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Abstract. Recent automotive vision work has focused almost exclu-
sively on processing forward-facing cameras. However, future autonomous
vehicles will not be viable without a more comprehensive surround sens-
ing, akin to a human driver, as can be provided by 360◦ panoramic
cameras. We present an approach to adapt contemporary deep network
architectures developed on conventional rectilinear imagery to work on
equirectangular 360◦ panoramic imagery. To address the lack of anno-
tated panoramic automotive datasets availability, we adapt a contempo-
rary automotive dataset, via style and projection transformations, to
facilitate the cross-domain retraining of contemporary algorithms for
panoramic imagery. Following this approach we retrain and adapt ex-
isting architectures to recover scene depth and 3D pose of vehicles from
monocular panoramic imagery without any panoramic training labels
or calibration parameters. Our approach is evaluated qualitatively on
crowd-sourced panoramic images and quantitatively using an automotive
environment simulator to provide the first benchmark for such techniques
within panoramic imagery.

Keywords: object detection, panoramic imagery, monocular 3D object
detection, style transfer, monocular depth, panoramic depth, 360 depth

1 Introduction

Recent automotive computer vision work (object detection [51,50], segmentation
[3], stereo vision [38,49], monocular depth estimation [41,26,1]) has focused al-
most exclusively on the processing of forward-facing rectified rectilinear vehicle
mounted cameras. Indeed by sharp contrast to the abundance of common evalua-
tion criteria and datasets for the forward-facing camera case [19,18,4,39,48,16,2],
there are no annotated evaluation datasets or frameworks for any of these tasks
using 360◦ view panoramic cameras.
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Fig. 1: Our monocular panoramic image approach. A: 3D object detection. B:
depth recovery.

However, varying levels of future vehicle autonomy will require full 360◦ situa-
tional awareness, akin to that of the human driver of today, in order to be able
to function across complex and challenging driving environments. One popularly
conceived idea of capturing this awareness is to use active sensing in the form
of 360◦ LIDAR, however this is currently an expensive, low-resolution method
which does not encompass the richness of visual information required for high
fidelity semantic scene understanding. An alternative is to fuse the information
from multiple cameras surrounding the vehicle [29] and such methods have been
used to fuse between a forward-facing camera and LIDAR [10,27]. However,
here opportunities are lost to share visual information in early stages of the
pipeline with further computational redundancy due to overlapping fields of
view. Alternatively the imagery from a multiview setup can be stitched into a
360◦ panorama [5]. A roof mounted on-vehicle panoramic camera offers superior
angular resolution compared to any LIDAR, is 1–2 orders of magnitude lower
cost and provides rich scene colour and texture information that enables full
semantic scene understanding [35].

Panoramic images are typically represented using an equirectangular projec-
tion (Fig. 1A); in contrast, a conventional camera uses a rectilinear projection.
In this projection, the image-space coordinates are proportional to latitude and
longitude of observed points rather than the usual projection onto a focal plane
as shown in Fig. 1A.

Recent work on panoramic images has largely focused on indoor scene under-
standing [63,61], panoramic to rectilinear video conversion [57,34,42] and dual
camera 360◦ stereo depth recovery [30,46]. However, no work to date has explic-
itly tackled contemporary automotive sensing problems.

By contrast, we present an approach to adapt existing deep architectures,
such as convolutional neural networks (CNN) [6,26], developed on rectilinear
imagery to operate on equirectangular panoramic imagery. Due to the lack of
explicit annotated panoramic automotive training datasets, we show how to reuse
existing non-panoramic datasets such as KITTI [19,18] using style and projec-
tion transformations, to facilitate the cross-domain retraining of contemporary
algorithms for panoramic imagery. We apply this technique to estimate dense
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monocular depth (see example in Fig. 1B) and to recover the full 3D pose of
vehicles (Fig. 1B) from panoramic imagery. Additionally, our work provides the
first performance benchmark for the use of these techniques on 360◦ panoramic
imagery acting as a key driver for future research on this topic. Our technique is
evaluated qualitatively on crowd-sourced 360◦ panoramic images from Mapillary
[45] and quantitatively using ground truth from the CARLA [13] high fidelity
automotive environment simulator1.

2 Related Work

Related work is considered within panoramic imagery (Section 2.1), monocular
3D object detection (Section 2.2), monocular depth recovery (Section 2.3) and
domain adaptation (Section 2.4).

2.1 Object Detection within Panoramic Imagery

Even though significant strides have been made in rectilinear image object pro-
posal [33] and object detection methods utilizing deep networks [51,55,25,24,31,6],
comparatively limited literature exists within panoramic imagery.

Deng et al . [11] adapted, trained and evaluated Faster R-CNN [51] on a
new dataset of 2,000 indoor panoramic images for 2D object detection. However
their approach does not handle the special case of object wrap-around at the
equirectangular image boundaries.

Recently, object detection and segmentation has been applied directly to
equirectangular panoramic images to provide object detection and saliency in
the context of virtual cinematography [34,42] using pre-trained detectors such
as Faster R-CNN [51]. Su and Grauman [56] introduce a Flat2Sphere technique
to train a spherical CNN to imitate the results of an existing CNN facilitating
large object detection at any angle.

In contemporary automotive sensing problems, the required vertical field of
view is small as neither the view above the horizon nor the view directly un-
derneath the camera have any useful information for those problems. Therefore,
the additional complexity of the spherical CNN introduced by [56] is not needed
in the specific automotive context. Instead we show how to reuse existing deep
architectures without requiring any significant architectural changes.

2.2 Monocular 3D Object Detection

Prior work on 3D pose regression in panorama is mostly focused on indoor scene
reconstruction such as PanoContext by Zhang et al . [63] and Pano2CAD by Xu
et al . [61]. The latter retrieves the object poses by regression using a bank of
known CAD (Computer-Aided Design) models. In contrast, our method does
not require any a priori knowledge of the object geometry.

1 for future comparison our code, models and evaluation data is publicly available at:
https://gdlg.github.io/panoramic

https://gdlg.github.io/panoramic
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Contemporary end-to-end CNN driven detection approaches are based on
the R-CNN architecture introduced by Girshick [23]. Successive improvements
from Fast-RCNN [22] and Faster-RCNN [51] increased the performance by re-
spectively sharing feature maps across proposals and generating the proposals
using a Region Proposal Network (RPN) instead of traditional techniques based
on sliding windows. This allowed a unified end-to-end training of the network to
solve the combined detection and classification tasks. More recently, Yang et al .
[62] and Cai et al . [6] introduced a multi-scale approach by pooling the region
proposals from multiple layers in order to reduce the number of proposals needed
as well as to improve performance on smaller objects such as distant objects.

While most of the work has focused on 2D detection, the work of Chen et
al . [9,10] leverages 3D pointcloud information gained either from stereo or LI-
DAR modalities to generate 3D proposals which are pruned using Fast R-CNN.
Whereas these works use complex arrangements using stereo vision, handcrafted
features or 3D model regression, recent advances [8,47,7] show that it is actu-
ally possible to recover the 3D pose from monocular imagery. Chen et al . [8]
use post-processing of the proposals within an energy minimization framework
assuming that the ground plane is known. Chabot et al . [7] use 3D CAD models
as templates to regress the 3D pose of an object given part detections; while
Mousavian et al . [47] show the 3D pose can be recovered without any template
assumptions using carefully-expressed geometrical constraints. In this work, we
propose a new approach, similar to [47], however without explicitly-expressed
geometrical constraints, which performs on both rectilinear and equirectangular
panoramic imagery without any knowledge of the ground plane position with
respect to the camera.

2.3 Monocular Depth Estimation

Traditionally dense scene depth is recovered using multi-view approaches such
as structure-from-motion and stereo vision [54], relying on an explicit handling
of geometrical constraints between multiple calibrated views. However recently
with the advance of deep learning, it has been shown that dense scene depth can
also be recovered from monocular imagery.

After the initial success of classical learning-based techniques such as [52,53],
depth recovery was first approached as a supervised learning problem by the
depth classifier of Ladický et al . [41] and deep learning-based approaches such as
[15,43]. However, these techniques are based on the availability of high-quality
ground truth depth maps, which are difficult to obtain. In order to combat
the ground truth data issue, the method in [1] relies on readily-available high-
resolution synthetic depth maps captured from a virtual environment and do-
main transfer to resolve the problem of domain bias.

On the other hand, other monocular depth estimation methods have recently
emerged that are capable of performing depth recovery without the need for large
quantities of ground truth depth data. Zhou et al . [64] estimate monocular depth
and ego-motion using depth and pose prediction networks that are trained via
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view synthesis. The approach proposed in [40] utilizes a deep network semi-
supervised by sparse ground truth depth and then reinforced within a stereo
framework to recover dense depth information.

Godard et al . [26] train their model based on left-right consistency inside a
stereo image pair during training. At inference time, however, the model solely
relies on a single monocular image to estimate a dense depth map. Even though
said approach is primarily designed to deal with rectilinear images, in this work
we further adapt this model to perform depth estimation on equirectangular
panoramic images.

2.4 Domain Adaptation and Style Transfer

Machine learning architectures trained on one dataset do not necessarily transfer
well to a new dataset – a problem known as dataset bias [58] or covariate shift
[28]. A simple solution to dataset bias would be fine-tuning the trained model
using the new data but that often requires large quantities of ground truth,
which are not always readily-available.

While many strategies have been proposed to reduce the feature distribu-
tions between the two data domains [44,21,12,59], a novel solution was recently
proposed in [1] that uses image style transfer as a means to circumvent the data
domain bias.

Image style transfer was first proposed by Gatys et al . [17] but since then
remarkable advances have been made in the field [36,60,14,20]. In this work, we
attempt to transform existing rectilinear training images (such as KITTI [19,18])
to share the same style as our panoramic destination domain (Mapillary [45]).
However, these two datasets have been captured in different places and share
no registration relationship. As demonstrated in [1,32], unpaired image style
transfer solved by CycleGAN [65], can be used to transfer the style between two
data domains that possess approximately similar content.

2.5 Proposed Contributions

Overall the main contributions, against the state of the art [6,26,19,18,47,26,13],
presented in this work are:

– a novel approach to convert deep network architectures [6,26] operating on
rectilinear images for equirectangular panoramic images based on style and
projection transformations;

– a novel approach to reuse and adapt existing datasets [19,18] in order to
train models for panoramic imagery;

– the subsequent application of these approaches for monocular 3D object
detection using a simpler formulation than earlier work [47], additionally
operable on conventional imagery without modification;

– further application of these techniques to monocular depth recovery using
an adaptation of the rectilinear imagery approach of Godard et al . [26];

– provision of the first performance benchmark based on a new synthetic eval-
uation dataset (based on CARLA [13]) for this new challenging task of auto-
motive panoramic imagery depth recovery and object detection evaluation.
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3 Approach

We first describe the mathematical projections underlining rectilinear and equirect-
angular projections and the relationship between the two required to enable our
approach within panoramic imagery (Sec. 3.1). Subsequently we describe the
dataset adaptation (Sec. 3.2), its application to monocular 3D pose recovery
(Sec. 3.3) and depth estimation (Sec. 3.4) and finally the architectural modifi-
cations required for inference within panoramic imagery (Sec. 3.5).

3.1 Rectilinear and Equirectangular Projections

Projection using a classical rectified rectilinear camera is typically defined in
terms of its camera matrix P . Given the Cartesian coordinates (x, y, z) of a 3D
scene point in camera space, its projection (ulin, vlin) is defined as:

[
ulin
vlin

]
=

P ·
xy
z

 (1)

where b·c denotes the homogeneous normalization of the vector by its last
component. The camera matrix P is conventionally defined as:

P =

f 0 cx
0 f cy
0 0 1

 (2)

where f and (cx, cy) are respectively the focal length and the principal point
of the camera.

The rectilinear projection as defined in Eqn. 1 is advantageous because the
camera matrix P can be combined with further image and object space trans-
formations into a single linear transformation followed by an homogeneous nor-
malization. However, this transformation can also be written as:

[
ulin
vlin

]
= P ·

x/zy/z
1

 (3)

This formulation (Eqn. 3) is convenient because the image-space coordinates
are expressed in terms of the ratio x/z and y/z which are the same regardless
of the distance from the 3D scene point to the camera.

In contrast, the equirectangular projection is defined in terms of the longitude
and latitude of the point. The longitude and latitude, respectively (λ, φ), are
defined as:

λ = arctan x/z (4)

φ = arcsin y/r where r = (x2 + y2 + z2)
1
2 (5)
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The latitude definition in Eqn. 5 can be conveniently rewritten in terms of
the ratios x/z and y/z as in Eqn. 3 for rectilinear projections:

φ = arcsin
y/z

r
where r = (x/z2 + y/z2 + 12)

1
2 (6)

For the sake of simplicity, this computation of the latitude and longitude
from the Cartesian coordinates can be represented as a function Γ :

[
λ
φ

]
= Γ

xy
z

 = Γ

x/zy/z
1

 (7)

Finally, we define an image transformation matrix Tequi which transforms
the longitude and latitude to image space coordinates (uequi, vequi):uequivequi

1

 = Tequi ·

λφ
1

 = Tequi · Γ

x/zy/z
1

 (8)

The matrix Tequi can be defined as:

Tequi =

α 0 cλ
0 α cφ
0 0 1

 (9)

where α is an angular resolution parameter akin to the focal length. Like the
focal length, it can be defined in terms of the field of view:

α = fovλ/w = fovφ/h (10)

where fovλ, fovφ, w, h are respectively the image horizontal field of view, ver-
tical field of view; width and height. In contrast to rectilinear imagery, where the
focal length is difficult to determine without any kind of camera calibration, the
equirectangular imagery, commonly generated by panoramic cameras from the
raw dual-fisheye pair, can be readily used without any prior calibration because
the angular resolution α = 2π/w depends only on the image width. Therefore,
approaches that would require some knowledge of the camera intrinsics of rec-
tilinear images (e.g . monocular depth estimation) can be readily used on any
360◦ panoramic image without any prior calibration.

By coupling the definitions of both the rectilinear and equirectangular pro-
jections in terms of the ratios x/z and y/z (Eqn. 3 & 8), we establish the relation-
ship between the coordinates in the rectilinear projection and equirectangular
projection for the given matrices P and Tequi:uequivequi

1

 = Tequi · Γ

P−1 ·
ulinvlin

1

 (11)

This enables us to reproject an image from one projection to another, such as
from the rectilinear image (Fig. 2A) to an equirectangular image (Fig. 2C) and
vice versa — a key enabler for the application of our approach within panoramic
imagery.
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3.2 Dataset Adaptation

In our approach, the source domain is the KITTI [19,18] dataset of rectilinear
images captured using a front-facing camera rig (1242×375 image resolution;
82.5◦ horizontal FoV and 29.7◦ vertical FoV); while our target domain con-
sist of 30,000 images from the Mapillary [45] crowd-sourced street-level imagery
(2048×300 image resolution; 360◦ × 52.7◦ FoV). These latter images are cropped
vertically from 180◦ down to 52.7◦ which is more suitable for automotive prob-
lems. This reduced panorama has an angular coverage 7.7 times larger than our
source KITTI imagery. Due to the lack of annotated labels for our target domain,
we adapt the source domain dataset to train deep architectures for panoramic
imagery via a methodology based on projection and style transformations.

Due to dataset bias [58], training on the original source domain is unlikely
to perform well on the target domain. Furthermore our target is relatively low
resolution and has numerous compression artefacts not present in the source
domain – present due to the practicality of 360◦ image transmission and storage.
To improve generalization to the target domain, we transform the source domain
to look similar to imagery from our target domain via a two-step process.

The first step transfers the style of our target domain (reprojected as rec-
tilinear images) onto each image from the source domain (Fig. 2A); resulting
images are shown in Fig. 2B. We use the work of Zhu et al . on CycleGAN [65]
to learn a transformation back and forth between the two unpaired domains.
Subsequently, this transformation model is used to transfer the style of our tar-
get domain onto all the images from our source domain. In essence, the style
transfer introduces a tone mapping and imitates compression artifacts present
in most panoramic images while preserving the actual geometry. Without the
use of style transfer, the weights are biased toward high-quality imagery and
perform poorly on low-quality images.

The second step reprojects the style-transferred images (Fig. 2B) and an-
notations from the source domain rectilinear projection to an equirectangular
projection (Fig. 2D). The transformed images represent small subregions (FoV:
82.5◦ ×29.7◦ ) of a larger panorama. While this set of transformed images does

A B

C D

Fig. 2: Output of each step of the adaptation of an image from the KITTI dataset:
A: No tranformation, B: Style transfer, C: Projection transfer, D: Style and projection
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not cover the full panorama, we find that they are sufficient to train deep archi-
tectures that perform well on full size panoramic imagery.

3.3 3D Object Detection

For 3D detection, we use a network by Cai et al . [6] based on Faster R-CNN
[51]. This network generates a sequence of detection proposals using a Region
Proposal Network (RPN) and then pools a subregion around each proposal to
further regress the proposal 2D location. We extend this network to support 3D
object pose regression. Uniquely, our extended network can be used on either
rectilinear or equirectangular imagery without any changes to the network itself,
instead only requiring a change to the interpretation of the output for subsequent
rectilinear or equirectangular imagery use.

While Mousavian et al . [47] shows that 3D pose can be estimated without any
assumptions of known 3D templates, their algorithm relies on geometrical prop-
erties. In contrast, we regress the 3D pose directly, simplifying the computation
and making it easier to adapt to equirectangular images.

Here, we directly regress the 3D dimensions (width, length and height) in
meters of each object using a fully-connected layer as well as the orientation as
per [47]. Moreover, instead of relying on geometrical assumptions, we also regress
the object disparity dlin = r

f which is the inverse of the distance r multiplied
by the focal length f . For equirectangular imagery, we use a similar definition
dequi = r

α substituting the angular resolution for the focal length. Using a fully-
connected layer connected to the last common layer defined in [6], we learn
coefficients a, b such that the disparity d can be expressed as:

d = ahroi + b (12)

where hroi is the height of the region proposal generated by the RPN. To simplify
the computation, we also learn the 2D projection of the centre of the object onto
the image (u, v) using another fully-connected layer. As a result, we can recover
the actual 3D position (x, y, z) using:

[x, y, z]T = r · u[P−1 · [ulin, vlin, 1]T ] rectilinear case (13)

[x, y, z]T = r · u[Γ−1(T−1equi · [uequi, vequi, 1]T )] equirectangular case (14)

where u[v] = v
‖v‖ is the unit vector in the direction of v.

For network training of our model, we additionally use data augmentation
including image cropping and resizing as defined by [6]. Any of those operations
on the image must be accompanied by the corresponding transformation of the
corresponding camera matrix P or Tequi in order to facilitate effective training.

As noted by Mousavian et al . [47], distant objects (far) pose a significant
challenge for reliable detection of the absolute orientation (i.e. relative front to
back directional pose). Confronted with such an ambiguity (absolute directional
orientation), a naive regression using the mean-square error would choose the
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average of the two extrema rather than the most likely extremum. To circum-
vent this problem, given the object yaw θ (orientation on the ground plane),
we instead learn c = cos2 θ an s = sin2 θ which are both independent of the
directionality. Noting that cos2 θ + sin2 θ = 1, c and s can be very conveniently
learned with a fully-connected layer followed by a Softmax() layer. For each pair
(s, c), there are four possible angles each in a different quadrant depending on
the sign of the sine and cosine:

θ̂ = atan2(±
√
s,±
√
c) (15)

We further discriminate between the four quadrants:

{(−1,−1), (−1, 1), (1,−1), (1, 1)} (16)

using a separate classifier consisting of a fully-connected layer followed by a
Softmax() classification layer.

Our entire network, comprising the architecture of [6] and our 3D pose re-
gression extension, is fine-tuned end-to-end using a multi-task loss over 6 sets of
heterogeneous network outputs: class and quadrant classification are learned via
cross entropy loss while bounding-box position, object centre, distance, orientation
are dependent on a mean-square loss. As a result, it would be time-consuming
to manually tune the multi-task loss weights, therefore we use the methodology
of [37] to dynamically adjust the multi-task weights during training based on
homoscedastic uncertainty without any use of manual hyperparameters.

3.4 Monocular Depth Recovery

We rely on the approach of Godard et al . [26] which was originally trained and
tested on the rectilinear stereo imagery of the KITTI dataset [19]. We reuse
the same architecture and retrain it on our domain-adapted KITTI dataset con-
structed using the methodology of Sec. 3.2.

Following the original work [26], the loss function is based on a left-right
consistency check between a pair of stereo images. In our new dataset, both
stereo images have been warped to an equirectangular projection as well as
depth smoothness constraints. While Godard et al . uses the stereo disparity
dstereo = fB

zw where f is the focal length, B the stereo baseline and w the width

of the image, we replace the focal length with the angular resolution: dequi = αB
rw .

Given a point pl = (ul, vl)
T , the corresponding point pr = (ur, vr)

T for a
given disparity d can be calculated as:

pr = Tequi · Γ

[
u
[
Γ−1(T−1equi · pl)

]
+

[
dequiw

α
, 0, 0

]T]
(17)

with definitions as per Sec. 3.1. The corresponding point pr in Eqn. 17 is
differentiable w.r.t. dequi and is used for the left/right consistency check instead
of the original formulation presented in [26]. This alternative formulation (Eqn.
3.1) explicitly takes into account that the epipolar lines in a conventional recti-
linear stereo setup are transformed to epipolar curves within panoramic imagery,
hence enabling the adaptation of monocular depth prediction [26] to this case.
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3.5 360◦ Network Adaptation

While the trained network can be used as is [34,11] without any further modifi-
cation, objects overlapping the left and right extremities of the equirectangular
image would be split into two objects; one on the left, and one on the right (as
depicted in Fig. 3(a), bottom left). Moreover, information would not flow from
one side of the image to the other side of the image — at least in the early feature
detection layers. As a result, the deep architecture would “see” those objects as
if heavily occluded. Therefore, it is more difficult to detect objects overlapping
the image boundary leading to decreased overall detection accuracy and recall.

A cropped equirectangular panorama can be folded into a 360◦ ring shown in
Fig. 3(a) by stitching the left and right edges together. A 2D convolution on this
ring is equivalent to padding the left and right side of the equirectangular image
with respective pixels from the right and left side as if the image was tiled (as
illustrated on Fig. 3(b) for 3 × 3 convolutions). This horizontal ring-padding is
hence used on all convolutional layers instead of the conventional zero-padding
to eliminate these otherwise undesirable boundary effects.

For 3D detection, our proposed approach based on Faster R-CNN [51] gen-
erates a sequence of detection proposals and subsequently pools a subregion
around each proposal to further regress the final proposal location, class and 3D
pose. To adapt this operation, instead of clamping subregion coordinates by the
equirectangular image extremities, we instead wrap horizontally the coordinates
of each pixel within the box:

uwrap ≡ u (mod w) (18)

where u is the horizontal coordinate of the pixel, uwrap the wrapped hori-
zontal coordinate within the image and w the image width.

As a result of this approach, we are hence able to hide the image boundary,
as a result, enabling a true 360◦ processing of the equirectangular imagery.

(a) A 360◦ equirectangular image
can be folded over itself until the
ends meet.

(b) A 3× 3 convolution ker-
nel, a column of padding
copied from the other side is
added at each extremity

Fig. 3: Convolutions are computed seamlessly across horizontal image boundaries
using our proposed padding approach.
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4 Evaluation

We evaluate our approach both qualitatively on panoramic images from the
crowd-sourced street-level imagery of Mapillary [45] as well as quantitatively
using synthetic data generated using the CARLA [13] automotive environment
simulator2.

4.1 Qualitative Evaluation

As discussed in Sec. 2.4, we qualitatively evaluate our method using 30,000
panoramic images (Miami, USA) from the crowd-sourced street-level imagery of
Mapillary [45]. Fig. 4 shows our depth recovery and 3D object detection results
on a selection of images of representative scenes from the data. Ring-padding
naturally enforces continuity across the right/left boundary; for instance, zero-
padding can prevent detection of vehicles crossing the image boundary (Fig
5A) whereas ring-padding seamlessly detects such vehicle (Fig. 5C). Similarly
zero-padding introduces depth discontinuities on the boundary (Fig 5B) whereas
ring-padding enforces depth continuity (Fig. 5D).

The algorithm is able to successfully estimate the 3D pose of vehicles and
recover scene depth. However the approach fails on vehicles which are too close to
the camera, almost underneath the camera. Indeed, those view angles from above
are not available in the narrow vertical field of view of the KITTI benchmark.
Following the conventions of the KITTI dataset, any vehicles less than 25 pixels
in image height were ignored during training. Due to the lower resolutions of the
panoramic images, an average-size vehicle (about 2m height) with an apparent
height of 25 pixels in KITTI is approximately at a distance of 56.6m, whereas
the same vehicle in a panoramic image will stand at 26m. As a result, the range
of the algorithm is reduced even though this is not a fundamental limitation of
the approach itself. Rather, we expect this maximum distance to be increased
as the resolution of the panoramic imagery is increased.

Further results are available in the supplementary video2.

4.2 Quantitative Evaluation Methodology

Due to the lack of available annotated automotive panoramic imagery dataset,
we evaluate our algorithm on synthetic data generated using the CARLA au-
tomotive environment simulator [13] adapted for panoramic imagery rendering
using the same format as our qualitative dataset. Due to lack of variety, our
dataset based on CARLA is not suitable for training purposes, while it is suit-
able for cross-dataset validation. Following KITTI conventions, we filtered out
vehicles less than 25 pixels in height from our detection results.

Table 1 shows the mean average precison (mAP) using an intersection over
union (IoU) of 0.5 across variations of our algorithm on 8,000 images. Over-
all, the projection transformation during training impairs the results by about

2 for future comparison our code, models and evaluation data is publicly available at:
https://gdlg.github.io/panoramic

https://gdlg.github.io/panoramic
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Fig. 4: Monocular depth recovery and 3D object detection with our approach.
Left: Real-world images. Right: Synthetic images.

A B C D

Fig. 5: Right/left boundary effect. A,B: Zero-padding; C,D: Ring-padding.

10% points. Our best results come from the combined style-transferred training
dataset consisting of both Mapillary and CARLA (4% points increased compared
to original) whilst training on the CARLA-adapted dataset alone increases the
performance by 2% points. This is due to the simplistic rendering and lack of
variety of the synthetic dataset which impairs the style transfer. As a result, the
CARLA-adapted dataset significantly boosts the accuracy for very low recall;
however, it also reduces the recall ability of the network (Fig. 6(a)). The model
trained on the CARLA-adapted dataset achieves a mAP of 0.82 on our evalua-
tion set of the adapted images but only 0.35 on the actual CARLA dataset which
shows that the style transfer is somewhat limited. Qualitatively, style transfer
toward the Mapillary dataset, which is of similar scene complexity to KITTI, is
significantly better than CARLA. By contrast, the combined dataset is able to
outperform on both metrics (Fig. 6(a)).

The monocular depth estimation results are shown in Table 1 for 200 images
(for distances < 50m). Similar to our detection result, using CARLA-adapted
imagery impairs the performance. Using projection transformation, we see an
increase of about 2.5% points in accuracy. Overall, those differences are smaller
than those on object detection across the different transformations (Table 1).
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Detectiona Depth Error Metricsb Depth Acc.a

Transformation Dataset mAP Abs. rel. Sq. rel. RMSE RMSE log δ < 1.25

none K 0.336 0.247 7.652 3.484 0.465 0.697
proj. K 0.244 0.251 7.381 3.451 0.445 0.732
style C 0.355 0.262 7.668 3.601 0.480 0.686
style M 0.359 0.257 7.937 3.634 0.474 0.682
style M+C 0.378 0.230 6.338 3.619 0.474 0.679
style & proj. C 0.259 0.292 9.649 3.660 0.469 0.723
style & proj. M 0.308 0.300 10.467 3.798 0.473 0.719
style & proj. M+C 0.344 0.231 6.377 3.598 0.463 0.716

a Higher, better b Lower, better

Table 1: 3D Object detection (mAP) results; and depth recovery results using
metrics defined by [15]. Training dataset: C: CARLA, M: Mapillary, K: KITTI
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Fig. 6: Object detection results

From our results, we can clearly see that we have identified a new and chal-
lenging problem within the automotive visual sensing space (Table 1) when com-
pared to the rectilinear performance of contemporary benchmarks [19,18].

5 Conclusion

We have adapted existing deep architectures and training datasets, proven on
forward-facing rectilinear camera imagery, to perform on panoramic images. The
approach is based on domain adaptation using geometrical and style transforms
and novel updates to training loss to accommodate panoramic imagery. Our
approach is able to recover the monocular depth and the full 3D pose of vehicles.

We have identified panoramic imagery has a new set of challenging problems
in automotive visual sensing and provide the first performance benchmark for the
use of these techniques on 360◦ panoramic imagery, with a supporting dataset,
hence acting as a key driver for future research on this topic.
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