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Abstract 12 

The opening of the North Atlantic region was one of the most important geodynamic 13 

events that shaped the present-day passive margins of Europe, Greenland and North 14 

America. Although well-studied, much remains to be understood about the evolution of 15 

the North Atlantic, including the role of the Jan Mayen Microplate Complex (JMMC). 16 

Geophysical data provide an image of the crustal structure of this microplate and enable 17 

a detailed reconstruction of the rifting and spreading history. However, the mechanisms 18 

that cause separation of microplates between conjugate margins are still poorly 19 

understood. In this contribution, we assemble recent models of rifting and passive 20 

margin formation in the North Atlantic and discuss possible scenarios that may have led 21 

to formation of the JMMC. This event has likely been triggered by regional plate-22 

tectonic reorganisations rejuvenating inherited structures. The axis of rifting and 23 

continental breakup and the width of the JMMC was controlled by old Caledonian fossil 24 

subduction/suture zones. Its length is related to E-W oriented deformation and fracture 25 

zones possibly linked to rheological heterogeneities inherited from pre-existing 26 

Precambrian terrane boundaries. 27 

(end of abstract) 28 

The North Atlantic region inspired some aspects of plate tectonic theory (Fig. 1). These 29 

include the Wilson Cycle which predicts the closure of oceans leading to continent-30 

continent collision followed by their reopening along former sutures (Wilson 1966, 31 

Dewey & Spall 1975). The North Atlantic is often considered to be a text-book example 32 
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of an ocean that opened along the former sutures of at least two temporarily distinct 33 

orogenic events – the Neoproterozoic Grenvillian-Sveconorwegian and the early 34 

Palaeozoic Caledonian-Variscan orogenies (Ryan & Dewey, 1997; Vauchez et al., 35 

1997; Bowling & Harry, 2001; Thomas, 2006; Misra, 2016). Nevertheless, some 36 

aspects of the North Atlantic geology remain enigmatic, such as the formation of the 37 

North Atlantic Igneous Province (NAIP) (Vink, 1984; White & McKenzie, 1989; 38 

Foulger & Anderson, 2005; Meyer et al., 2007), the development of the volcanic 39 

passive margins (Franke, 2013; Geoffroy et al., 2015), the formation of Iceland and the 40 

development of the Jan Mayen Microplate Complex (JMMC), also referred to as the Jan 41 

Mayen Microcontinent (Foulger et al., 2003; Gaina et al., 2009; Gernigon et al., 2015). 42 

The JMMC comprises both oceanic and continental crust, probably highly thinned and 43 

magmatically modified (Kuvaas & Kodaira, 1997; Blischke et al., 2016 and references 44 

therein). Large parts of it remain to be studied, however. Other continental fragments 45 

have been identified in the North Atlantic region (Nemčok et al., 2016) and more may 46 

underlie parts of Iceland and/or the Iceland-Faroe Ridge (Fedorova et al., 2005; 47 

Foulger, 2006; Paquette et al., 2006; Gernigon et al., 2012; Torsvik et al., 2015). 48 

 49 

Geological Setting of the North Atlantic region 50 

Following the collision of Laurentia, Baltica and Avalonia in the Ordovician and 51 

Silurian (Roberts 2003, Gee et al. 2008, Leslie et al. 2008), and subsequent 52 

gravitational extensional collapse in the late orogenic phases (Dewey, 1988; Dunlap & 53 

Fossen, 1998; Rey et al., 2001; Fossen, 2010), the North Atlantic region experienced 54 

lithospheric delamination and associated uplift over a period of 30-40 Ma, followed by 55 

a long period of rifting (Andersen et al., 1991; Dewey et al., 1993). Phases of extension 56 

and cooling transitioned into continental rifting that led to final continental breakup and 57 

seafloor spreading between Greenland and Europe in the early Palaeogene (Talwani & 58 

Eldholm 1977, Skogseid et al. 2000). During the late Mesozoic, continental breakup 59 

propagated simultaneously southward from the Eurasia Basin and northward from the 60 

Central Atlantic initially into the Labrador Sea- Baffin Bay rift system and then into the 61 

North Atlantic (Srivastava, 1978; Doré et al., 2008). Whether rifting, continental 62 

breakup, and associated magmatism was initiated by active mantle upwelling, for 63 

example a deep mantle plume (White & McKenzie, 1989; Hill, 1991; Nielsen et al., 64 

2002; Rickers et al., 2013) or plate-driven processes (Nielsen et al., 2007; Ellis & 65 
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Stoker, 2014) (“bottom-up” or “top down” views) is still under debate (van Wijk et al., 66 

2001; Foulger et al., 2005b; Lundin & Doré, 2005; Simon et al., 2009; Peace et al., 67 

2017a).  68 

The North Atlantic spreading axis initially comprised the Reykjanes Ridge, the Aegir 69 

Ridge, east of the JMMC and the Mohns Ridge farther north (Talwani & Eldholm, 70 

1977; Nunns, 1982, Fig. 1). Independent rotation of the JMMC resulted in fan-shaped 71 

opening of the Norway Basin, during the Eocene (Nunns, 1982; Gaina et al., 2009; 72 

Gernigon et al., 2012). This reconfiguration led to a second phase of breakup and the 73 

separation of the JMMC from Greenland at approximately magnetic anomaly chron C7 74 

(~24 Ma) (Vogt et al., 1970; Gaina et al., 2009; Gernigon et al., 2015). After a period of 75 

simultaneous rifting on both the Aegir Ridge and the complex JMMC/proto-Kolbeinsey 76 

rift/ridge system (Doré et al., 2008; Gaina et al., 2009; Gernigon et al., 2015), the Aegir 77 

Ridge was abandoned in the Oligocene and the spreading centre relocated to the west of 78 

the JMMC onto the Kolbeinsey Ridge. The present-day North Atlantic shows evidence 79 

for a dynamic contribution of the topography, requiring an anomalous pressure anomaly 80 

uplifting the lithosphere and possibly linked to the origin of Iceland (Schiffer & 81 

Nielsen, 2016). 82 

Although the history of rifting in the North Atlantic is becoming increasingly better 83 

constrained, the mechanisms controlling the location, timing, and formation of rifts, 84 

fracture zones, and associated microcontinents are still poorly understood. The 85 

formation of the JMMC has been traditionally attributed to mantle plume impingement 86 

and subsequent lithospheric weakening (Müller et al. 2001). More recently it has been 87 

suggested to result from the breaching of lithosphere weakened as a result of pre-88 

existing structures (e.g., Schiffer et al. 2015b). The final separation of the JMMC is also 89 

spatially and temporally linked to enhanced magmatic activity and the subsequent 90 

formation of Iceland (Doré et al., 2008; Tegner et al., 2008; Larsen et al., 2013; Schiffer 91 

et al., 2015b) but it lacks the classic features of a volcanic passive margin (e.g., 92 

underplating, seaward dipping reflectors) along its western continent-ocean boundary, 93 

conjugate to the East Greenland margin (Kodaira et al., 1998; Breivik et al., 2012; 94 

Peron-Pinvidic et al., 2012; Blischke et al., 2016). In this paper, we discuss the possible 95 

role of pre-existing structure and inheritance in formation of the JMMC as an extension 96 

to the Wilson Cycle and plate tectonic theory. 97 

 98 
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JAN MAYEN MICROPLATE COMPLEX 99 

The JMMC has a bathymetric signature stretching over 500 km from north to south in 100 

the central part of the Norwegian-Greenland Sea (Fig. 1) (Gudlaugsson et al. 1988, 101 

Kuvaas & Kodaira 1997, Blischke et al. 2016). It is bordered to the north by the Jan 102 

Mayen Fracture Zone (JMFZ) and the volcanic complex of Jan Mayen Island. To the 103 

south, it is bordered by the NE coastal shelf of Iceland which is part of the Greenland-104 

Iceland-Faroe Ridge (GIFR), a zone of shallow bathymetry approximately 1100 km 105 

length (Figs. 1 and 2). The JMMC separates the Norway Basin to the east from the 106 

Iceland Plateau to the west (Vogt et al. 1981, Kandilarov et al. 2012, Blischke et al. 107 

2016).  108 

The JMMC crust has been inferred to be continental primarily on the basis of seismic 109 

refraction data (Kodaira et al., 1997; Kodaira et al., 1998; Mjelde et al., 2007a; Breivik 110 

et al., 2012; Kandilarov et al., 2012). However, for large areas of the JMMC crustal 111 

affinity remains uncertain, particularly near Iceland in the south (Breivik et al., 2012; 112 

Brandsdóttir et al., 2015) due to the lack of geophysical data and boreholes (see 113 

Gernigon et al., 2015 and Blischke et al., 2016 for data coverage). Fundamentally, the 114 

distribution of oceanic versus continental crust, as well as the nature of the deformation 115 

expected between the JMMC, Iceland and the Faroe continental block are unknown. 116 

Recent high-resolution aeromagnetic data and pre-rift reconstructions of the Norwegian-117 

Greenland Sea show that the southern JMMC underwent extreme thinning during the 118 

first phase of breakup and, as it now has a width of ~250-300 km, 400% of extension 119 

has occurred compared to its pre-drift configuration (Gernigon et al. 2015). It seems 120 

unlikely that this extreme extension is entirely accommodated by the thinning of 121 

continental crust. We cannot rule out the possibility that the southern JMMC partly 122 

comprises igneous crust (Gernigon et al., 2015) or exhumed mantle (Blischke et al., 123 

2016).  124 

An oceanic fracture zone might be present south of the JMMC between the northeastern 125 

tip of the Iceland Plateau and the Faroe Islands in the southeast (i.e. the postulated 126 

Iceland-Faroe Fracture Zone, IFFZ, see Fig. 1 and 2, e.g. Blischke et al. 2016). 127 

However, an oceanic fracture zone or transform requires oceanic lithosphere on both 128 

sides and, given the uncertain crustal affinity this interpretation is speculative. A 129 

lineament exists north of the Iceland-Faroe Ridge (IFR. the part of the GIFR east of and 130 

including Iceland) but magnetic and gravity potential-field data do not provide 131 
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conclusive evidence for a real oceanic transform or fracture zone (Fig. 3). Gernigon et 132 

al. (2012) showed that continuation of the magnetic chrons mapped in the Norway 133 

Basin and the high-magnetic trends observed along the IFR remain unclear, notably due 134 

to the low quality, the sparse distribution of the magnetic profiles along the IFR and 135 

later igneous overprint related to the formation of Iceland. No magnetic chrons are 136 

identified in the broad NE-SW magnetic lineations, especially west of the Faroe 137 

Platform. Additional magnetic disparities are associated with lateral variations of 138 

basement depth and possible discrete ridge jumps (e.g. Smallwood & White, 2002; 139 

Hjartarson et al., 2017). The GIFR comprises anomalous thick crust (>20-25 km) 140 

possibly associated with massive crustal underplating, which is generally attributed to 141 

increased magmatism (Staples et al., 1997; Richardson et al., 1998; Smallwood et al., 142 

1999; Darbyshire et al., 2000; Greenhalgh & Kusznir, 2007). The origin and nature of 143 

the GIFR remains controversial (McBride et al., 2004), also because the crust shows 144 

atypical geophysical properties and differs from “normal” continental and oceanic crust 145 

(Bott, 1974; Foulger et al., 2003). A recent paper (Hjartarson et al., 2017) favours an 146 

oceanic origin of the IFR, but the authors do not exclude the presence of seaward 147 

dipping reflectors and old basement in the expected "oceanic domain". Some authors 148 

suggested that the excess thickness under Iceland may be partly attributed to buried 149 

continental crust possibly extending up to the JMMC and Iceland (Fedorova et al., 150 

2005; Foulger, 2006). Continental zircons and geochemical analysis of lavas in 151 

southeast Iceland support the presence of continental material (Paquette et al., 2006; 152 

Torsvik et al., 2015). The Aegir Ridge and the Reykjanes Ridge might have never 153 

connected during the early stage of spreading of the Norway Basin involving complex 154 

overlapping spreading segments along the IFR. Such overlapping spreading ridges may 155 

have preserved continental lithosphere in between (Gaina et al., 2009; Gernigon et al., 156 

2012, 2015; Ellis & Stoker, 2014). Ellis & Stoker (2014) suggested that no complete 157 

continental breakup along the IFR happened before the separation of the JMMC and the 158 

appearance of Iceland (first dated eruptions at ~18 Ma). Gernigon et al. (2015) 159 

suggested earlier breakup possibly between C22/C21 (~47 Ma) and C6 (~24Ma) during 160 

the onset of significant rifting in the southern part of the JMMC. The continental 161 

lithosphere east of Iceland (the IFR, Fig. 1) probably didn’t entirely breach in the early 162 

rifting of the North Atlantic (e.g. C24r-C22, Early Eocene). To avoid further ambiguity, 163 

we refer to it as the Iceland-Faroe accommodation zone (IFAZ). Consequently, the 164 

IFAZ may characterize local continental transform margin segments, a diffuse strike-165 
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slip fault zone and/or a more complex oblique/transtensional continental rift system that 166 

initially formed along the trend pf the proto IFR. 167 

MICROPLATE FORMATION 168 

An aspect of the Wilson Cycle that requires more clarification (Thomas, 2006; Huerta & 169 

Harry, 2012; Buiter & Torsvik, 2014) is whether the locations of major, pre-existing 170 

structures can explain the formation, location and structure of microplates such as the 171 

JMMC (Schiffer et al. 2015a). Understanding the formation of continental fragments is 172 

crucial to understanding continental breakup (Lavier & Manatschal, 2006; Peron-173 

Pinvidic & Manatschal, 2010). Microcontinents and continental ribbons represent one 174 

category of continental fragments produced during rifting and breakup (Lister et al., 175 

1986; Peron-Pinvidic & Manatschal, 2010; Tetreault & Buiter, 2014).  176 

We follow the original definition of a microcontinent Scrutton (1976) that it must 177 

contain: (i) pre-rift basement rocks, (ii) crust and lithosphere of continental affinity, 178 

horizontally displaced from the original continent and surrounded by oceanic crust, and 179 

(iii) a distinct morphological feature in the surrounding oceanic basins. Such a system 180 

between two pairs of conjugate margins may also include isolated fragments of oceanic 181 

crust and lithosphere that deformed together before final and definitive isolation from 182 

the conjugate continents. To make a distinction, we call such a feature a microplate 183 

complex, and it can involve several sub-plates of oceanic and/or continental affinity. A 184 

true microcontinent will, therefore, comprise just one kind of microplate complex. The 185 

most important aspect of the present study is that such a microplate complex, like a true 186 

microcontinent, is separated from the main continental conjugate margins by two or 187 

more spreading ridges. The cause, history and processes leading to relocalisation of the 188 

complex are not well understood. Suggested mechanisms include the impact of a mantle 189 

plume (Müller et al., 2001; Gaina et al., 2003; Mittelstaedt et al., 2008), global plate-190 

tectonic reorganisation (Collier et al., 2008; Gaina et al., 2009), and ridge "jumps" that 191 

exploit inhomogeneities, weaknesses and rheological contrasts in the continental 192 

lithosphere after the abandonment of a previous spreading ridge (Abera et al. 2016, 193 

Sinha et al. 2016). This could be nascent or inherited underplating (Yamasaki & 194 

Gernigon 2010) and/or fossil suture zones  Strike-slip mechanisms under different 195 

transtensional and transpressional stress regimes have also been proposed to generate 196 

microcontinents (Nemčok et al. 2016). Microplates can also result from crustal 197 

fragmentation during volcanic margin formation by large-scale continent-vergent faults 198 
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formed/activated by strengthening of the deep continental crust – the so-called “C-199 

Block” mechanism (Geoffroy et al. 2015).  200 

Whittaker et al. (2016) proposed a model for microcontinent formation between 201 

Australia and Greater India whereby changes in plate motion direction caused 202 

transpression and stress buildup across large-offset fracture zones, leading to transfer of 203 

deformation to a less resistive locus (Fig. 4). Their proposed model is as follows. 204 

Initially NW-SE spreading separated Australia from Greater India with transtensional or 205 

strike-slip motion along the Wallaby-Zenith Fracture Zone from 133 Ma. A plume 206 

(Kerguelen) is postulated to have been in the vicinity and may have maintained and/or 207 

enhanced crustal weakening of the SE Greater India rifted margin. Reorganisations of 208 

motion between Australia and Greater India to a NNW-SSE direction at 105 Ma 209 

resulted in transpression along the NW-SE-oriented Wallaby-Zenith Fracture Zone. As 210 

a result, the spreading centre relocated to the west along the continental margin of India, 211 

calving off the Batavia and Gulden Draak microcontinents, and resulting in 212 

abandonment of the Dirck Hartog spreading ridge to the south (Fig. 4).  213 

 214 

NORTH ATLANTIC – STRUCTURE AND INHERITANCE 215 

The classic Wilson Cycle model envisages closure and reopening of oceans along 216 

continental sutures. In this model, breakup is thus guided by lithospheric inheritance 217 

from previous orogenesis (Wilson 1966, Dewey & Spall 1975). Inheritance, 218 

rejuvenation and control of pre-existing structure on localising deformation occurs on 219 

various scales and styles beyond large-scale breakup of continents (Holdsworth et al., 220 

1997; Manatschal et al., 2015; Peace et al., 2017b). Inherited features may include 221 

crustal or lithospheric thickness variations, structural and compositional heterogeneity 222 

across terrane boundaries, accreted terranes, sedimentary basins and/or intruded, 223 

metamorphosed and metasomatised material and fabrics. These heterogeneities may 224 

also cause thermal and rheological anomalies that vary in size, depth and degree of 225 

anisotropy, that can potentially be rejuvenated given the appropriate stresses 226 

(Krabbendam & Barr, 2000; Tommasi et al., 2009; Manatschal et al., 2015; Tommasi & 227 

Vauchez, 2015). Inheritance is an important control on rifting, passive-margin end-228 

member style (e.g., volcanic or non-volcanic) (Vauchez et al., 1997; Bowling & Harry, 229 

2001; Chenin et al., 2015; Manatschal et al., 2015; Schiffer et al., 2015b; Svartman 230 

Dias et al., 2015; Duretz et al., 2016; Petersen & Schiffer, 2016), the formation of 231 



8 
 

fracture zones, transform faults, transform margins (Thomas, 2006; Gerya, 2012; Doré 232 

et al., 2015), magmatism (Hansen et al. 2009, Whalen et al. 2015), compressional 233 

deformation (Sutherland et al. 2000, Gorczyk & Vogt 2015, Heron et al. 2016), the 234 

breakup of supercontinents and supercontinent cycles (Vauchez et al., 1997; Audet & 235 

Bürgmann, 2011; Frizon de Lamotte et al., 2015). 236 

 237 

Precambrian orogenies 238 

In Canada, Greenland and Northwest Europe, multiple suturing events have built 239 

continental lithosphere that comprises Archean-to-early Proterozoic cratons surrounded 240 

by younger terranes. Preserved sutures and subduction zones in the interior of the 241 

cratons have survived subsequent amalgamation demonstrating that crustal and upper 242 

mantle heterogeneities may persist for billions of years (Balling 2000, van der Velden & 243 

Cook 2005). Terrane boundaries of any age may act as rheological boundaries that 244 

influence or control crustal deformation long after their formation and independently of 245 

subsequent plate motions. Major Precambrian terrane boundaries in the North Atlantic 246 

region are shown in Figure 2.  247 

Multiple Precambrian suturing events have contributed to the amalgamation of the 248 

Baltic Shield in Scandinavia. The Lapland-Kola mobile belt formed by accretion of 249 

various Archean to Palaeoproterozoic terranes, including the oldest Karelian terrane 250 

(Gorbatschev & Bogdanova 1993, Bergh et al. 2012, Balling 2013). This was followed 251 

by the late Palaeoproterozoic Svecofennian accretion, the formation of the 252 

Transscandinavian Igneous Belt, and finally the Meso-Neoproterozoic Sveconorwegian 253 

orogeny (Gorbatschev & Bogdanova, 1993; Bingen et al., 2008; Bergh et al., 2012; 254 

Balling, 2013; Slagstad et al., 2017). 255 

Precambrian terranes are also preserved in Greenland, the oldest of which are Archean 256 

in age and include the North Atlantic and Rae Cratons (St-Onge et al. 2009). The 257 

components that together constitute the North Atlantic Craton formed 3850 – 2550 Ma 258 

(Polat et al. 2014) and the Rae Craton formed 2730 – 2900 Ma (St. Onge et al. 2009). 259 

Paleoproterozoic terranes in Greenland surround the North Atlantic Craton and include 260 

(i) the Nagssugtoqidian Orogen (Van Gool et al. 2002), (ii) the Rinkian Orogen 261 

(Grocott & McCaffrey 2016) and (iii) the Ketilidian Mobile Belt (Garde et al. 2002). 262 
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The Precambrian terranes of northeast Canada, Greenland and Scandinavia are thought 263 

to have formed as coherent mobile belts (Kerr et al., 1996; Wardle et al., 2002; St-Onge 264 

et al., 2009). As Greenland and North America have not undergone significant relative 265 

lateral motions or rotation the interpretation of conjugate margins is relatively simple 266 

(Kerr et al., 1996; Peace et al., 2016). In contrast, whether or not Baltica has 267 

experienced rotation (Gorbatschev & Bogdanova 1993, Bergh et al. 2012) is currently 268 

unresolved.  269 

 270 

Caledonian Orogeny 271 

Formation of the Ordovician to Devonian Caledonian-Appalachian Orogen preceded 272 

rifting, ocean spreading and subsequent passive margin formation of the present-day 273 

North Atlantic. This Himalaya-style orogen involved at least two phases of subduction: 274 

(i) the early eastward-dipping Grampian-Taconian event and (ii) the late westward-275 

dipping Scandian event that led to the assembly of part of Pangaea (Roberts 2003, Gee 276 

et al. 2008). During orogenesis the structural fabric of the crust and lithospheric mantle 277 

can be reoriented resulting in fabric anisotropy that localises subsequent deformation 278 

(Tommasi et al., 2009; Tommasi & Vauchez, 2015).  279 

High-velocity, lower-crustal bodies (HVLCB) are observed along many passive 280 

continental margins (Lundin & Doré, 2011; Funck et al., 2016a) and have been 281 

traditionally associated with magmatic underplating or intrusions into the lower crust of 282 

passive margins during breakup (Olafsson et al. 1992, Eldholm & Grue 1994, R. Mjelde 283 

et al. 2007, White et al. 2008, Thybo & Artemieva 2013). However, with improved data 284 

alternative interpretations have been proposed such as syn-rift serpentinisation of the 285 

uppermost mantle under passive margins (Ren et al., 1998; Reynisson et al., 2010; 286 

Lundin & Doré, 2011; Peron-Pinvidic et al., 2013). It has also been suggested that part 287 

of the continental HVLCB may be remnants of inherited metamorphosed crust or 288 

hydrated meta-peridotite that existed prior to initial rifting and continental breakup 289 

(Gernigon et al., 2004; Gernigon et al., 2006; Fichler et al., 2011; Wangen et al., 2011; 290 

Mjelde et al., 2013; Nirrengarten et al., 2014). 291 

Mjelde et al. (2013) have identified a number of such “orogenic” HVLCB along 292 

different parts of the North Atlantic passive margins (the South- and Mid-Norwegian 293 

margin, East Greenland margin, SW Barents Sea margin, Labrador margin), which may 294 
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have higher than normal upper mantle velocities (Vp > 8.2 km/s). These may comprise 295 

eclogitised crust and be part of the Iapetus Suture. Petersen & Schiffer (2016) proposed 296 

a mechanism to explain the presence of old inherited HVLCB beneath the rifted 297 

margins and concluded that they could represent preserved and subsequently deformed 298 

pre-existing subduction/suture zones that were activated during rifting and continental 299 

breakup. Eclogite in a fossil slab has a similar but weaker rheology than the surrounding 300 

“dry olivine” lithosphere (after Zhang & Green, 2007), while a fossil, hydrated mantle 301 

wedge acts as an effective and dominant weak zone. Eclogites of the Bergen Arcs 302 

(Norway) show softening due to fluid infiltration Jolivet et al. (2005). These ultra-high 303 

velocity HVLCB (ultra-HVLCB) are distributed primarily along the mid-Norwegian 304 

margin and the Scoresbysund area in East Greenland (Mjelde et al., 2013). This 305 

suggests that at least one fossil subduction zone may have been subject to rift-related 306 

deformation and exhumation (Petersen & Schiffer 2016). 307 

Structures in the Central Fjord area of East Greenland (Schiffer et al. 2014), the Flannan 308 

reflector in northern Scotland (Snyder & Flack 1990, Warner et al. 1996) and the 309 

Danish North Sea (Abramovitz & Thybo 2000) have been interpreted as preserved 310 

orogenic structures of Caledonian age (i.e. fossil subduction or suture zones) (Fig. 2). 311 

Schiffer et al. (2015a) proposed that the Central Fjord structure and the Flannan 312 

reflector once formed a contiguous eastward-dipping subduction zone, possibly of 313 

Caledonian age, that may have influenced rift, magmatic, and passive-margin evolution 314 

in the North Atlantic (Figure 2). Combined geophysical-petrological modelling of the 315 

Central Fjord structure suggests it comprises a relict hydrated mantle wedge associated 316 

with a fossil subduction zone (Schiffer et al. 2015b, Schiffer et al. 2016). The most 317 

recent Caledonian subduction event was associated with the Scandian phase leading to 318 

the westward subduction of Iapetus crust (Roberts 2003, Gee et al. 2008). Evidence of 319 

this subduction zone in the form of a preserved slab has not been detected in the 320 

lithospheric mantle of the Norwegian Caledonides. However, structures in the crust and 321 

upper mantle in the Danish North Sea detected by the Mona Lisa experiments 322 

(Abramovitz & Thybo 2000) might be the trace of this subduction. HVLC indicative of 323 

eclogite along the Mid-Norwegian margin (Mjelde et al., 2013) and Norwegian North 324 

Sea (Christiansson et al., 2000; Fichler et al., 2011) might also represent deformed 325 

remnants of the Scandian subduction. 326 

Fracture and accommodation zones 327 
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The JMMC is bound by two tectonic boundaries including the East and West Jan 328 

Mayen Fracture Zones in the north and the postulated Iceland-Faroe accommodation 329 

zone (IFAZ) in the south. These tectonic boundaries accommodated and allowed the 330 

non-rigid microplate to move independently from the surrounding North Atlantic 331 

oceanic domains (Gaina et al., 2009; Gernigon et al., 2012, 2015).  332 

Relationships between pre-existing structures and the formation of large-scale shear and 333 

fracture zones, oceanic transforms or other accommodation/deformation zones have 334 

been proposed in previous work (Mohriak & Rosendahl, 2003; Thomas, 2006; Taylor et 335 

al., 2009; de Castro et al., 2012; Gerya, 2012; Bellahsen et al., 2013; Gibson et al., 336 

2013). The location, orientation and nature of fracture zones in the North Atlantic may 337 

be linked to lithospheric inheritance (Behn & Lin, 2000). For example, the Charlie-338 

Gibbs Fracture Zone between Newfoundland and the British/Irish shelf has been linked 339 

to the location of the Iapetus suture and inheritance of compositional and structural 340 

weaknesses (Tate 1992, Buiter & Torsvik 2014). The Bight Fracture Zone might be 341 

linked to the Grenvillian front, which is exposed in Labrador (Lorenz et al. 2012). 342 

The IFAZ could represent a complex discontinuity zone along the present-day IFR. 343 

Along this transition zone between the Reykjanes, Aegir and Kolbeinsey ridges 344 

fragments of continental crust may be preserved together with discontinuous and/or 345 

overlapping oceanic fragments later affected by significant magmatic overprint (the 346 

Icelandic “swell”, Bott, 1988). In the geodynamic context, it may have formed along the 347 

fossil subduction zone proposed to have existed between the East Greenland and 348 

British/Irish margins (Fig. 2). It has also been proposed that it may have comprised part 349 

of the “Kangerlussuak Fjord tectonic lineament”, a NW-SE-oriented lineament in east 350 

Greenland (Tegner et al. 2008).  351 

Other deformation zones may correlate with Precambrian basement terrane boundaries 352 

in Scandinavia. These are overprinted by Caledonian deformation, obscuring older 353 

relationships (cf. CDF in Fig. 2) and generating new orogenic fabrics (Vauchez et al., 354 

1998). The westward extrapolation of the northern Sveconorwegian suture may 355 

correlate with the East Jan Mayen Fracture Zone (EJMFZ), whilst extrapolation of the 356 

Svecofennian-Karelian suture may correspond to the formation of the Senja Fracture 357 

Zone (SFZ) (Doré et al. 1999, Fichler et al. 1999, Indrevær et al. 2013). Extrapolation 358 

of the Karelian-Lapland Kola terrane suture converges with the complex DeGeer 359 

Fracture Zone that marks the transition of the North Atlantic to the Arctic Ocean (Engen 360 
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et al. 2008). These correlations suggest that Precambrian basement inheritance localises 361 

strain during initial continental rifting. However, the exact location and grade of 362 

deformation of Precambrian sutures under the Caledonides and the highly stretched 363 

continental margins is often poorly known or not known at all. Thus, any correlation is 364 

speculative and requires future work. 365 

Iceland and magmatic evolution 366 

Factors including the thermal state of the crust and mantle, small scale convection, 367 

upwelling, composition, volatile content, and lithospheric and crustal structure may all 368 

play roles (King & Anderson, 1998; Asimow & Langmuir, 2003; Korenaga, 2004; 369 

Foulger et al., 2005a; Hansen et al., 2009; Brown & Lesher, 2014; Chenin et al., 2015; 370 

Hole & Millett, 2016). 371 

Inheritance may influence the amount of volcanism produced in the North Atlantic 372 

because volcanic passive margins preferentially develop in regions of heterogeneous 373 

crust where Palaeozoic orogenic belts separate Precambrian terranes. Inversely, magma-374 

poor margins often develop in the interiors of orogenic belts with either uniform-375 

Precambrian or younger-Palaeozoic crust (Bowling & Harry, 2001). For example, the 376 

intersection of the East Greenland-Flannan fossil subduction zone with the North 377 

Atlantic rift axis correlates spatially and temporally with pre-breakup magmatism, the 378 

formation of JMMC and the occurrence of the Iceland melt anomaly along the sub-379 

parallel GIR (Schiffer et al., 2015b). 380 

Prior to breakup (ca. 55 Ma), magma was dominantly emplaced along and south-west of 381 

the proposed East Greenland-Flannan fossil subduction zone (Fig. 2) (Ziegler, 1990; 382 

Torsvik et al., 2002). This may be partly an effect of the south-to-north “unzipping” of 383 

the pre-North Atlantic lithosphere. Other processes that produce enhanced mantle 384 

melting are increased temperature, mantle composition and active asthenospheric 385 

upwelling (Brown & Lesher, 2014). The zonation of areas with and without magmatism 386 

may suggest that the proposed structure is a boundary zone between lithospheric blocks 387 

of different composition and rheology that react differently to applied stresses. Different 388 

relative strength in crust and mantle lithosphere, for instance, could cause depth 389 

dependent deformation, where thinning is focussed in the mantle lithosphere (Huismans 390 

& Beaumont 2011). Petersen & Schiffer (2016) demonstrated that extension of orogenic 391 

lithosphere with thickened crust (>45 km) leads to depth-dependent thinning where the 392 

mantle lithosphere breaks earlier than the crust and as a result encourages pre-breakup 393 
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magmatism. Indirectly, sub-continental mantle heterogeneities may encourage 394 

localisation of deformation leading to rapid and sudden increase in lithospheric thinning 395 

(Yamasaki & Gernigon, 2010). These processes could contribute to pre-breakup 396 

adiabatic decompression melting (Petersen & Schiffer 2016). Enhanced magmatism 397 

could also be caused by a lowered solidus due to presence of eclogite (Foulger et al., 398 

2005a), water in the mantle (Asimow & Langmuir 2003) or CO2 (Dasgupta & 399 

Hirschmann, 2006). Atypical magmatism is, surprisingly, observed along the 400 

interpolated axis of the proposed fossil subduction zone than elsewhere. It currently 401 

coincides with the GIFR where igneous crustal thickness is inferred to be greatest (Bott, 402 

1983; Smallwood et al., 1999; Holbrook et al., 2001; Mjelde & Faleide, 2009; Funck et 403 

al., 2016b). However, it is unclear whether the entire thickness of “Iceland type crust” 404 

(Bott, 1974; Foulger et al., 2003) has crustal petrology (Foulger et al., 2003; Foulger & 405 

Anderson, 2005).  406 

Higher water contents have been recorded in basalts and volcanic glass in the vicinity of 407 

the fossil subduction zone (the Blosseville Kyst, East Greenland, Iceland and one 408 

sample from the Faroe Islands, see Fig. 2) than in regions further away from Iceland 409 

(West Greenland, Hold with Hope, Reykjanes Ridge) (Jamtveit et al. 2001, Nichols et 410 

al. 2002). This is consistent with a hydrated upper mantle source as a consequence of 411 

melting Caledonian subducted materials (Schiffer et al. 2015a). Water in the mantle 412 

may also contribute to enhanced melt production and thus unusually thick igneous crust 413 

(Asimow & Langmuir 2003). 414 

The formation of the Iceland Plateau (>18 Ma) followed extinction of the Aegir Ridge 415 

and full spreading being taken up on the Kolbeinsey Ridge (Dore et al. 2008). This 416 

spreading ridge migration was contemporaneous with far-field plate tectonic 417 

reconfigurations, cessation of seafloor spreading in the Labrador-Baffin Bay system 418 

(Chalmers & Pulvertaft 2001) and a global change of Greenland plate motion from SW-419 

NE to W-E (Gaina et al., 2009; Abdelmalak et al., 2012). 420 

 421 

AN INHERITANCE MODEL FOR FORMATION OF THE JMMC 422 

We propose a new tectonic model for formation of the JMMC that links rejuvenation of 423 

old and pre-existing orogenic structures to global plate tectonic reconfigurations. In our 424 

model a change in the orientation of the regional stress field in the Eocene rejuvenated 425 
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pre-existing structures with favourable orientations. This caused relocalisation of 426 

extension and spreading ridges resulting in the formation of a microplate between the 427 

large European and American/Greenland continental plates. Our model closely follows 428 

that of Whittaker et al. (2016), with the extension that a fossil subduction zone is 429 

utilised as a physical and compositional weak zone that helps to accommodate a second 430 

axis of breakup (Fig. 5). Plate tectonic reorganisations and rejuvenation of pre-existing 431 

structures may not be the only controls on continental breakup, but they may be the 432 

dominant ones in the case of the JMMC. In areas where no microplate formation is 433 

observed continental breakup followed the youngest, weakest Caledonian collision 434 

zone, the Scandian, west-dipping subduction in Scandinavia. This may have been better 435 

aligned with the ambient stress field during rifting and/or breakup. Following the model 436 

of Petersen & Schiffer (2016), the remnants of this subduction zone or other inherited 437 

orogenic structures may now be distributed along the Mid-Norwegian margin as pre-438 

breakup HVLCB (Christiansson et al., 2000; Gernigon et al., 2006; Fichler et al., 2011; 439 

Wangen et al., 2011; Mjelde et al., 2013; Nirrengarten et al., 2014; Mjelde et al., 2016). 440 

The subduction zone was already deformed in the Norwegian North Sea by rifting 441 

subsequent to the Permo-Triassic and is still preserved as a large HVLCB beneath the 442 

North Sea rift (Christiansson et al. 2000, Fichler et al. 2011). A stronger, east-dipping 443 

subduction zone in East Greenland, may also have been deformed but did not 444 

accommodate breakup. Continental rifting and possible overlapping of the Reykjanes 445 

and Mohns ridge leading initiating the JMMC formation (Gernigon et al., 2012, 2015) 446 

may have been promoted by the presence of this deep-rooted weak zone.  447 

The Caledonian and Grenvillian orogenic fabric and major associated structures are 448 

generally parallel to the NNE-SSE trend of rifting in the North Atlantic with some 449 

exceptions, such as the opening of Labrador Sea. Older terrane boundaries are close to 450 

perpendicular. Young Caledonian structures define the axis of rifting and continental 451 

breakup. This can be explained by the presence of deep, weak eclogite-facies roots 452 

along the axis of the Caledonian Orogen, and extensional collapse of the Caledonian 453 

mountain range causing earlier extension to initiate perpendicular to the axis of collision 454 

(Ryan & Dewey, 1997; Rey et al., 2001). Precambrian structures are still preserved in 455 

stable cratons surrounded by orogens and mobile belts. Once rifting occurs, lateral 456 

weaknesses and rheological boundaries control segmentation of the rift axis and 457 

eventually influence the formation of across-strike deformation zones of different kinds, 458 

e.g., fracture and transform zones, diffuse/oblique/transtensional rift and ridge systems.  459 
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Our suggested scenario for the formation of the JMMC complements the established 460 

Wilson Cycle concept. We propose that reactivation and petrological variation of 461 

inherited structures of different ages, coupled with changes in the regional/global stress 462 

regime, controlled microplate formation in the following sequence of events (see also 463 

Fig. 6): 464 

1. Early Palaeocene: Rifting propagates from the Central Atlantic into the Labrador 465 

Sea - Baffin Bay rift system (Roest & Srivastava, 1989; Chalmers & Pulvertaft, 466 

2001; Peace et al., 2016) 467 

2. Early Eocene (Fig. 6b): Change in Labrador Sea-Baffin Bay spreading direction 468 

from NW-SE to W-E (Abdelmalak et al., 2012) and onset of seafloor spreading 469 

in the northeast Atlantic (Gaina et al., 2009). This was possibly related to the 470 

far-field stress field applied by the collision of Africa and Europe (Nielsen et al., 471 

2007) and/or to the relocation of the postulated Iceland plume (Skogseid et al., 472 

2000; Nielsen et al., 2002). 473 

3. The NW-SE stress field in the North Atlantic between Greenland and 474 

Scandinavia would have favoured deformation on deep structures associated 475 

with the Iapetus Suture on the Norwegian margin rather than the East Greenland 476 

margin with the proposed fossil subduction zone (Fig. 2). Thus, initial breakup is 477 

generally parallel to and in the vicinity of the Iapetus Suture. 478 

4. The Iceland-Faroe Accommodation Zone (IFAZ) forms as the southern limit of 479 

the JMMC and may be linked to localisation of strain along the proposed fossil 480 

subduction zone or other potential rheological boundaries. No continental 481 

breakup occurred between Iceland and the Faroe Islands (Iceland Faroe Ridge), 482 

with underlying, uninterrupted but thinned, continental lithosphere (Ellis & 483 

Stoker, 2014).  484 

5. Mid-late Eocene: Accellerated extension occurred in the southern part of the 485 

JMMC and local reorganisation of the Norway Basin spreading system 486 

(Gernigon et al. 2012, 2015) developed around 47 Ma (Fig. 6c) A first phase of 487 

magmatism between Greenland and the proto-JMMC was initiated (Tegner et 488 

al., 2008; Larsen et al., 2014). In the southern JMMC, isolated spreading cells 489 

possibly developed before steady state development of the Kolbeinsey Ridge.  490 

6. Late Eocene - early Oligocene (Fig. 6c): A major plate tectonic reorganisation 491 

including a change from NW-SE to NE-SW plate motion coincident with 492 

abandonment of seafloor spreading along the Labrador Sea-Baffin Bay system 493 
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and consequent cessation of anti-clockwise rotation of Greenland (Mosar et al., 494 

2002; Gaina et al., 2009; Oakey & Chalmers, 2012). This change in plate motion 495 

results in deformation along the fracture zones and transpression on the IFAZ.  496 

7. Locking of the IFAZ triggered continental breakup between Greenland and the 497 

proto-JMMC subsequent to continental rifting between them. This is consistent 498 

with the microplate model of Whittaker et al. (2016) for the Indian Ocean. 499 

Rotational rifting between Greenland and the proto-JMMC started much earlier 500 

(c. 47-48 Ma) than abandonment of the Labrador Sea-Baffin Bay spreading 501 

system (c. 40 Ma) and breakup between Greenland and the JMMC (33-24 Ma). 502 

8. Ultraslow spreading continued on the Aegir Ridge after ca. 31 Ma (Mosar et al., 503 

2002; Gaina et al., 2009; Gernigon et al., 2015), while drastic rifting and 504 

possible embryonic spreading developed south of the proto-JMMC until steady 505 

state spreading along Kolbeinsey Ridge was completely established at 24 Ma 506 

(Vogt et al., 1970; Doré et al., 2008; Gernigon et al., 2012).  507 

9. The Aegir Ridge was abandoned with all plate motion accommodated by the 508 

Kolbeinsey Ridge after 24 Ma, separating the proto-JMMC from East Greenland 509 

(Fig 6d). The West Jan Mayen Fracture Zone, the eastern branch of which had 510 

already been established during the opening of the Norway Basin, then 511 

connected the Kolbeinsey Ridge with the Mohns Ridge north of the JMMC. 512 

SUMMARY 513 

 514 

We propose a new model for formation of a microplate complex as an extension to the 515 

established Wilson Cycle concept. The new model invokes rejuvenation of major pre-516 

existing structures by plate-driven processes controlling both breakup and JMMC 517 

formation. 518 

 519 

The initial axis of continental breakup exploited lithospheric weaknesses associated 520 

with the Iapetus Suture (Fig. 6 a,b). These structures were particularly susceptible to 521 

deformation due to their preferential orientation with respect to the NW-SE to W-E 522 

oriented extensional stress field. Fracture zones and strike-slip/oblique zones of 523 

deformation delineate the later-forming JMMC. The IFAZ represents one of these zones 524 

and may have formed along an old subduction zone. The origin of the IFAZ remains 525 

poorly defined because of poor data coverage. However, it is likely that despite extreme 526 

thinning of the continental lithosphere no continental breakup occurred between 527 
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present-day JMMC and the Faroe Islands (e.g. Gernigon et al., 2015; Blischke et al., 528 

2016).  529 

 530 

Our model predicts that, following a major change in extension direction that was 531 

coeval with the abandonment of the Labrador Sea-Baffin Bay oceanic spreading and 532 

transform system, oblique deformation occurred south of the proto-JMMC and along 533 

the poorly defined IFAZ (Fig. 6c). This caused further westward relocation of the 534 

spreading centre towards a fossil subduction zone where eclogite and, especially, weak 535 

inherited serpentinite accommodated the relocation and final development of the 536 

Kolbeinsey Ridge. Complete development of the Kolbeinsey Ridge resulted in final 537 

separation of the proto-JMMC from East Greenland (Fig. 6d) and complete breakup of 538 

the North Atlantic. 539 

 540 

Formation of the JMMC correlates with and can be explained by rejuvenation of pre-541 

existing structures of different ages. Oblique accommodation/deformation zones 542 

including fracture zones defined the extent of the JMMC along the spreading axis. This 543 

model provides a simple explanation for microplate-complex formation involving 544 

control by both plate tectonic processes and structural inheritance. 545 

Further work and data acquisition is required to fully understand the nature and 546 

formation of the JMMC, Iceland and the Iceland-Faroe Ridge. All three components are 547 

intrinsically interlinked and essential for understanding the tectonic and magmatic 548 

evolution of the entire North Atlantic. Geophysical data are lacking especially in the 549 

south of the JMMC, offshore northwest Iceland, and between Iceland and the Faroe 550 

Islands. The most fundamental and perhaps economically important question is the 551 

extent of continental crust underlying this region, a question that may require additional 552 

marine surveys, re-interpretation of geochemical data and further drilling and sampling 553 

in this area. 554 

 555 
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Figures  1111 

Figure 1 1112 

Bathymetric map of the present-day North Atlantic. Bathymetry from the General 1113 

Bathymetric Chart of the Oceans (GEBCO). Major oceanic fracture zones after Dore et 1114 

al. (2008), Mid Ocean Ridges from Seton et al. (2012), microcontinents from Torsvik et 1115 

al. (2015). Greenland-Iceland-Faroe Ridge (GIFR) consists of the Greenland-Iceland 1116 

Ridge, the Iceland Plateau and the Iceland-Faroe Ridge. The position of the Iceland 1117 

Faroe Fracture Zone is stippled, but its existence and nature is debated (see text). AO = 1118 

Arctic Ocean; AR = Aegir Ridge; BB = Baffin Bay; BFZ = Bight Fracture Zone; BI = 1119 

Baffin Island; BR = Britain; BS = Barents Sea; CGFZ = Charlie-Gibbs Fracture Zone; 1120 

DS = Davis Strait; EB = Eurasia basin; EI = Ellesmere Island; EJMFZ = East Jan 1121 

Mayen Fracture Zone; GIR = Greenland-Iceland Ridge; GR = Greenland; IC – Iceland; 1122 

IFFZ = Iceland-Faroe Fracture Zone; IFR = Iceland-Faroe Ridge; IR = Ireland; KR = 1123 

Kolbeinsey Ridge; LA = Labrador; LS = Labrador Sea; NF = Newfoundland; NS = 1124 

Nares Strait; RP = Rockall Plateau; RR = Reykjanes Ridge; SC = Scandinavia; SFZ = 1125 
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Senja Fracture Zone: SF = Svecofennian; SI = Shetland Islands; SV = Svalbard; 1126 

WJMFZ = West Jan Mayen Fracture Zone. 1127 

 1128 

 1129 

 1130 

Figure 2 1131 

Overview map of the present-day North Atlantic. Seafloor age from Seton et al. (2012), 1132 

major oceanic fracture zones after Doré et al. (2008), distribution of igneous rocks of 1133 

the North Atlantic Igneous Province after Upton (1988), Larsen & Saunders (1998), 1134 

Abdelmalak et al. (2012), Precambrian basement terranes after Balling (2000) and 1135 

Indrevær et al. (2013) – Scandinavia, St-Onge et al. (2009) – Greenland and 1136 

northeastern Canada. Caledonian Deformation Front after Skogseid et al. (2000) and 1137 
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Gee et al. (2008). K = Karelian; KE = Ketilian Orogen; LK = Lapland-Kola; NAC = 1138 

North Atlantic Craton; NO = Nagssugtoqidian Orogen; RO = Rinkian Orogen; SF = 1139 

Svecofennian; SN = Sveconorwegian: TIB = Transscandinavian Igneous Belt. 1140 

 1141 

 1142 

 1143 

Figure 3 1144 

Bathymetry (a), free air gravity (b) and magnetic anomaly (c) maps of the Norway 1145 

Basin, the Jan Mayen microplate complex (JMMC), Iceland, the Iceland-Faroe Ridge 1146 

and surrounding conjugate margins (modified after Gernigon et al. 2015). The 1147 
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bathymetric map illustrates the special physiological nature of the JMMC, coinciding 1148 

with large free air gravity anomalies. Magnetic anomalies within the boundaries of the 1149 

JMMC are weak. This is in large contrast to the adjacent Norway Basin, which shows 1150 

clear magnetic spreading anomalies, and gravity and topographic anomalies that 1151 

evidence the “fan-shaped” spreading along the extinct Aegir Ridge. There are vague 1152 

indications in bathymetry, gravity and magnetic data for the existence of a lineament 1153 

stretching from the south of the JMMC to the Faroe-Shetland Basin, possibly the IFFZ 1154 

(Blischke et al., 2016), but the data does not provide indisputable evidence for the 1155 

existence and the nature of such. 1156 

 1157 

 1158 

 1159 

Figure 4 1160 

Model for the formation of the Batavia and Gulden Draak microcontinents in the Indian 1161 

Ocean proposed by Whittaker et al. (2016). Initial seafloor spreading occurred 1162 

perpendicular to the regional plate motions, including the Wallaby-Zenith Fracture Zone 1163 

(WZFZ). A reconfiguration of plate motions oblique to the developed spreading axes 1164 

locked the fracture zone, which forced the southern spreading axis to relocate onto a 1165 

new axis. The new spreading isolates continental fragments (microcontinents) and 1166 

seafloor spreading separates these from the Indian plate. Large arrows indicate plate 1167 

motions. Arrows along spreading ridges indicate the spreading direction. Dots with 1168 

arrows indicate the transpressional regime along the former fracture zone. 1169 

 1170 

 1171 
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 1172 

 1173 

Figure 5 1174 

Application of the model of Whittaker et al. (2016) to the formation of the Jan Mayen 1175 

microplate complex. The original model was developed to explain microcontinent 1176 

separation between Greater India and Australia. (a) NW-SE plate motion between 1177 

Greenland and Europe with the Iceland-Faroe accommodation zone (IFAZ) as a diffuse 1178 

zone accommodating relative motion between the Reykjanes ridge (RR) and Aegir ridge 1179 

(AR). Continental rifting and extension occurs along the lithospheric weakness (East 1180 

Greenland fossil subduction zone) (b) Plate tectonic reorganisations result in W-E 1181 

motion between Greenland and Europe locking up the Iceland-Faroe accommodation 1182 

zone. The Reykjanes ridge diverts towards the north following the lithospheric 1183 

weakness. (c) Seafloor spreading develops along the Kolbeinsey ridge (KR) breaking 1184 

the Jan Mayen Microplate off from Greenland. The JMMC rotates counterclockwise. 1185 

Seafloor spreading on the Aegir ridge is abandoned. 1186 
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 1188 

 1189 

Figure 6: 1190 

Separation of the Jan Mayen microplate complex from Greenland. Palaeogeographic 1191 

reconstructions from Seton et al. (2012). 100 Ma: The Caledonian Orogen experienced 1192 

extensional collapse and multiple rift phases. Fossil subduction zones are still preserved, 1193 

though possibly deformed. 50 Ma: Seafloor spreading in the North Atlantic separates 1194 

Greenland from Europe with NW-SE plate motions. Breakup in the NE Atlantic occurs 1195 

along the Iapetus suture, which deforms. 40 Ma: Plate motions change from NW-SE to 1196 

W-E, which causes transpression on the Iceland-Faroe accommodation zone. The 1197 
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Reykjanes ridge spreading centre develops towards the north, following lithospheric 1198 

weaknesses along the East Greenland fossil subduction zone. 20 Ma: The newly formed 1199 

Kolbeinsey ridge is almost entirely developed, separating the Jan Mayen Microplate 1200 

Complex from Greenland. The fossil subduction zone in Central East Greenland is 1201 

highly deformed, whereas it is mainly preserved further north. The Aegir Ridge is 1202 

successively abandoned. 0 Ma: Fossil subduction zones are still preserved in East 1203 

Greenland, northern Scotland and the Danish North Sea sector (Central Fjord structure - 1204 

CF, Flannan reflector - FL, Mona Lisa structure - ML). In Norway and south-central 1205 

East Greenland the fossil subduction zone has been destroyed and deformed. It now 1206 

forms high-seismic-velocity lower crustal bodies that are possible eclogite HVLCBs 1207 

mapped in magenta and orange). 1208 
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