that,
modulo P,NP, if Min CSP(Γ) admits a constant-factor-
approximation algorithm then Γ must have a near-
unanimity (NU) polymorphism. This identity is well
known in universal algebra [4] and its application in
CSP [7, 11, 19]. For example, every relation invariant
under an n-ary NU operation is uniquely determined by
its (n − 1)-ary projections [4], and NU polymorphisms
characterize CSPs of “bounded strict width” [19].



We can assume (proved in Lemma 3.7 of [14]) that
Γ contains all unary singleton relations {a}, a ∈ A. This
implies that polymorphisms of Γ are idempotent. It can
be easily derived from c-stability that then Γ must have
a near-unanimity polymorphism of some (large enough)
arity. Indeed, for any n-ary fractional operation φn with
support on symmetric polymorphisms of Γ and every
pair a, b ∈ A, the mass of operations g in the support
of φn such that g(b, a, . . . , a) , g(a, a, . . . , a) (= a) is
at most c

n . Since c is constant, if we choose n large
enough, some g in the support of φn will satisfy the near-
unanimity identity.

As an intermediate step, we consider the variant of
CSP(Γ) where some constraints in an instance can be
designated as hard, meaning that they must be satisfied
in any feasible solution, while the other constraints are
soft and can be falsified. It makes sense to investigate
approximation algorithms for this mixed version of
CSP (see, e.g. [21]). In particular, the value of a
feasible assignment for a instance of mixed Min CSP(Γ)
is defined to be the number (or total weight) of soft
constraints it violates. It is not difficult to see, and
was mentioned in [21] that mixed Min CSP(Γ) has
a constant-factor approximation algorithm if and only
if the ordinary, not mixed, Min CSP(Γ) has such an
algorithm.

The proof of our NP-hardness result makes use of
a hardness approximation for the problem Max ISk in
which the goal is to find a maximum independent set in a
given k-regular hypergraph. Recall that an independent
set in a hypergraph is a subset of its vertices that does
not include any of its hyperedges (entirely). For real
numbers 0 ≤ α, β ≤ 1, say that an algorithm (α, β)-
distinguishes Max ISk if, given a k-regular hypergraph
H = (V, E), it correctly decides between the following
two cases:

1. the size of the largest independent set of H is at
least β · |V |

2. the size of the largest independent set of H is at
most α · |V |.

Note that it does not matter what the algorithm does for
a hypergraph falling into neither of these cases.

Theorem 3.3. ([17]) For any integer k ≥ 3 and any real
number ε > 0, it is NP-hard to (ε, 1− 1

k−1−ε)-distinguish
Max ISk.

Theorem 3.4. Let Γ be a constraint language containing
all unary singleton relations. If Min CSP(Γ) admits a
constant-factor approximation algorithm then Γ has an
NU polymorphism, unless P = NP.

The key in proof is to show that, roughly, if Γ has
no NU polymorphisms then Γ can simulate (pp-define,
to be precise), for every k ≥ 3, a k-ary relation Rk

such that Rk ∩ {a, b}k = {a, b}k \ {(a, . . . , a)} for some

distinct a, b ∈ A. This relation, used in hard constraints,
can encode a k-uniform hypergraph, while soft unary
constraints using relation {a} simulate a choice of an
independent set. To make this precise we will need a
few definitions.

We say that R is pp-definable from Γ if there exists
a (primitive positive) formula

φ(x1, . . . , xk) ≡ ∃y1, . . . , yl ψ(x1, . . . , xk, y1, . . . , yl)

where ψ is a conjunction of atomic formulas with rela-
tions in Γ and eqA such that for every (a1, . . . , ak) ∈ Ak

(a1, . . . , ak) ∈ R if and only if φ(a1, . . . , ak) holds.

Note that in the definition of primitive positive formulas
we are slightly abusing notation by identifying a relation
with its relation symbol. It is shown in [14] that if Γ con-
tains eqA and R is pp-definable from Γ then the problems
Min CSP(Γ) and Min CSP(Γ ∪ {R}) simultaneously be-
long or do not belong to APX.

An n-ary operation on A is called a weak near-
unanimity (WNU) operation if it is idempotent and
satisfies the identities

f (y, x, . . . , x) = f (x, y, . . . , x) = · · · = f (x, x, . . . , y).

Proof. (of Theorem 3.4) Assume, towards a contradic-
tion, that Γ falsifies the statement of the Theorem.

The following lemma can be derived from a com-
bination of several known results. We give a (more or
less) direct proof for completeness.

Lemma 3.6. For every k ≥ 1, there is a k-ary relation, R,
pp-definable from Γ, and a, b ∈ A such that

R ∩ {a, b}k = {a, b}k \ {(a, . . . , a)}

Proof. It follows easily from [4] that if Pol(Γ) does not
contain any NU operation, then for every n ≥ 3 there
is a relation T ⊆ An pp-definable from Γ and a tuple
(a1, . . . , an) < T such that for every 1 ≤ i ≤ n there
exists ci ∈ A such that (a1, . . . , ai−1, ci, ai+1, . . . , an) ∈ T .
Setting n ≥ (k + 2)|A|2 it follows from the pigeon-
hole principle that there exists a, c ∈ A and I =

{i1, . . . , ik+2} ⊆ {1, . . . , n} of size k + 2 such that ai = a
and ci = c for every i ∈ I. Consider relation S defined
as

S = {(xi1 , . . . , xik+2 ) | (x1, . . . , xn) ∈ T,∀i < I(xi = ai)}

Clearly, S is pp-definable using T and the unary single-
tons. It follows that S is pp-definable from Γ as well.
We have that (a, a, . . . , a) < S , t1 = (c, a, . . . , a) ∈ S ,
t2 = (a, c, . . . , a) ∈ S , . . . , and tk+2 = (a, a, . . . , c) ∈ S .
We can also assume that, in addition to the previous
property, S is symmetric, meaning that if (x1, . . . , xk+2)
belongs to S then so does any tuple obtained by permut-
ing its entries. This is because we can always replace



S by the relation {(x1, . . . , xk+2) | (xσ(1), . . . , xσ(k+2)) ∈
S for every permutation σ} which is pp-definable from
S . Since, by assumption, Min CSP(Γ) admits a
constant-factor approximation algorithm it follows from
Theorem 9 of [14] that Γ has a certain property, called
bounded width (or else P = NP). Theorem 2.8 in
[29] states that this property implies that Pol(Γ) contains
WNU polymorphisms g3, g4 of arity 3 and 4, respec-
tively, such that g3(y, x, x) = g4(y, x, x, x) holds for for
every x, y ∈ A. The proof of Theorem 2.8 in [29] shows
how to obtain gn for n = 3, 4, but the proof generalizes
immediately to show that, for each n ≥ 3, Γ has an n-
ary WNU polymorphism gn, of arity n, and the identity
gn(y, x, . . . , x) = gn′ (y, x, . . . , x) holds for all n, n′.

Let b = gn(c, a, . . . , a) and let j be minimum with
the property that S contains every tuple t ∈ {a, b}k+2 with
at least j b’s. We claim that 1 ≤ j ≤ 3. The lower bound
follows from the fact that (a, . . . , a) < S . For the upper
bound, it follows from the fact every gn is a WNU (and
so idempotent), that every tuple t ∈ {a, b}k+2 with j(≥ 3)
b’s can be obtained by applying g j component-wise to
tuples ti1 , . . . , ti j where i1, . . . , i j are the components in t
that contain a b. Since S is symmetric then it does not
contain any tuple in {a, b}k+2 with less than j b’s.

Finally, consider relation R defined as

R = {(x1, . . . , xk) | (b, . . . , b︸  ︷︷  ︸
j−1

, a, . . . , a︸  ︷︷  ︸
3− j

, x1 . . . , xk) ∈ S }

By a similar reasoning than before we infer that R is pp-
definable from Γ. It follows from the definition that R, a
and b satisfy the statement of the lemma.

Lemma 3.7. For every k ≥ 1, there is a linear algorithm
that, for a given k-regular hypergraph H = (V, E),
returns an instance I of mixed Min CSP(Γ) such that the
value of optimal solution for I is 1 − m/|V | where m is
the set of the maximum independent set in H.

Proof. Fix k ≥ 1 and let R and a, b as in Lemma
3.6. Let ∃y1, . . . , yl ψ(x1, . . . , xk, y1, . . . , yl) be a prim-
itive positive formula defining R from Γ. It is
well known that ψ can be seen as an instance J of
CSP(Γ). More precisely, define J to be the instance
that has variables x1, . . . , xk, y1, . . . , yl and contains for
every atomic formula S (v1, . . . , vr) in ψ, the constraint
((v1, . . . , vr), S ). It follows that for any assignment s :
{x1, . . . , xk, y1, . . . , yl} → A, s is a solution of J if and
only if ψ(s(x1), . . . , s(xk), s(y1), . . . , s(yl)) holds.

Consider the algorithm that, given a k-regular hy-
pergraph, H = (V, E), constructs an instance I of mixed
Min CSP(Γ) as follows. The set of variables of I con-
tains, in addition to all nodes in V , some other fresh
variables to be introduced later. Then, for every hyper-
edge E = {v1, . . . , vk}, add a copy of J where the vari-
ables have been renamed so that x1 = v1, . . . , xk = vk

and y1, . . . , yn are different fresh variables (different for
each hyperedge). All the constraints added so far are

designated as hard. Finally, add for every v ∈ V a soft
constraint (v, {a}) requiring v to take value a.

Note that as k is fixed, this can be carried out in
linear time. It follows from the construction of I that for
every independent set, X, of H there is an assignment
for I satisfying all hard constraints that maps every node
in X to a and every node in V \ X to b. This assignment
violates exactly |V |−|X| soft constraints. Conversely, for
every assignment s in I, the set X = {v ∈ V | s(v) = a} is
an independent set of H.

We are finally in a position to obtain a contra-
diction. As discussed above, if Min CSP(Γ) admits a
constant-factor approximation algorithm then so does its
mixed variant. Let δ satisfy 0 < δ/2 ≤ 1 − c · δ where c
is the approximation factor for the mixed Min CSP(Γ)
algorithm. Lemma 3.7 immediately gives, for every
k, a polynomial time algorithm that (1 − c · δ, 1 − δ)-
distinguishes Max ISk but this task is NP-hard, as fol-
lows by setting ε = δ/2 and k = 1 + 2/δ in Theorem
3.3.
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