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Abstract
We survey recent results on the broad family of problems that can be cast as valued constraint
satisfaction problems (VCSPs). We discuss general methods for analysing the complexity of
such problems, give examples of tractable cases, and identify general features of the complexity
landscape.
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1 Introduction

Computational problems from many different areas involve finding an assignment of values
to a set of variables, where that assignment must satisfy some specified feasibility conditions
and optimise some specified objective function. In many such problems the objective function
can be represented as a sum of functions, each of which depends on some subset of the
variables. Examples include: Gibbs energy minimisation, Markov Random Fields (MRF),
Conditional Random Fields (CRF), Min-Sum Problems, Minimum Cost Homomorphism,
Constraint Optimisation Problems (COP) and Valued Constraint Satisfaction Problems
(VCSP) [11, 30, 87, 110, 114, 116].

We focus in this article on a generic framework for such problems that captures their
general form. Bringing all such problems into a common framework draws attention to
common aspects that they all share, and allows a very general algebraic approach for analysing
their complexity to be developed. The primary motivation for this line of research is to
understand the general picture of complexity within this general framework, rather than to
develop specialised techniques for specific applications.

We will give an overview of this algebraic approach, and the results that have been
obtained by using it. We will focus on algorithms for solving problems to optimality and on
the computational complexity of such problems. Although there is a survey from two years
ago [61], the recent massive progress [43, 77, 78, 105, 72] justifies a new survey.

The generic framework we use is the valued constraint satisfaction problem (VCSP),
defined formally as follows. Throughout the paper, let D be a fixed finite set and let
Q = Q ∪ {∞} denote the set of rational numbers with (positive) infinity.
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I Definition 1. We denote the set of all functions φ : Dm → Q by Φ(m)
D and let ΦD =⋃

m≥1 Φ(m)
D . We will often call the functions in ΦD cost functions over D.

Let V = {x1, . . . , xn} be a set of variables. A valued constraint over V is an expression
of the form φ(x) where x ∈ V m and φ ∈ Φ(m)

D . The number m is called the arity of the
constraint, the function φ is called the constraint function, and the tuple x the scope of the
constraint.

We will call the elements of D labels (for variables), and say that the cost functions in
ΦD take values.

I Definition 2. An instance of the valued constraint satisfaction problem (VCSP) is specified
by a finite set V = {x1, . . . , xn} of variables, a finite set D of labels, and an objective function
Φ expressed as follows:

Φ(x1, . . . , xn) =
q∑
i=1

φi(xi) (1)

where each φi(xi), 1 ≤ i ≤ q, is a valued constraint over V . Each constraint can appear
multiple times in Φ. The goal is to find an assignment of labels to the variables (or labelling)
that minimises Φ.

Note that the value of the function Φ for any assignment of labels to the variables in
V is given by the sum of the values taken by the constraints; this value will sometimes be
called the cost of the assignment. An infinite value for any constraint indicates an infeasible
assignment.

If the constraint functions in some VCSP instance are finite-valued, i.e., take only finite
values, then every assignment is feasible, and the problem is to identify an assignment with
minimum possible cost (i.e., we need to deal only with the optimisation issue). On the
other hand, if each constraint function in an instance takes only two values: one finite value
(possibly specific to the constraint) and ∞, then all feasible assignments are equally good,
and so the only question is whether any such assignment exists (i.e., we need to deal only
with the feasibility issue). If we have neither of the above cases then we need to deal with
both feasibility and optimisation. To emphasise where this can happen we sometimes call
VCSPs general-valued.

In Section 2 we give examples to show that many standard combinatorial optimisation
problems can be conveniently expressed in the VCSP framework. In Section 3 we define
certain algebraic properties of the constraints that can be used to identify tractable cases.
Section 4 describes the basics of a general algebraic theory for analysing the complexity of
different forms of valued constraints. In Sections 5 and 6 we use this algebraic theory to
identify several tractable and intractable cases. In Section 7 we discuss the oracle model for
representing the objective function. Finally, Section 8 gives a brief summary and identifies
some open problems.

2 Problems and Frameworks Captured by the VCSP

In this section we will give examples of specific problems and previously studied frameworks
that can be expressed as VCSPs with restricted forms of constraints.

I Definition 3. Any set Γ ⊆ ΦD is called a valued constraint language over D, or simply a
language. We will denote by VCSP(Γ) the class of all VCSP instances in which the constraint
functions are all contained in Γ.
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Valued constraint languages may be infinite, but it will be convenient to follow [17, 25] and
define the complexity of a valued constraint language in terms of its finite subsets. We
assume throughout that P 6=NP.

I Definition 4. A valued constraint language Γ is called tractable if VCSP(Γ′) can be solved
(to optimality) in polynomial time for every finite subset Γ′ ⊆ Γ, and Γ is called NP-hard if
VCSP(Γ) is NP-hard for some finite Γ′ ⊆ Γ.

One advantage of defining tractability in terms of finite subsets is that the tractability of
a valued constraint language is independent of whether the cost functions are represented
explicitly (say, via full tables of values, or via tables for the finite-valued parts) or implicitly
(via oracles).

I Example 5 (1-in-3-Sat). Let D = {0, 1} and let Γ1-in-3 be the language that contains just
the single ternary cost function φ1-in-3 : D3 → Q defined by

φ1-in-3(x, y, z) def=
{

0 if exactly one of x, y, z is 1
∞ otherwise

.

The problem VCSP(Γ1-in-3) is exactly the 1-in-3-Sat problem. This problem is NP-hard [95,
44], so Γ1-in-3 is NP-hard.

I Example 6 (NAE-Sat). Let D = {0, 1} and let Γnae be the language that contains just the
single ternary cost function φnae : D3 → Q defined by

φnae(x, y, z)
def=

{
∞ if x = y = z

0 otherwise
.

The problem VCSP(Γnae) is exactly the Not-All-Equal-Sat problem, also known as the
3-Uniform Hypergraph 2-Colourability problem. This problem is NP-hard [44], so Γnae is
NP-hard.

I Example 7 (Max-k-Cut). Let Γxor be the language that contains just the single binary cost
function φxor : D2 → Q defined by

φxor(x, y) def=
{

1 if x = y

0 if x 6= y
.

The problem VCSP(Γxor) corresponds to the problem of minimising the number of mono-
chromatic edges in a k-colouring (where k = |D|) of the graph G formed by the scopes of the
constraints. This problem is known as the Maximum k-Cut problem (or simply Max-Cut
when |D| = 2), and is NP-hard [44].

Hence, for any choice of D with |D| ≥ 2, the language Γxor is NP-hard.

I Example 8 (Potts model). Let ΓPotts be the language that contains all unary cost functions
and the single binary cost function φPotts: D2 → Q defined by

φPotts(x, y) def=
{

0 if x = y

1 if x 6= y
.

The problem VCSP(ΓPotts) corresponds to finding the minimum energy state of the Potts
model (with external field) from statistical mechanics [93]. This model is also used as the
basis for a standard Markov Random Field approach to a wide variety of problems in machine
vision [11]. For |D| = 2, the function φPotts is submodular (see Example 19) and we will show
that this implies that ΓPotts is tractable. For |D| > 2, ΓPotts is NP-hard as it includes, as a
special case, the multiway cut problem, which is NP-hard [34].
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I Example 9 ((s, t)-Min-Cut). Let G = (V,E) be a directed weighted graph such that for
every (u, v) ∈ E there is a weight w(u, v) ∈ Q≥0 and let s, t ∈ V be distinguished source
and target nodes. Recall that an (s, t)-cut C is a subset of vertices V such that s ∈ C but
t 6∈ C. The weight, or the size, of an (s, t)-cut C is defined as

∑
(u,v)∈E,u∈C,v 6∈C w(u, v).

The (s, t)-Min-Cut problem consists in finding a minimum-weight (s, t)-cut in G. We can
formulate the search for a minimum-weight (s, t)-cut in G as a VCSP instance as follows.

Let D = {0, 1}. For any label d ∈ D and cost c ∈ Q, we define

ηcd(x) def=
{

0 if x = d

c if x 6= d
.

For any weight w ∈ Q≥0, we define

φwcut(x, y) def=
{
w if x = 0 and y = 1
0 otherwise

.

We denote by Γcut the set {η∞0 , η∞1 } ∪ {φwcut | w ∈ Q≥0}. A minimum-weight (s, t)-cut in
a graph G with set of nodes V = {x1, . . . , xn} corresponds to the set of variables assigned
the label 0 in a minimal cost assignment to the VCSP instance defined by

Φ(x1, . . . , xn) def= η∞0 (s) + η∞1 (t) +
∑

(xi,xj)∈E

φ
w(xi,xj)
cut (xi, xj).

The unary constraints ensure that the source and target nodes must be assigned the labels 0
and 1, respectively, in any minimal cost assignment.

Furthermore, it is an easy exercise to show that any instance of VCSP(Γcut) on n variables
can be solved in O(n3) time by a reduction to (s, t)-Min-Cut and then using the standard
algorithm [45]. Hence Γcut is tractable.

I Example 10 (Minimum Vertex Cover). The Minimum Vertex Cover problem asks for a
minimum size set W of vertices in a given graph G = (V,E) such that each edge in E has at
least one endpoint in W . This problem is NP-hard [44].

Let D = {0, 1}. We define

φvc(x, y) def=
{
∞ if x = y = 0
0 otherwise

.

We denote by Γvc the language {φvc, η
1
0}, where η1

0 is the function defined in Example 9
that imposes unit cost for any variable assigned the label 1. A minimum vertex cover in a
graph G with set of vertices V = {x1, . . . , xn} corresponds to the set of vertices assigned the
label 1 in some minimum cost assignment to the VCSP(Γvc) instance defined by

Φ(x1, . . . , xn) def=
∑
xi∈V

η1
0(xi) +

∑
(xi,xj)∈E

φvc(xi, xj).

The binary constraints ensure that in any minimal cost assignment at least one endpoint of
each edge belongs to the vertex cover.

Furthermore, it is easy to convert any instance of VCSP(Γvc) to an equivalent instance
of Minimum Vertex Cover by repeatedly assigning the label 1 to all variables which do not
appear in the scope of any unary constraints and removing these variables and all constraints
involving them. Hence Γvc is NP-hard.
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We will now show how several broad frameworks previously studied in the literature
can be expressed as special cases of the VCSP with restricted languages. We will discuss
algorithms and complexity classifications for them in Sections 5 and 6.

I Example 11 (CSP). The standard constraint satisfaction problem (CSP) over any fixed set
of possible labels D can be seen as the special case of the VCSP where all cost functions take
only the values 0 or ∞, representing allowed (satisfying) and disallowed tuples, respectively.
Such constraints and cost functions are sometimes called crisp. In other words, the CSP can
be seen as VCSP(Γcrisp), where Γcrisp is the language consisting of all cost functions on some
fixed set D with range {0,∞}. Note that the CSP can also be cast as the homomorphism
problem for relational structures [37] (cf. Example 12).

Since the CSP includes many known NP-hard problems, such as 1-in-3-Sat (Example 5)
and Graph-3-Colouring, the language Γcrisp is clearly NP-hard. However, many tractable
subsets of Γcrisp have been identified [95, 62, 37, 17, 13, 18, 57, 6], mostly through an algebraic
approach whose extension we discuss in Section 4. There are many surveys on the complexity
of the CSP, see the books [33, 32, 80], and also [22, 51, 2].

Feder and Vardi conjectured that the CSP exhibits a dichotomy: that is, every finite
language Γ ⊆ Γcrisp is either tractable or NP-hard [37], thus excluding problems of intermediate
complexity, as given by Ladner’s Theorem (assuming P 6=NP) [83]. The Algebraic Dichotomy
conjecture, which we state formally and discuss in Section 6, specifies the precise boundary
between tractable and NP-hard crisp languages [17].

I Example 12 (Digraph Homomorphism). Given two digraphs G = (V (G), E(G)) and
H = (V (H), E(H)), a mapping f : V (G) → V (H) is a homomorphism from G to H if f
preserves edges, that is, (u, v) ∈ E(G) implies (f(u), f(v)) ∈ E(H).

The problem whether an input digraph G admits a homomorphism to a fixed digraph H is
also known as the H-Colouring problem and has been actively studied in graph theory [50, 51],
see also [84].

For any digraph H, let D = V (H) and let ΓH be the language that contains just the
single binary cost function φH : D2 → Q defined by

φH(x, y) def=
{

0 if (x, y) ∈ E(H)
∞ otherwise .

For any digraph H, the problem VCSP(ΓH), which is a special case of the CSP (Example 11),
corresponds to the H-colouring problem, where the input digraph G is given by the scopes of
the constraints. If we add all unary crisp functions to ΓH then the resulting VCSP is known
as List H-Colouring [50, 51].

It is known that both the Feder-Vardi conjecture and the Algebraic Dichotomy conjecture
are equivalent to their restrictions to the H-colouring problem [20, 37].

I Example 13 (Max-CSP). An instance of the (weighted) maximum constraint satisfaction
problem (Max-CSP) is an instance of the CSP where the goal is to maximise the (weighted)
number of satisfied constraints.

When seeking the optimal solution, maximising the number of satisfied constraints is the
same as minimising the number of unsatisfied constraints. Hence for any instance Φ of the
Max-CSP, we can define a corresponding VCSP instance Φ′ in which each constraint c of
Φ is associated with a constraint over the same scope in Φ′ which assigns cost 0 to tuples
allowed by c, and cost 1 to tuples disallowed by c. It follows that Max-CSP is equivalent
to VCSP(ΓMax), where ΓMax is the language consisting of cost functions whose values are
restricted to zero and one.
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For D = {0, 1}, the complexity of all subsets of ΓMax has been completely classified in [70].
Initial results for languages over arbitrary finite sets appeared in [21].

I Example 14 (Min-Cost-Hom). Here and in the following examples let Γunary consist of all
unary cost functions and let Γmc = Γcrisp ∪ Γunary (where Γcrisp is defined in Example 11).
Problems of the form VCSP(Γ) with Γ ⊆ Γmc have been studied under the name of the
Minimum-Cost Homomorphism problem (or Min-Cost-Hom) [49, 52, 100, 101, 110, 111].
Note that the first three of these papers assume that Γunary ⊆ Γ, while the last three do not.
In [49, 52] Γ is assumed to be of the form {φH} ∪ Γunary, where φH is a binary crisp cost
function, as in Example 12.

In any instance of VCSP(Γmc), the crisp constraints specify the CSP part, i.e., the
feasibility aspect of the problem, while the unary constraints specify the optimisation aspect.
More precisely, the unary constraints specify the costs of assigning labels to individual
variables. Complexity classifications for special cases of Min-Cost-Hom will be discussed in
Section 6.

I Example 15 (Min-Ones). An instance of the Boolean Minimum Ones (Min-Ones) problem
is an instance of the CSP over D = {0, 1} where the goal is to satisfy all constraints and
minimise the number of variables assigned the label 1. Such instances correspond to Min-
Cost-Hom instances over {0, 1} in which all unary constraints are of the form η1

0 as defined in
Example 9 (which impose a unit cost for any variables assigned the label 1). A classification
of the complexity of all subsets of this language was obtained in [70, 33].

I Example 16 (Min-Sol). The Minimum Solution problem (Min-Sol) [67, 65] is a gener-
alisation of Min-Ones from Example 15 to D being a larger set of non-negative integers,
where the only allowed unary cost function is a particular finite-valued injective function,
namely u(x) = wx for some positive w ∈ Q. Thus, this problem is also a subproblem
of Min-Cost-Hom. A complexity classification for Min-Sol problems will be discussed in
Section 6.

3 Polymorphisms and Fractional Polymorphisms

To develop general tools to classify the complexity of different valued constraint languages,
we will now define certain algebraic properties of cost functions.

A function f : Dk → D is called a k-ary operation on D. The k-ary projections, defined
for all 1 ≤ i ≤ k, are the operations e(k)

i such that e(k)
i (x1, . . . , xk) = xi. For any tuples

x1, . . . ,xk ∈ Dm, we denote by f(x1, . . . ,xk) the tuple in Dm obtained by applying f to
x1, . . . ,xk componentwise.

For a cost function φ : Dm → Q, we denote by Feas(φ) = {x ∈ Dm | φ(x) is finite} the
feasibility relation of φ. We will view Feas(φ) both as a relation and as a {0,∞}-valued cost
function. Recall from Example 11 that {0,∞}-valued cost functions are called crisp.

Any valued constraint language Γ defined on D can be associated with a set of operations
on D, known as the polymorphisms of Γ, and defined as follows.

I Definition 17 (Polymorphism). Let φ : Dm → Q be a cost function. We say that a k-ary
operation f : Dk → D is a polymorphism of φ if, for any x1, . . . ,xk ∈ Feas(φ) we have that
f(x1, . . . ,xk) ∈ Feas(φ).

For any valued constraint language Γ over a set D, we denote by Pol(Γ) the set of all
operations on D which are polymorphisms of all φ ∈ Γ. We denote by Pol(k)(Γ) the k-ary
operations in Pol(Γ).
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x1
x2
...

xk

x′1 = f1(x1, . . . ,xk)
x′2 = f2(x1, . . . ,xk)

...
x′n = fn(x1, . . . ,xk)

x1[1] x1[2] . . . x1[m]
x2[1] x2[2] . . . x2[m]

...
xk[1] xk[2] . . . xk[m]

x′1[1] x′1[2] . . . x′1[m]
x′2[1] x′2[2] . . . x′2[m]

...
x′n[1] x′n[2] . . . x′n[m]

φ−→

φ(x1)
φ(x2)

...
φ(xk)


1
k

k∑
i=1

φ(xi)

≥

φ−→

φ(x′1)
φ(x′2)

...
φ(x′n)


n∑
i=1

Pr
ω

[fi]φ(x′i)

Figure 1 Probabilistic definition of a fractional polymorphism.

Note that trivially the projections are polymorphisms of all valued constraint languages.
For {0,∞}-valued cost functions (relations) this notion of polymorphism corresponds

precisely to the standard notion of polymorphism for relations [10, 62]. This notion of
polymorphism has played a key role in the analysis of complexity for the CSP [62, 17].
However, for the analysis of the VCSP we need a more flexible notion that assigns weights to
polymorphisms [23].

I Definition 18 (Fractional Polymorphism). Let φ : Dm → Q be a cost function. A function
ω : Pol(k)(φ)→ Q≥0 is called a k-ary fractional polymorphism of φ if it satisfies the following
conditions:∑

f∈Pol(k)(φ) ω(f) = 1;
for any x1, . . . ,xk ∈ Feas(φ)

∑
f∈Pol(k)(φ)

ω(f)φ(f(x1, . . . ,xk)) ≤ 1
k

k∑
i=1

φ(xi) . (2)

We define supp(ω) = {f | ω(f) > 0) to be the support of ω.

I Remark. The definition of a fractional polymorphism can be re-stated in probabilistic
terms, as follows. Any fractional polymorphism ω can be seen as a probability distribution
over Pol(k)(φ). We can then re-write Inequality (2) as follows:

Ef∼ω[φ(f(x1, . . . ,xk))] ≤ avg{φ(x1), . . . , φ(xk)}. (3)

This is illustrated in Figure 1, which should be read from left to right. Let ω be a
probability distribution on Pol(k)(φ) and let supp(ω) = {f1, . . . , fn}. Starting with the
m-tuples x1, . . . ,xk, we first apply operations f1, . . . , fn to these tuples componentwise,
thus obtaining the m-tuples x′1, . . . ,x′n. Inequality 3 amounts to comparing the average
of the values of φ applied to the tuples x1, . . . ,xk with the weighted sum of the values of
φ applied to the tuples x′1, . . . ,x′n, which is the expected value of φ(f(x1, . . . ,xk)) as f is
drawn from ω.

Examples of fractional polymorphisms include fractional projections: a k-ary fractional
projection ω is defined by ω(e(k)

1 ) = . . . = ω(e(k)
k ) = 1

k . In this case, Inequality 2 holds
trivially with equality. Hence, fractional projections are trivially fractional polymorphisms of
all valued constraint languages.
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If ω is a fractional polymorphism of φ, then we say that φ admits ω as a fractional
polymorphism. We say that a language Γ admits a fractional polymorphism ω if ω is a
fractional polymorphism of every cost function φ ∈ Γ. It is easy to see that in this case
ω is also a fractional polymorphism of any function Φ arising as an instance of VCSP(Γ).
The intuition behind the notion of fractional polymorphism is that it allows one to combine
several feasible assignments for an instance of VCSP(Γ), in a randomised way, into a new
feasible assignment so that the expected value of the new assignment (non-strictly) improves
the average value of the original assignments.

Note that if Γ consists of crisp functions then the k-ary fractional polymorphisms of Γ
are all possible probability distributions on Pol(k)(Γ).

A more restricted form of fractional polymorphism was introduced earlier in [25] and is
known as a multimorphism. This is essentially a k-ary fractional polymorphism where the
value of ω(f) is of the form `/k, where ` ∈ N, for every f ∈ supp(ω).

One can specify a k-ary multimorphism as a k-tuple f = 〈f1, . . . , fk〉 of k-ary operations
fi on D, where each operation f with ω(f) = `/k for some ` > 0 appears ` times, and then
the definition simplifies as follows: for all x1, . . . ,xk ∈ Feas(φ),

k∑
i=1

φ(fi(x1, . . . ,xk)) ≤
k∑
i=1

φ(xi) . (4)

Fractional polymorphisms (including the special cases of multimorphisms) have proved to
be a valuable tool for identifying tractable valued constraint languages, as we will illustrate
in this section. Closely related algebraic objects, known as weighted polymorphisms, will be
discussed in Section 4.

I Example 19 (Submodularity). For any finite set V , a rational-valued function h defined on
subsets of V is called a set function. A set function h is called submodular if for all subsets
S and T of V ,

h(S ∩ T ) + h(S ∪ T ) ≤ h(S) + h(T ). (5)

Submodular functions are a key concept in operational research and combinatorial optimisa-
tion (see, e.g. [38, 96, 109] for extensive information about them). They are often considered
to be a discrete analogue of convex functions. Examples of submodular functions include cuts
in graphs, matroid rank functions, and entropy functions. There are combinatorial algorithms
for minimising submodular functions in polynomial time (see [96, 38], and also [59]).

If we set D = {0, 1}, then any set function h on V can be associated with a (|V |-ary)
cost function φ defined on the characteristic vectors of subsets of V . The intersection and
union operations on subsets correspond to the Min and Max operations on the associated
characteristic vectors. Hence h is submodular if and only if the associated cost function φ
satisfies the following inequality:

φ(Min(x1,x2)) + φ(Max(x1,x2)) ≤ φ(x1) + φ(x2) .

But this means that φ admits the 2-ary fractional polymorphism ωsub, defined by ωsub(Min) =
ωsub(Max) = 1

2 . This is equivalent to saying that φ admits 〈Min,Max〉 as a multimorphism.

I Example 20 (Generalised Submodularity). Let D be a finite lattice, i.e., a partially ordered
set, where each pair of elements {a, b} has a least upper bound, ∨(a, b), and a greatest lower
bound, ∧(a, b). We denote by Γsub the set of all cost functions over D that admit 〈∨,∧〉 as a
multimorphism. Using a polynomial-time strongly combinatorial algorithm for minimising
submodular functions, it was shown in [25] that Γsub is tractable when D is a totally ordered
lattice (i.e., a chain). More general lattices will be discussed in Section 5 and Section 7.
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I Example 21 (Max). We denote by Γmax the set of all cost functions (over some fixed finite
totally ordered set D) that admit 〈Max,Max〉 as a multimorphism, where Max : D2 → D is
the binary operation returning the larger of its two arguments. Note that Γmax includes all
monotonic decreasing finite-valued cost functions, as well as some non-monotonic crisp cost
functions [25]. It was shown in [25] that Γmax is tractable.

I Example 22 (Min). We denote by Γmin the set of all cost functions (over some fixed finite
totally ordered set D) that admit 〈Min,Min〉 as a multimorphism, where Min : D2 → D is
the binary operation returning the smaller of its two arguments. The tractability of Γmin was
established in [25].

I Example 23 (Bisubmodularity). For a given finite set V , bisubmodular functions are
functions defined on pairs of disjoint subsets of V with a requirement similar to Inequality 5
(see [38, 92] for the precise definition). Examples of bisubmodular functions include rank
functions of delta-matroids [38].

A property equivalent to bisubmodularity can be defined on cost functions on the set
D = {0, 1, 2}. We define two binary operations Min0 and Max0 as follows:

Min0(x, y) def=
{

0 if 0 6= x 6= y 6= 0
Min(x, y) otherwise ,

Max0(x, y) def=
{

0 if 0 6= x 6= y 6= 0
Max(x, y) otherwise .

We denote by Γbis the set of finite-valued cost functions that admit 〈Min0,Max0〉 as a
multimorphism. The language Γbis can be shown to be tractable using the results of [92] (see
also [38]).

The definitions of Min0 and Max0 still make sense whenD = {0, 1, 2 . . . , k}, k ≥ 3. In that
case, functions on D that admit 〈Min0,Max0〉 as a multimorphism are called k-submodular ;
they were introduced in [54]. The tractability of k-submodular general-valued constraint
languages was shown in [73] and will be discussed in Section 5.

I Example 24 (Skew Bisubmodularity). Let D = {0, 1, 2}. Recall the definition of operations
Min0 and Max0 from Example 23. We define

Max1(x, y) def=
{

1 if 0 6= x 6= y 6= 0
Max(x, y) otherwise .

A function φ: Dm → Q is called α-bisubmodular [55], for some real 0 < α ≤ 1, if φ admits
the fractional polymorphism ω defined by ω(Min0) = 1

2 , ω(Max0) = α
2 , ω(Max1) = 1−α

2 .
Note that 1-bisubmodular functions are (ordinary) bisubmodular functions as defined in
Example 23. It is shown in [55] that each distinct value of α is associated with a distinct
class of α-bisubmodular functions. The tractability of α-bisubmodular valued constraint
languages was shown in [73] and will be discussed in Section 5.

I Example 25 ((Symmetric) Tournament Pair). A binary operation f : D2 → D is called a
tournament operation if (i) f is commutative, i.e., f(x, y) = f(y, x) for all x, y ∈ D; and (ii) f
is conservative, i.e., f(x, y) ∈ {x, y} for all x, y ∈ D. The dual of a tournament operation is
the unique tournament operation g satisfying x 6= y ⇒ g(x, y) 6= f(x, y).

A tournament pair is a pair 〈f, g〉, where both f and g are tournament operations. A
tournament pair 〈f, g〉 is called symmetric if g is the dual of f .
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Let Γ be an arbitrary language that admits a symmetric tournament pair as a multi-
morphism. It was shown in [24], by a reduction to the minimisation problem for submodular
functions (cf. Example 20), that any such Γ is tractable. A different proof of tractability of Γ
will be discussed in Section 5. It is shown in [73] that any finite-valued language that admits
a symmetric tournament pair multimorphism also admits the submodularity multimorphism
with respect to some totally ordered lattice on D (cf. Example 20).

Now let Γ be an arbitrary language that admits any tournament pair as a multimorphism.
It was shown in [24], by a reduction to the symmetric tournament pair case, that any such Γ
is also tractable. Again, the tractability of Γ will be discussed in more detail in Section 5.

I Example 26 (Tournament in the support). Let Γ be an arbitrary language that admits a
binary fractional polymorphism ω such that supp(ω) contains a tournament operation, as
defined in Example 25. The tractability of Γ was shown in [105], thus generalising Example 25,
and will be discussed in Section 5.

I Example 27 (1-Defect). Let b and c be two distinct elements of D and let (D;<) be a
partial order which relates all pairs of elements except for b and c. We call 〈f, g〉, where
f, g : D2 → D are two binary operations, a 1-defect if f and g are both commutative and
satisfy the following conditions:

If {x, y} 6= {b, c}, then f(x, y) = Min(x, y) and g(x, y) = Max(x, y).
If {x, y} = {b, c}, then {f(x, y), g(x, y)} ∩ {x, y} = ∅, and f(x, y) < g(x, y).

The tractability of languages that admit a 1-defect multimorphism was shown in [66],
and was used in the classification of the Max-CSP over a four-element set (see Section 5).

I Example 28 (Majority). A ternary operation f : D3 → D is called a majority operation if
f(x, x, y) = f(x, y, x) = f(y, x, x) = x for all x, y ∈ D.

Let f = 〈f1, f2, f3〉 be a triple of ternary operations such that f1, f2 and f3 are all majority
operations. Let φ : Dm → Q be anm-ary cost function that admits f as a multimorphism. By
Inequality (4), for all x,y ∈ Dm, 3φ(x) ≤ φ(x)+φ(x)+φ(y) and 3φ(y) ≤ φ(y)+φ(y)+φ(x).
Therefore, if both φ(x) and φ(y) are finite, then we have φ(x) ≤ φ(y) and φ(y) ≤ φ(x), and
hence φ(x) = φ(y). In other words, the range of φ is {c,∞}, for some finite c ∈ Q.

Let ΓMjty be the set of all cost functions that admit as a multimorphism some triple
f = 〈f1, f2, f3〉 of arbitrary ternary majority operations. The tractability of ΓMjty was shown
in [25].

I Example 29 (Minority). A ternary operation f : D3 → D is called a minority operation if
f(x, x, y) = f(x, y, x) = f(y, x, x) = y for all x, y ∈ D. Let ΓMnty be the set of cost functions
that admit as a multimorphism some triple f = 〈f1, f2, f3〉 of arbitrary ternary minority
operations. A similar argument to the one in Example 28 shows that the cost functions in
ΓMnty have range {c,∞}, for some finite c ∈ Q. The tractability of ΓMnty was shown in [25].

I Example 30 (MJN). Let f = 〈f1, f2, f3〉 be three ternary operations such that f1 and f2
are majority operations, and f3 is a minority operation. Let ΓMJN be the set of cost functions
that admit f as a multimorphism. The tractability of ΓMJN was shown in [74], generalising
an earlier tractability result for a specific f of this form from [25].

I Example 31 (Majority in the support). Let Γ be an arbitrary language admitting a ternary
fractional polymorphism ω such that supp(ω) contains a majority operation. The tractability
of Γ was shown in [105], thus generalising Examples 28 and 30, and will be discussed in
Section 5.
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Other tractable valued constraint languages defined by fractional polymorphisms include
the so-called L#-convex languages [38], as well as the weakly and strongly tree-submodular
languages defined in [71]. Hirai [53] recently introduced a framework of submodular functions
on modular semilattices (defined by a type of fractional polymorphism) that generalises
many examples given above, including standard submodularity, k-submodularity, skew
bisubmodularity, and tree submodularity. See [53] for the natural (but somewhat technical)
definition of this very general framework.

4 A General Algebraic Theory of Complexity

We have seen in the previous section that many tractable cases of the VCSP can be
defined by having a particular fractional polymorphism. The algebraic theory developed
in [23, 77, 78, 43] establishes that, in fact, every tractable valued constraint language
can be exactly characterised by an associated set of algebraic objects known as weighted
polymorphisms, which are different but equivalent to fractional polymorphisms. This extends
(parts of) the algebraic theory previously developed for the CSP [19, 17, 62] that has led to
significant advances in understanding the landscape of complexity for the CSP over the last
10 years (e.g., [1, 6, 13, 14, 16, 18, 57]). In this section, we will give a brief overview of the
main results of this algebraic theory for the VCSP. We refer the reader to [23, 77, 78, 43] for
full details and proofs.

First we consider the effect of extending a valued constraint language Γ ⊆ ΦD to a possibly
larger valued constraint language. We first define and study a notion of expressibility for
valued constraint languages. This notion has played a key role in the analysis of complexity
for the CSP and VCSP [17, 62, 25, 116].

I Definition 32. We say that an m-ary cost function φ is expressible over a constraint lan-
guage Γ if there exists an instance Φ ∈ VCSP(Γ) with variables V = {x1, . . . , xn, y1, . . . , ym},
such that

φ(y1, . . . , ym) = min
x1,...,xn

Φ(x1, . . . , xn, y1, . . . , ym) .

For a cost function φ, we denote by Opt(φ) = {x ∈ Feas(φ) | ∀y : φ(x) ≤ φ(y)} the
optimality relation, which contains the tuples on which φ is minimised. Similarly to Feas(φ),
we will view Opt(φ) both as a relation and as a crisp cost function.

I Definition 33. A valued constraint language Γ ⊆ ΦD is called a weighted relational clone
if it contains the binary equality relation and the unary empty relation; is closed under
expressibility, scaling by non-negative rational constants, addition of rational constants, and
operators Feas and Opt. We define wRelClone(Γ) to be the smallest weighted relational
clone containing Γ.

I Example 34. Let D = {0, 1} and let u1 be the unary crisp cost function defined by
u1(0) =∞ and u1(1) = 0. We will show that φ1-in-3 ∈ wRelClone({φxor, u1}), where φ1-in-3
is from Example 5 and φxor is from Example 7.

First observe that φ(x, y, z) = φxor(x, y) + φxor(x, z) + φxor(y, z) satisfies φ(0, 0, 0) =
φ(1, 1, 1) = 3 and φ(x, y, z) = 1 otherwise. Next observe that φ′(x, y, z) = minw∈D(φ(x, y, z)+
u1(w)+φxor(x,w)+φxor(y, w)+φxor(z, w)) satisfies φ′(0, 0, 0) = 3, φ′(1, 1, 1) = 6, φ′(x, y, z) = 2
if there is exactly one 1 among {x, y, z} and φ′(x, y, z) = 3 otherwise. Thus, φ1-in-3 = Opt(φ′)
and we have φ1-in-3 ∈ wRelClone({φxor, u1}).
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I Theorem 35 ([23, 43]). A valued constraint language Γ is tractable if wRelClone(Γ) is
tractable and NP-hard if wRelClone(Γ) is NP-hard.

I Remark. For weighted relational clones that are not finitely generated, the rational values
are replaced by real values in Definition 1, Definition 33 requires topological closedness, and
Theorem 35 holds only up to an arbitrary additive error; we refer the reader to [43] for more
details.
We now develop tools that will allow an alternative characterisation of any weighted relational
clone. We first recall some basic terminology from universal algebra [10, 99]. We denote
by OD the set of all finitary operations on D and by O(k)

D the k-ary operations in OD. Let
f ∈ O(k)

D and g1, . . . , gk ∈ O(`)
D . The superposition of f and g1, . . . , gk is the `-ary operation

f [g1, . . . , gk] such that f [g1, . . . , gk](x1, . . . , x`) = f(g1(x1, . . . , x`), . . . , gk(x1 . . . , x`)).
A set F ⊆ OD is called a clone of operations if it contains all the projections on D and is

closed under superposition. It is easy to verify that the set of operations Pol(Γ) is a clone.
Clones are actively studied in universal algebra; for example, all (countably many) clones on
D = {0, 1} are known, but the situation is known to be much more complicated for larger
sets D (see, e.g., [10, 99]). We denote by JD the clone of all projections on D.

I Definition 36. A k-ary weighting is a function ω : O(k)
D → Q such that ω(f) < 0 only if f

is a projection and
∑
f∈O(k)

D

ω(f) = 0.

We denote by WD the set of all possible weightings on D and by W(k)
D the set of k-ary

weightings in WD.
Since a weighting is simply a rational-valued function satisfying certain linear inequalities

it can be scaled by any non-negative rational to obtain a new weighting. Similarly, any two
weightings of the same arity can be added to obtain a new weighting.

The notion of superposition can also be extended to weightings in a natural way, by
forming a superposition with each argument of the weighting, as follows.

I Definition 37. For any ω ∈W(k)
D and any g1, . . . , gk ∈ O(`)

D , we define the superposition
of ω and g1, . . . , gk, to be the function ω[g1, . . . , gk] : O(`)

D → Q defined by

ω[g1, . . . , gk](f ′) def=
∑

f∈O(k)
D

f [g1,...,gk]=f ′

ω(f) . (6)

It follows immediately from the definition of superposition that the sum of the weights
in any superposition ω[g1, . . . , gk] is equal to the sum of the weights in ω, which is zero, by
Definition 36. However, it is not always the case that an arbitrary superposition satisfies
the other condition in Definition 36, that negative weights are only assigned to projections.
Hence we make the following definition:

I Definition 38. If the result of a superposition is a valid weighting, then that superposition
will be called a proper superposition.

For a weighting ω ∈W(k)
D , we denote supp(ω) = {f ∈ O(k)

D | ω(f) > 0}.

I Definition 39. Let W be a non-empty set of weightings on a fixed domain D. We define
supp(W ) = JD ∪

⋃
ω∈W supp(ω).

We callW a weighted clone if it is closed under non-negative scaling, addition of weightings
of equal arity, and proper superposition with operations from supp(W ).
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For any weighted clone W , supp(W ) is a clone, which we call the support clone of W .
This easy but important fact has been observed in [77, 78, 105, 43]. We remark that the
inclusion of the Opt operator in the definition of weighted relational clones [43] ensures
that there is no need for distinguishing the support clone from the positive support clone of
weighted clones [77, 78].

I Example 40. For any clone, C, the set WC containing all possible weightings of C is a
weighted clone with support clone C.

I Example 41. For any clone, C, the set W0
C containing all zero-valued weightings of C is

a weighted clone with support clone C. W0
C contains exactly one weighting of each possible

arity, which assigns the value 0 to all operations in C of that arity.

I Remark. For weighted clones that are not finitely generated, the rational weights are
replaced by real weights in Definition 36 and Definition 39 requires topological closedness;
again, we refer the reader to [43] for more details.

We link weightings and cost functions by the concept of weighted polymorphisms.

I Definition 42 (Weighted Polymorphism). Let φ : Dm → Q be a cost function and let ω be
a k-ary weighting on D. We call ω a weighted polymorphism of φ if supp(ω) ⊆ Pol(φ) and
for any x1, . . . ,xk ∈ Feas(φ)∑

f∈supp(ω)

ω(f)φ(f(x1, . . . ,xk)) ≤ 0 . (7)

For a set W ⊆WD which may contain weightings with different support clones over D,
we can extend each of these weightings with zeros, as necessary, so that they are weightings
of the same support clone C, where C is the smallest clone containing all the clones that are
support clones of weightings in W . For any set W ⊆WD, we define wClone(W ) to be the
smallest weighted clone containing this set of extended weightings obtained from W .

I Definition 43. For any W ⊆WD, we denote by Imp(W ) the set of all cost functions in
ΦD which admit all weightings ω ∈W as weighted polymorphisms.1

It follows immediately from the definition of a Galois connection [10] that, for any set D,
the mappings wPol and Imp form a Galois connection between WD and ΦD, as illustrated
in Figure 2. A characterisation of this Galois connection for finite sets D is given by the
following theorem from [23, 43]:

I Theorem 44 (Galois Connection for Valued Constraint Languages [23, 43]).
1. For any finite D, and any finite Γ ⊆ ΦD, Imp(wPol(Γ)) = wRelClone(Γ).
2. For any finite D and any finite W ⊆WD, wPol(Imp(W )) = wClone(W ).

I Remark (fractional vs. weighted polymorphisms). Fractional and weighted polymorphisms
are effectively the same things, just written differently. A k-ary fractional polymorphism ω

can be transformed into a weighted polymorphism if, in Inequality 2, we move the right-hand
side to the left and write φ(xi) as φ(e(k)

i (x1, . . . ,xi, . . . ,xk)). A similar simple manipulation
transforms a k-ary weighted polymorphism into a fractional one.

1 The name Imp is chosen to suggest that such cost functions are improved by weightings in W in the
sense of the remark and discussion after Definition 18.
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∅
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F
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wPol(Imp(F))
= wClone(F)wPol

Imp

Figure 2 Galois connection between ΦD and WD.

Each of the two concepts is more convenient to work with depending on the context.
Fractional polymorphisms are more convenient to work with when describing properties
of operations in the support of fractional polymorphisms, and this relates to algorithmic
and complexity consequences discussed in Sections 5 and 6. On the other hand, weighted
polymorphisms are more convenient to work with when building an algebraic theory [23, 43,
77, 78].

It follows from Theorem 44 that to identify all tractable valued constraint languages on a
finite set D it is sufficient to study the possible weighted clones of weighted polymorphisms on
D. This provides an algebraic approach to the identification of tractable cases. In particular,
it follows that weighted polymorphisms completely determine the computational complexity
of valued constraint languages (the same way polymorphisms determine the computational
complexity of crisp languages [62]).

For a valued constraint language Γ we denote by supp(Γ) the support clone of the weighted
clone of weighted polymorphisms of Γ; i.e., supp(Γ) = supp(wPol(Γ)).

I Definition 45. A valued constraint language Γ is called a core if all unary operations
in supp(Γ) are bijections. Moreover, Γ is called a rigid core if the only unary operation in
supp(Γ) is the identity operation.
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For d ∈ D, let ud be a unary function on D such that ud(d) = 0 and ud(x) =∞ if x 6= d.
Rigid cores are important due to the following result.

I Theorem 46 ([77, 78]).
1. For any valued constraint language Γ there exists a valued constraint language Γ′ which is

a core such that VCSP(Γ) and VCSP(Γ′) are polynomial-time equivalent.
2. For any core valued constraint language Γ there exists a valued constraint language Γ′

which is a rigid core such that VCSP(Γ) and VCSP(Γ′) are polynomial-time equivalent.

The core language Γ′ in Theorem 46 (1) is built from Γ as follows. Let u ∈ supp(Γ)
be a unary operation with the minimum size of the set range U = u(D) among all such
operations. Then Γ|U = {φ|U | φ ∈ Γ} is a core. The rigid core language Γ′ in Theorem 46 (2)
is Γ′ = Γ|U ∪ {ud | d ∈ U}, with domain U .

A k-ary operation f : Dk → D is called idempotent if f(x, . . . , x) = x for every x ∈ D. It
is easy to show that Γ is a rigid core if and only if every operation from supp(Γ) is idempotent.

Thus, the intuition behind moving to the rigid core is that (a) one removes labels from
the domain that can always be (uniformly) replaced in any solution to an instance without
increasing its value, and (b) algebras with only idempotent operation are known to have
much more structure (than the general case), leading to the applicability of more powerful
algebraic results.

The Galois connection described in Theorem 44 implies the following result.

I Theorem 47. Let Γ and Γ′ be two valued constraint languages on the same domain and
of finite size. If wPol(Γ) ⊆ wPol(Γ′) then VCSP(Γ′) polynomial-time reduces to VCSP(Γ).

This is a generalisation of the analogous result for the CSP: if Pol(Γ) ⊆ Pol(Γ′) for crisp
languages Γ and Γ′ then CSP(Γ′) polynomial-time reduces to CSP(Γ) [62].

The algebraic theory of the CSP extends beyond clones to finite algebras and varieties of
algebras (see [19, 17, 85], see also the surveys in [32]), where a variety is a class of algebras over
the same signature defined by a set of identities. This extension explains why the complexity
of a (crisp) language is determined by the identities, i.e., universally quantified equations,
satisfied by its polymorphisms, which is why we usually define the relevant operations by
identities. This extension was instrumental in obtaining most state-of-the-art results in this
area (e.g. [1, 4, 6, 13, 14, 16, 18, 57, 85]). The basics of this theory were extended to VCSPs
in [77, 78], introducing weighted algebras and weighted varieties, which produced a hardness
result and a tractability conjecture for VCSPs – we discuss them in Section 6.

While weighted clones were introduced primarily for the understanding of the compu-
tational complexity of valued constraint languages, there have been several studies of the
purely algebraic structure of weighted clones [113, 112, 104, 63].

5 Algorithms

A curious feature of research into the tractability of constraint languages is that all languages
known to be tractable have been shown tractable by using very few algorithmic techniques.

Despite many tractability results concerning crisp languages (i.e., the CSP), only two
algorithmic techniques have so far been sufficient, and the applicability of each of them
individually has been characterised by specific algebraic conditions.

The first technique is based on enforcing local consistency, which is a natural algorithm for
dealing with (crisp) constraints. There are several closely related variants of this algorithm,
we will describe one of them. Fix parameters 1 ≤ κ ≤ `. For a given CSP instance,
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this algorithm starts by adding a new constraint for each subset of variables of size `, the
new constraints initially allowing all tuples. Then the algorithm repeatedly discards (i.e.,
disallows) tuples of labels in the constraints as follows. For every set W of at most κ variables
and every pair of constraints φ1, φ2 whose scopes contain W , discard all assignments for φ1
whose restriction on W is inconsistent with the restriction of φ2 to W . Eventually, either all
assignments (for at least one constraint) are discarded or else local consistency is established;
this procedure takes polynomial time for any fixed D and any fixed κ, `. The former case
implies no feasible assignments. One says that a CSP has relational width (κ, `) if the latter
case implies the existence of a feasible assignment. A CSP has bounded relational width
if it has relational width (κ, `) for some κ, `. The power of local consistency, i.e., a precise
characterisation of crisp languages that give rise to VCSP instances solvable by some form of
local consistency, has recently been established [3, 6, 14, 86] (see also [15, 75]).

I Theorem 48 (Bounded Width [3, 6, 14, 86]). Let Γ be a crisp language. Then the following
are equivalent:
1. VCSP(Γ) has bounded relational width;
2. VCSP(Γ) has relational width (2,3);
3. For all but finitely many k, Pol(Γ) contains a k-ary operation satisfying, for all x, y ∈ D,

f(y, x, x, . . . , x) = f(x, y, x, x, . . . , x) = f(x, x, . . . , x, y); (8)

4. For every k ≥ 3, Pol(Γ) contains a k-ary operation satisfying (8);

A k-ary (k ≥ 2) idempotent operation satisfying (8) is called a weak near-unanimity
operation. We remark that that there are many algebraic conditions equivalent to Pol(Γ)
containing weak near-unanimity operations of all but finitely many arities. One such condition
is that Pol(Γ) contains two weak near-unanimity operations, 3-ary w3 and 4-ary w4, such
that w3(x, x, y) = w4(x, x, x, y) [76].

The second standard algorithmic technique for the CSP is based on the property of
having a polynomial-sized representation (a generating set) for the solution set of any
instance [16, 57]. Roughly, the algorithm works by starting from the empty set and adding
the constraints of the instance one by one while maintaining (in polynomial time) a small
enough representation of the current solution set (of feasible assignments). At the end (i.e.,
after all constraints have been added), either this representation is non-empty and contains a
solution to the instance or else there is no solution. In a way, this technique is a generalisation
of Gaussian elimination. This algorithm is often called “few subpowers” because it is related
to a certain algebraic property to do with the number of subalgebras in powers of an algebra.
The power of this algorithm was established in [57]. A k-ary (k ≥ 3) operation f : Dk → D

is called an edge operation if, for all x, y ∈ D,

f(y, y, x, x, . . . , x) = f(y, x, y, x, x, . . . , x) = x

and, for all 4 ≤ i ≤ k,

f(x, . . . , x, y, x, . . . , x) = x where y is in position i.

I Theorem 49 (Few Subpowers [57]). Let Γ be a crisp language. Then VCSP(Γ) is solvable
by the few subpowers algorithm if Pol(Γ) contains an edge operation.

The converse to this theorem is true in the following sense: the absence of edge operations
from Pol(Γ) implies that the presence of small enough representations is not guaranteed,
see [57] for details. Interestingly, the few subpowers algorithm makes use of the actual edge
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operations in its work (in contrast with bounded width, where the weak near-unanimity
operations are used only to guarantee correctness).

For the general VCSP another algorithm, based on linear programming, has been the most
thoroughly investigated. Every VCSP instance has a natural integer linear programming
(ILP) formulation. Let Φ be a VCSP instance defined by Φ(x) =

∑q
i=1 φi(xi), with a set of

variables V . For each i, let Si be the set of variables appearing in xi; assignments to xi are
naturally associated with elements in DSi .

The ILP formulation involves variables µx(a), where x ∈ V and a ∈ D, and λi(s), where
1 ≤ i ≤ q and s ∈ DSi . All variables take values in {0, 1}. The intuition is that µx(a) = 1 in
a solution to the ILP formulation if x is assigned label a in the corresponding solution to Φ.
The ILP formulation includes constraints (9c) that ensure that, for any x ∈ V , exactly one
variable µx(a) is assigned 1. Similarly, λi(s) = 1 corresponds to s being assigned to xi. The
ILP formulation also includes constraints (9b) enforcing consistency between the two types
of variables in the ILP. The ILP instance BILP(Φ) associated with Φ is defined as follows:

BILP(Φ) def= min
q∑
i=1

∑
s∈DSi

φi(s)λi(s) (9a)

s.t.
∑

s∈DSi | s(x)=a

λi(s) = µx(a), 1 ≤ i ≤ q, x ∈ Si, a ∈ D (9b)

∑
a∈D

µx(a) = 1, x ∈ V (9c)

λi(s) = 0, 1 ≤ i ≤ q, φi(s) =∞ (9d)

Note that terms in (9a) corresponding to (9d) are assumed to be equal to 0.
If we allow the variables in BILP(Φ) to take arbitrary real values in the interval [0, 1], we

obtain a relaxation called the basic LP relaxation (BLP) of Φ, denoted by BLP(Φ). The
variables can then be seen as probability distributions on D and DSi , respectively. The
marginalization constraints (9b) impose that µx is the marginal of λi(s), for each constraint
and each variable x in the scope of that constraint.

We remark that an LP relaxation of the VCSP, similar or closely related to (9), has been
proposed independently by many authors; we refer the reader to [73] and the references
therein.

Given a VCSP instance Φ, the optimal value of BLP(Φ), which can be found in polynomial
time, is always a lower bound for the optimal value of Φ. We say that BLP solves Φ if the
optimal value of BLP(Φ) is equal to the optimal value of Φ. Moreover, we say that BLP
solves a valued constraint language Γ if BLP solves every instance Φ ∈ VCSP(Γ). It is shown
in [73] that in all cases where BLP solves Γ, a standard self-reduction method can be used
to obtain an assignment that minimises any Φ in VCSP(Γ) in polynomial time. For d ∈ D,
let ud be a unary function on D such that u(d) = 0 and u(x) =∞ if x 6= d. For rigid cores,
the self-reduction method goes through the variables in some order, finding d ∈ D for the
current variable v such that instances Φ and Φ + ud(v) have the same optimal value (which
can be checked by BLP), updating Φ := Φ + ud(v), and moving to the next variable. At the
end, the instance will have a unique feasible assignment whose value is the optimum of the
original instance. Hence if BLP solves Γ, then Γ is tractable.

The power of BLP for valued constraint languages was fully characterised in [103].
To state this result, we first introduce some further terminology about operations. A k-
ary operation f : Dk → D is called symmetric if for every permutation π on {1, . . . , k},
f(x1, . . . , xk) = f(xπ(1), . . . , xπ(k)). A fractional polymorphism ω is called symmetric if
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supp(ω) is non-empty and contains symmetric operations only. Finally, we say that an
operation f is generated from a set of operations F ⊆ OD if f ∈ Clone(F ).

I Theorem 50 (Power of BLP for Arbitrary Languages [103]). Let Γ be a valued constraint
language. Then the following are equivalent:
1. BLP solves Γ;
2. For every k ≥ 2, Γ admits a k-ary symmetric fractional polymorphism;
3. For every k ≥ 2, Γ admits a fractional polymorphism (not necessarily k-ary) ωk such that

supp(ωk) generates a symmetric k-ary operation.

Condition (3) has turned out to be very useful for proving the tractability of many valued
constraint languages. A binary operation f : D2 → D is called a semilattice operation if f is
associative, commutative, and idempotent. Since any semilattice operation trivially generates
symmetric operations of all arities, Theorem 50 shows that any valued constraint language with
a binary fractional polymorphism whose support includes a semilattice operation is solvable
using the BLP. This immediately implies that all of the following cases are solvable using
the BLP, and hence tractable: languages with a (generalised) submodular multimorphism
(Example 20), a bisubmodular multimorphism (Example 23), a k-submodular multimorphism
for any k (Example 23), a symmetric tournament pair multimorphism (Example 25), or a
skew bisubmodular fractional polymorphism (Example 24), or the fractional polymorphisms
describing submodularity on modular semilattices [53]. Moreover, a not very difficult
argument can be used to show that languages with a 1-defect multimorphism (Example 27)
also satisfy condition (3) of Theorem 50 [103], and thus are tractable.

Examples of problems VCSP(Γ) that are tractable, but not solvable by BLP, include
(the crisp) 2-Sat problem and 3-Lin-k, the (crisp) problem of solving system of linear
equations modulo k with 3 variables per equation, and some languages with a tournament
pair multimorphism (Example 25).

Recall that, for any crisp language Γ, any probability distribution on k-ary polymorphisms
of Γ is a fractional polymorphism of Γ. Thus, Theorem 50 can be re-stated for crisp languages
as follows.

I Theorem 51 (Power of BLP for Crisp Languages [82]). Let Γ be a crisp constraint language.
Then the following are equivalent:
1. BLP solves Γ;
2. For every k ≥ 2, Pol(Γ) contains a k-ary symmetric polymorphism;

It is unknown whether condition (2) in Theorem 51 is decidable, hence the same can be
said about the conditions in Theorem 50.

Recent work identified a sufficient instance-based condition for binary CSPs admitting a
cyclic polymorphism (cf. Section 6) that are solvable by BLP [12].

For valued constraint languages where the cost functions take only finite values, The-
orem 50 has been strengthened further [73].

I Theorem 52 (Power of BLP for Finite-Valued Languages [73]). Let Γ be a valued con-
straint language where every cost function takes only finite values. Then the following are
equivalent:
1. BLP solves Γ;
2. For every k ≥ 2, Γ admits a k-ary symmetric fractional polymorphism;
3. For some k ≥ 2, Γ admits a k-ary symmetric fractional polymorphism;
4. Γ admits a binary symmetric fractional polymorphism;
5. Γ admits a fractional polymorphism ω such that supp(ω) generates a symmetric operation.
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In contrast with Theorems 50 and 51, condition (4) in Theorem 52 is decidable because
deciding whether Γ admits a fixed-arity symmetric fractional polymorphism (by its definition)
amounts to solving a linear program.

The Sherali-Adams hierarchy [97] provides successively tighter LP relaxations of an integer
LP. Higher levels of this hierarchy can potentially solve more VCSPs than BLP does. Fix
parameters 1 ≤ κ ≤ l. For a VCSP instance Φ(x) =

∑q
i=1 φi(xi), with a set of variables

V , its Sherali-Adams relaxation SAκ,`(Φ) is defined as follows. First, we ensure that every
non-empty S ⊆ V with |S| ≤ ` appears in some term φi(xi), possibly by adding 0-valued
constraints (this is similar to how we start the local consistency algorithm described above).
The variables are λi(s) for every 1 ≤ i ≤ q and every tuple s ∈ DSi , they take values in the
interval [0, 1].

SAκ,`(Φ) def= min
q∑
i=1

∑
s∈DSi

φi(s)λi(s) (10a)

s.t. λj(t) =
∑

s∈DSi : s|Sj
=t

λi(s), 1 ≤ i, j ≤ q, Sj ⊆ Si, |Sj | ≤ κ, t ∈ Sj

(10b)∑
s∈DSi

λi(s) = 1, 1 ≤ i ≤ q (10c)

λi(s) = 0, 1 ≤ i ≤ q, φi(s) =∞ (10d)

As with BLP, terms in (10a) corresponding to (10d) are assumed to be equal to 0.
Say that a valued language Γ has valued relational width (κ, `) if the optimum value of

SAκ,`(Φ) is equal to the optimal value of Φ for every instance Φ of VCSP(Γ). Also, say that
Γ has bounded valued relational width if it has valued relational width (κ, `) for some κ, `.

I Theorem 53 (Power of SA for Arbitrary Languages [105, 108]). Let Γ be a valued constraint
language. Then the following are equivalent:
1. Γ has bounded valued relational width;
2. Γ has valued relational width (2,3);
3. For every k ≥ 3, supp(Γ) contains a k-ary (not necessarily idempotent) operation satisfying

the weak near-unanimity identities described in (8).

We remark that condition (3) in the above theorem plays a role not only here and in
Theorem 48, it also characterize the so-called robust approximability of CSPs [5].

Examples of languages solvable by SA but not by BLP include (the crisp) 2-Sat problem
and certain languages admitting a tournament pair multimorphism (cf. Example 25), see [73,
Example 5] for more details. The problem 3-Lin-k mentioned above is an example of a
tractable problem (solvable by few subpowers) not solvable by SA.

Finally, we also remark that it has recently been shown that if a valued constraint
language Γ does not have bounded valued relational width then not only is VCSP(Γ) not
solved by a constant level of the Sherali-Adams hierarchy but actually VCSP(Γ) is not solved
even by linear levels of the Lasserre semidefinite programming relaxation [107].

6 Complexity Classifications

As mentioned before, the ultimate goal of the research direction that we survey is to obtain
complexity classifications: clear descriptions of which VCSPs are tractable and which are not.
The usual way to approach this task has been to first restrict constraint languages under
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consideration to rigid cores, this can be done without loss of generality [77, 78]. After that,
one proves an algebraic dichotomy theorem, which states that every rigid core language either
expresses some NP-hard problem and therefore is NP-hard itself, or else it has polymorphisms
with some nice properties (usually in the form of identities).

We mentioned above that the tractability of constraint languages seems to arise from
very few algorithmic techniques. Interestingly, the hardness of constraint languages seems to
arise from a single specific problem 1-in-3-Sat (see Example 5)!

A Taylor operation is a k-ary (k ≥ 2) idempotent operation f such that, for each 1 ≤ i ≤ k,
it satisfies an identity of the form

f(�1,�2, . . . ,�k) = f(41,42, . . . ,4k) (11)

where �i = x,4i = y and �s,4t ∈ {x, y} for all s, t. (Note that such identities are the
weakest identities that prevent f from being a projection.) The following theorem can be
derived from [102] (see also [17]).

I Theorem 54. For a crisp constraint language Γ on D that is a rigid core,
either Pol(Γ) contains a Taylor operation,
or else wRelClone(Γ) contains a crisp function φ such that

Opt(φ) = {(x, y, z) ∈ A3 | φ1-in-3(g(x), g(y), g(z)) = 0} (12)

for some A ⊆ D and some function g : A→ {0, 1}.
It follows from Theorem 35 that if a crisp rigid core Γ has no Taylor polymorphism then
VCSP(Γ) is NP-hard.

For a crisp language Γ that is a rigid core, having a Taylor polymorphism is equivalent to
any one of the following conditions:
1. Γ has a weak near-unanimity polymorphism of some arity k ≥ 2 [19, 90];
2. Γ has a cyclic polymorphism [4], i.e. a k-ary (k ≥ 2) idempotent polymorphism f such

that

f(x1, x2, . . . , xk) = f(x2, . . . , xk, x1); (13)

3. Γ has a 6-ary Siggers polymorphism [98], i.e. a 6-ary idempotent polymorphism f that
satisfies identities

f(x, x, x, x, y, y) = f(x, y, x, y, x, x),
f(y, y, x, x, x, x) = f(x, x, y, x, y, x);

One can visualise these identities by thinking of a three-element complete graph (triangle)

whose vertices are
(
x

x

)
,
(
x

y

)
,
(
y

x

)
. Then the pairs of vertices that appear in the

6 coordinates (first coordinate on the right and the first coordinate on the left, and so
on) give a complete list of edges of the triangle, each edge being a pair of directed edges
in opposite directions.

4. Γ has a 4-ary polymorphism f [69] (sometimes also called a Siggers polymorphism)
satisfying the identity2

f(y, x, y, z) = f(x, y, z, x),

2 Using different variables, f(r, a, r, e) = f(a, r, e, a) – mnemonic due to Ryan O’Donnell.
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The Algebraic CSP Dichotomy conjecture (originally stated in [17] in a different, but
equivalent, form) mentioned in Example 11 is the following.

I Conjecture 55 (Algebraic CSP Dichotomy Conjecture). A crisp language Γ that is a rigid
core is tractable if Γ has a Taylor polymorphism (or, equivalently, satisfies one of the four
conditions above), and it is NP-hard otherwise.

The hardness part is known, as explained above, and it is the tractability part that is the
conjecture. This conjecture refines the original Feder-Vardi dichotomy conjecture [37] by
specifying the boundary in algebraic terms. Conjecture 55 was confirmed in many special
cases, for example, for crisp languages over two-element sets [95] and three-element sets [13]
and for crisp languages containing all unary crisp functions [18, 1]. The conjecture is still
open, but widely believed to hold in full generality.

Obviously, a complete classification of VCSPs would include a complete classification for
crisp languages. It turns out, however, that the latter classification implies the former one as
we now discuss.

A fractional operation ω is said to be cyclic if all operations in supp(ω) are cyclic. The
following lemma is contained in the proof of Theorem 50 in [78].

I Lemma 56. Let Γ be a rigid core on a set D. Then the following are equivalent:
1. supp(Γ) contains a Taylor operation of arity at least 2;
2. Γ has a cyclic fractional polymorphism of (some) arity at least 2;
3. Γ has a cyclic fractional polymorphism of every prime arity p > |D|.

The following theorem is Corollary 51 from [78].

I Theorem 57 ([78]). Let Γ be a valued constraint language that is a rigid core. If supp(Γ)
does not contain a Taylor operation then Γ is NP-hard.

It is actually shown in [78] that if supp(Γ) does not contain a Taylor operation then
wRelClone(Γ) contains a (not necessarily crisp) function φ satisfying condition (12).

Kozik and Ochremiak state a conjecture (which they attribute to L. Barto) that the
above theorem describes all NP-hard valued constraint languages, and all other languages
are tractable. Using Lemma 56, we restate their original conjecture via cyclic fractional
polymorphisms.

I Conjecture 58 (Algebraic VCSP Dichotomy Conjecture [77, 78]). Let Γ be a valued constraint
language that is a rigid core. If Γ has a cyclic fractional polymorphism of arity at least 2,
then Γ is tractable, and it is NP-hard otherwise.

Note that, for fixed D, the problem of checking whether a given finite rigid core Γ has
a cyclic fractional polymorphism of some arity can be solved in polynomial time. Indeed,
if p > |D| is some fixed prime number, then it is sufficient to check for a cyclic fractional
polymorphism of arity p. Such polymorphisms, by definition, are solutions to a system of
linear inequalities. Since the number of cyclic operations of arity p on D is constant (because
we assume that D is a fixed finite set), the system will have size polynomial in Γ and its
feasibility can be decided by linear programming.

Recall that, for a (possibly infinite) crisp language, any probability distribution on
polymorphisms (of the same arity) is a fractional polymorphism. Then Theorem 57 is a direct
generalisation of the above-mentioned corresponding result for crisp languages. Moreover,
Conjecture 58, when restricted to crisp languages, gives precisely Conjecture 55.
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For a constraint language Γ, let Feas(Γ) = {Feas(φ) | φ ∈ Γ}. Thus, CSP(Feas(Γ)) is
the problem of deciding whether an given instance of VCSP(Γ) has a feasible solution. It is
obvious that, for VCSP(Γ) to be tractable, CSP(Feas(Γ)) must also be tractable.

I Theorem 59 (Classification of General-Valued Languages [72]). Let Γ be a valued constraint
language over domain D that is a rigid core. If the following conditions hold then VCSP(Γ)
is tractable:
1. Γ has a cyclic fractional polymorphism of arity at least 2, and
2. Feas(Γ) is tractable.
Otherwise, Γ is not tractable.

Notice that the above theorem shows that a classification for crisp languages implies
the classification for all languages, whether or not the boundary is as predicted by the
Algebraic CSP Dichotomy Conjecture. In particular, it follows that Conjecture 55 implies
Conjecture 58. Moreover, if the Algebraic CSP Dichotomy Conjecture holds then condition (2)
can be removed from Theorem 59, since it would be implied by condition (1).

Theorem 59 implies classification within any class of languages Γ such that the classification
for the class of corresponding languages Feas(Γ) is known. For example, this is the case for
the class of languages containing all unary crisp functions [18, 1] or for the class of languages
over a two- or three-element domain [95, 13].

The necessity of conditions (1-2) in Theorem 59 is clear. To explain why they are sufficient,
we need to give a definition.

Let Φ be a VCSP instance over variables V . For each variable v ∈ V , let Dv = {d ∈ D |
d = σ(v) for some feasible solution σ for Φ}. Then the (1,∞)-minimal instance Φ̄ associated
with Φ is the VCSP instance obtained from Φ by adding, for each v ∈ V , the constraint
uDv

(xv), where uDv
is a crisp function such that uDv

(d) = 0 if and only if d ∈ Dv. Note
that if Γ is a rigid core and the problem CSP(Feas(Γ)) is tractable, then, for any instance Φ
of VCSP(Γ), one can construct the associated (1,∞)-minimal instance in polynomial time.
Indeed, to find out whether a given d ∈ D is in Dv, one only needs to decide whether the
CSP instance obtained from Feas(Φ) by adding the constraint ud(xv) is satisfiable. Since
Γ is a rigid core, one can assume that ud ∈ Γ, so the latter instance is also an instance of
CSP(Feas(Γ)).

If Γ is a rigid core satisfying the conditions in Theorem 59 then, for every instance Φ of
VCSP(Γ), the optimal value of BLP (Φ̄) is the same as the optimal value of Φ, as proved
in [72]. This algorithm (first computing Φ̄ and then finding its optimal value) allows one to
find the optimal value of any instance in polynomial time and then find an optimal solution
via self-reduction, as discussed earlier.

We would like to point out two surprising features of Theorem 59. The first one is that
the algorithm described above that solves all tractable cases uses feasibility checking only as
a black-box. The second one is that the proof of Theorem 59 does not involve structural
universal algebra used for CSP classifications and also in the proof of Theorem 57.

Tighter tractability conditions (than those given in Theorem 59) are known for a number
of important special cases.

For finite-valued languages, condition (2) in Theorem 59 is trivial and can be removed,
while condition (1) can be replaced by a much stronger condition.

I Theorem 60 (Classification of Finite-Valued Languages [106]). Let Γ be a finite-valued
constraint language that is a core. Either Γ has a binary symmetric fractional polymorphism
(and hence is solvable by BLP), or else Γ is NP-hard.
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It is shown in [106] that, for any NP-hard finite-valued Γ, wRelClone(Γ) contains a
binary function φ such that minarg(φ) = {(a, b), (b, a)} for some distinct a, b ∈ D (which can
be obtained from Γ even without using the operator Opt), thus simulating Max-Cut (see
Example 7). We have seen in Example 34 that, on domain {0, 1}, wRelClone({φxor, u0, u1})
contains φ1-in-3. Since weighted relational clones are closed under scaling by non-negative ra-
tional constants and addition of rational constants, we have φ1-in-3 ∈ wRelClone({φ, u0, u1}).

Theorem 60 generalises several previous classification results for finite-valued languages.
Tractability in these earlier results was often characterised by (more) specific binary symmetric
fractional polymorphisms:

A core {0, 1}-valued language3 over a two-element set [70, 33], or over a three-element
set [64], or including all unary {0, 1}-valued functions [36] is tractable if it is submodular
on a chain (cf. Examples 19 and 20), and NP-hard otherwise.
A core {0, 1}-valued language over a four-element set [66] is tractable if it is submodular
on some lattice (cf. Example 20) or 1-defect (cf. Example 27) and NP-hard otherwise.
A core finite-valued language over a two-element set [25] is tractable if it is submodular
(cf. Example 19) and NP-hard otherwise.
A core finite-valued language over a three-element set [55] is tractable if it is submodular on
a chain (cf. Example 20) or skew bisubmodular (cf. Example 24) and NP-hard otherwise.
A finite-valued language containing all {0, 1}-valued unary cost functions [74] is tractable
if it is submodular on a chain (cf. Example 25) and NP-hard otherwise.

Theorem 60 also implies a classification of the so-called Min-0-Ext problems [53].

A tight complete complexity classification for valued constraint languages over a two-
element set was established in [25]. Note that on a two-element set there is precisely one
majority operation, as defined in Example 28, which we will denote by Mjrty, and precisely
one minority operation, as defined in Example 29, which we will denote by Mnrty. There
are also precisely two constant operations, which will be denoted Const0 and Const1.

I Theorem 61 (Classification of Boolean Languages [25]). A valued constraint language Γ
on D = {0, 1} is tractable if it admits at least one of the following eight multimorphisms.
Otherwise wRelClone (Γ) contains φ1-in-3 and Γ is NP-hard.
1. 〈Const0〉
2. 〈Const1〉
3. 〈Min,Min〉,
4. 〈Max,Max〉,
5. 〈Min,Max〉,
6. 〈Mjrty,Mjrty,Mjrty〉,
7. 〈Mnrty,Mnrty,Mnrty〉,
8. 〈Mjrty,Mjrty,Mnrty〉.

Let us compare Theorem 61 with a classification of crisp Boolean languages, originally
established by Schaefer in [95] and restated here using polymorphisms (see, e.g. [22]): A
crisp constraint language on D = {0, 1} is tractable if it admits one of the following six
polymorphisms: Const0, Const1, Min, Max, Mjrty, Mnrty; otherwise it is NP-hard. These
six tractable cases are covered by cases (1-4), (6), and (7) in Theorem 61. The six cases
correspond to sets of Boolean relations that are 0-valid, or 1-valid, or expressible by Horn

3 {0, 1}-valued languages correspond to Max-CSPs, cf. Example 13.
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clauses, dual Horn clauses, 2-clauses, or linear equations over the field with 2 elements,
respectively.

The hardness part of Theorem 61 can be rederived using the algebraic theory described
in Section 4; see [31, 23] for details. We remark that if we restrict to core Boolean valued
constraint languages, the first two cases in Theorem 61 disappear as those languages are not
cores (and in fact are solvable trivially). The original proof of Theorem 61 identified φnae
(Example 6) and φxor (Example 7) as sources of hardness [25]. However, for rigid cores we
have seen in Example 34 how to obtain φ1-in-3 from φxor and it is well known that φ1-in-3 and
φnae can express each other in this case (see, e.g. [95]).

Another general complexity classification result concerns languages that contain all {0, 1}-
valued unary cost functions. Note that a fractional polymorphism ω is called conservative if
f(x1, . . . , xk) ∈ {x1, . . . , xk} for all f ∈ supp(ω).

I Theorem 62 (Classification of Conservative Languages [74]). Let Γ be a valued constraint
language on a set D such that Γ contains all {0, 1}-valued unary cost functions on D. Then
either Γ admits a conservative binary multimorphism 〈f1, f2〉 and a conservative ternary
multimorphism 〈f ′1, f ′2, f ′3〉 and there is a family M of 2-element subsets of D, such that:
1. for every {a, b} ∈ M , 〈f1, f2〉 restricted to {a, b} is a symmetric tournament pair (see

Example 25), and
2. for every {a, b} 6∈ M , 〈f ′1, f ′2, f ′3〉 restricted to {a, b} is an MJN multimorphism (see

Example 30),
in which case Γ is tractable, or else Γ is NP-hard.

It is shown in [108] that the tractable cases in Theorem 62 can be equivalently characterised
by the condition that supp(Γ) contains a majority operation (see also Example 31).

The original algorithm for solving the tractable cases identified in Theorem 62 was similar
to (and in fact inspired) the general algorithm for tractable VCSPs: after establishing some
sort of local consistency, any instance admits a symmetric tournament pair multimorphism [74]
and is thus solvable using BLP. It was shown in [108] that all tractable languages identified
in Theorem 62 in fact have valued relational width (2,3).

Recall the Min-Cost-Hom and Min-Sol problems discussed in Examples 14 and 16
respectively. Recall that a Min-Cost-Hom problem corresponds to VCSP(Γ) for some
language Γ containing only crisp cost functions and unary cost functions. We now briefly
describe the classification results so far obtained for these problems that give more information
than the general Theorem 59. It may seem that the Min-Cost-Hom framework is rather more
restrictive than the (general-valued) VCSP. However, it was shown in [26], by adapting the
main result of [20], that for every problem VCSP(Γ), where Γ is finite, there is a polynomial-
time equivalent Min-Cost-Hom problem, VCSP(Γ′), where Γ′ contains only a single crisp
binary function and a single finite-valued unary function. This mirrors a similar reduction
from the general CSP (Example 11) to the digraph homomorphism problem (Example 12)
which was first established in [37].

The complexity classification for Min-Cost-Hom for languages containing all unary cost
functions was established in [100]. The tractable case can be reduced, after a preprocessing
step using local consistency techniques, to a certain problem on perfect graphs known to be
solvable in polynomial time using linear programming [48]. For the special case of digraphs
(i.e., when the only non-unary cost function allowed is a single binary crisp cost function), a
complexity classification in graph-theoretic terms was obtained in [52]. The classification of
Min-Cost-Hom for languages containing all unary crisp cost functions was initially studied
in [101] and fully established in [110].
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The complexity of Min-Cost-Hom for all languages over a three-element set was classified
in [111]. The only tractable cases either admit a fractional polymorphism with a semilattice
operation in its support or a certain type of tournament pair. The former case is tractable
using BLP by Theorem 50 and the latter case is tractable using a reduction to the result
in [100] discussed above.

Min-Sol problems are Min-Cost-Hom problems where the only unary cost function in Γ is
a specific injective and finite-valued cost function. The classification of Min-Sol problems
for various special cases was established in [70, 65, 68, 110]. It was shown in [108] that
every Min-Sol problem satisfies either the conditions of Theorem 57 or the conditions of
Theorem 53, thus providing a full dichotomy for such problems. That dichotomy, as well as
Theorem 62, are corollaries of the following result, which does not follow from Theorem 59.

I Theorem 63 (Classification of General-Valued Languages with an Injective Function [108]).
Let Γ be a valued constraint language Γ on D that is a rigid core. Assume that Γ can express
a unary finite-valued cost function u : D → Q that is injective, i.e. u(a) 6= u(b) for any
a 6= b ∈ D. Then either Γ has bounded valued relational width (and hence is solvable by SA),
or Γ is NP-hard.

7 The Oracle Model

In this paper we have assumed that the objective function in our problem is represented as a
sum of functions each defined on some subset of the variables. There is a rich tradition in
combinatorial optimisation of studying problems where the objective function is represented
instead by a value-giving oracle. In this model a problem is tractable if it can be solved in
polynomial time using only polynomially many queries to the oracle (where the polynomial
is in the number of variables). Note that any query to the oracle can be simulated in linear
time in the VCSP model. Hence, a tractability result (for a class of functions) in the oracle
model automatically transfers to the VCSP model, while hardness results automatically
transfer in the opposite direction.

One class of functions that has received particular attention in the oracle model is the
class of submodular functions (cf. Example 19). There are several known algorithms for
minimising a (finite-valued) submodular function using only a polynomial number of calls to
a value-giving oracle (see [58, 59, 88, 96]).

The fastest general (strongly polynomial) algorithm [88] runs in O(n3 log2 n · EO +
n4 logO(1) n) time, where EO is the time for function evaluation by oracle. However, for some
submodular valued constraint languages Γ, VCSP(Γ) can be solved more efficiently than
by using these general approaches. For example, the (submodular) language Γcut defined
in Example 9 can be solved in cubic time using the Min-Cut-based algorithm described in
Example 9. A similar efficient approach can be used for all languages that are expressible over
Γcut. However, it was shown in [115, 117] that not all submodular functions are expressible
over Γcut, so this approach cannot be directly extended to solve arbitrary submodular VCSP
instances. It is currently an open question whether the minimisation problem for submodular
functions defined by sums of bounded arity submodular functions in the VCSP model is
easier than general submodular function minimisation in the oracle model.

Other classes of finite-valued functions that can be efficiently minimised in the oracle model
include bisubmodular and α-bisubmodular functions (Examples 23 and 24) [39, 41, 92, 42, 56],
functions with a 1-defect multimorphism (Example 27) [66], and functions that are submodular
on certain lattices (Example 20) [40, 79, 81]. The complexity of submodular function
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minimisation in the oracle model over arbitrary non-distributive lattices is still unknown (in
the VCSP model, all such language are tractable, by Theorem 50).

The following general problem was mentioned in [55, 66, 103]: which fractional/weighted
polymorphisms ω are sufficient to guarantee an efficient minimization algorithm, in the
value-oracle model, for the class of functions Imp(ω)? This problem can be asked only for
classes of finite-valued functions, or for classes of general-valued functions – in the latter case,
some representation of feasible tuples should be part of input. Natural candidates for which
the question is open include the k-submodularity multimorphism for k ≥ 3 from Example 23
and submodularity multimorphisms on many lattices from Example 20.

8 Conclusions and Future Directions

We have shown that the valued constraint satisfaction problem is a powerful general framework
that can be used to express many standard combinatorial optimisation problems. The general
problem is NP-hard, but there are many special cases that have been shown to be tractable.
In particular, by considering restrictions on the cost functions we allow in problem instances,
we have identified a range of different sets of cost functions that ensure tractability.

These restricted sets of cost functions are referred to as valued constraint languages, and
we have described in Section 4 the very general algebraic techniques now being developed to
classify the complexity of these languages.

This classification is still incomplete. In fact, even in the special case of the CSP
(Example 11), where all cost functions take only the values 0 or ∞, there is still no complete
classification of complexity for the corresponding constraint languages. This problem has been
studied for many years, beginning with the seminal work of Feder and Vardi who conjectured
that any such language will be either tractable or NP-complete [37]. This conjecture is
still unresolved. However, the Algebraic Dichotomy conjecture (see Conjecture 55) specifies
the boundary between tractable and NP-hard languages, and it has been proved in many
important cases. It was stated in [61] that “it is desirable to develop the algebraic theory
of VCSPs to the point where one could make a credible algebraic dichotomy conjecture for
the VCSP, in order to have a specific target to aim at.” Now, only two years after [61],
this algebraic theory has been developed, the VCSP dichotomy conjecture stated (see
Conjecture 58) and proved to be equivalent to Conjecture 55 (see Theorem 59).

It is an interesting open question to find tight(er) conditions characterising tractable
cases, both for the general case and for important special cases. For example, the tractability
condition for finite-valued languages (see Theorem 60), is considerably tighter then the
condition from Conjecture 58. It could probably be made tighter still: for |D| = 2, 3, tight
(i.e., irreducible) descriptions are given in [25, 55], respectively.

Another interesting open question is to improve the efficiency of the general algorithm
for tractable VCSPs described after Theorem 59. The current algorithm involves solving the
feasibility problem for a given instance many (specifically, O(|V | · |D|)) times, perhaps this
can be improved.

In this survey, we looked only at solving VCSPs to optimality. There is plenty of literature
on (in)approximability of CSP-related problems (see, e.g., the recent survey [89]), but many
problems about the approximability of VCSPs are still open: for example, the open problems
from [35], stated there for {0, 1}-valued CSPs, make perfect sense for arbitrary VCSPs. Note
that the equivalence of maximisation and minimisation as described in Example 13 does
not work when dealing with approximation properties. Fixed-parameter approximability for
{0, 1}-valued CSPs was considered in [9]. An interesting application of VCSP classifications
to study fixed-parameter tractability appeared in [60].
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In this survey, we looked at VCSPs over finite domains. There is a significant line of
research dealing with CSPs over infinite domains – see [94, 7] and also [8]. The complexity
of VCSPs over infinite domains is almost unexplored beyond CSPs.

The algebraic theory of the VCSP presented in Section 4 is based on the notion of a
weighted clone. Not much is known about weighted clones, and this direction is wide open for
purely algebraic investigation. Some specific open problems include the (possible) description
of weighted clones for D = {0, 1}, the identification of minimal weighted clones, and the
investigation of classes of weighted clones supported by a given ordinary clone. Some partial
results are presented in two MSc theses [113, 112] and in [104, 63].

In this survey we have focused on the complexity of valued constraint satisfaction problems
with restricted constraint languages. It is also possible to ensure tractability by restricting the
structure of the constraint scopes – so-called structural restrictions [46, 47, 91]. Combining
structural restrictions with language restrictions leads to so-called hybrid restrictions, and
these provide a promising source of new tractable cases [27, 28] which has so far been very
little explored – see survey [29].
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