A Perspective on
Lindstrom Quantifiers and Oracles

Tain A. Stewart*

Department of Mathematics and Computer Science,
Leicester University, Leicester LE1 TRH, U.K.
i.a.stewart@mcs.le.ac.uk
WWW home page: http://www.mcs.le.ac.uk/"istewart

Abstract. This paper presents a perspective on the relationship be-
tween Lindstrom quantifiers in model theory and oracle computations in
complexity theory. We do not study this relationship here in full gen-
erality (indeed, there is much more work to do in order to obtain a
full appreciation), but instead we examine what amounts to a thread
of research in this topic running from the motivating results, concern-
ing logical characterizations of nondeterministic polynomial-time, to the
consideration of Lindstrom quantifiers as oracles, and through to the
study of some naturally arising questions (and subsequent answers). Our
presentation follows the chronological progress of the thread and high-
lights some important techniques and results at the interface between
finite model theory and computational complexity theory.

1 Introduction

Prior to about 1974, the model theory of finite structures had been deemed to
be rather uninteresting, essentially because many of the fundamental results of
(infinite) model theory, such as the Completeness and Compactness Theorems,
fail when only finite structures are allowed (see [17]). This is not to say that
there are no interesting results in the finite case: Trakhtenbrot’s Theorem [38]
and the 0-1 law for first-order logic [12] are two. But such results appeared spo-
radically and there was no real concerted research effort in this regard. However,
all this changed thanks to Fagin’s Theorem [10] which tied together finite model
theory and computational complexity theory. Since then, finite model theory has
witnessed an explosive growth.

Notwithstanding the beauty of Fagin’s Theorem, finite model theory still
remained relatively dormant until the late seventies and early eighties. Instru-
mental in those early days was the work of Immerman which provided further
links between finite model theory and complexity theory; and, in particular,
yielded logical characterizations of numerous complexity classes by extensions
of first-order logic using “operators corresponding to problems” (other opera-
tors of a very different syntactic nature, such as fixed-point operators, were also
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used to extend first-order logic [20,39]). These operators are essentially infi-
nite uniform sequences of Lindstrém quantifiers: Lindstrém [24, 25] introduced
these quantifiers in model theory so as to characterize minimal logics expressing
certain properties. Immerman’s logical characterizations of complexity classes
yielded other things, such as new notions of (complexity-theoretic) reductions
and strong (complexity-theoretic) completeness results, and his general approach
enabled him to solve a long-standing open question; namely, he showed that the
complexity class NL is closed under complementation [22] (this problem was
solved independently at about the same time by Szelepcsényi [37]).

Whilst Immerman logically characterized complexity classes such as L, NL
and P using operators of the form alluded to above, NP remained to be so
characterized. Such a characterization was explicitly established by Stewart [31];
although unbeknownst to him, it had (essentially) already been obtained by
Dahlhaus [5]. It is this logical characterization of NP that forms the starting
point for the research travels in this paper. In more detail, we intend to show
how this logical characterization of NP leads to the consideration of Lindstrém
quantifiers as oracles’ (even though there are very definite differences between
the two concepts), and to a logical characterization of the complexity class LNF .
We then examine this characterization in more general settings in two ways:
first, we consider analogous logical characterizations of complexity classes of the
form LEC where CC is not necessarily NP (that is, we explore the extent to
which the methods and techniques involved in the logical characterization of
LNP are in some sense generic); and, second, we consider whether our logical
characterization of LNY | which happens to be on the class of ordered structures,
holds on the class of all structures.

It is not our intention here to provide a systematic and detailed framework
within which different oracle access mechanisms for oracle machines of varying
resource bounds can be related to the use of Lindstrom quantifiers in different
logics: one such framework has been laid out in [26,27]. What we aim to do
is to show how logical characterizations of NP give rise to the study of the
relationship between resource-bounded oracle computations and logics involving
Lindstrém quantifiers. Note the wording of the previous sentence: the motivating
spark for the research highlighted within this paper is essentially of the form:
“We have a logical characterization of NP as a fragment of a particular logic.
So which natural complexity class, if any, is captured by the full logic?”. That
is, the research arose because we wanted to find out which complexity class
was captured by a certain logic, and not because we decided to model resource-
bounded oracle computations in a logical fashion.

The survey presented herein highlights results in the papers [7, 15,32, 33].
Whilst we acknowledge that survey papers generally include explicit definitions
of all concepts and notions occurring, we occasionally fail to be as detailed as
we might be both for reasons of space and because it is really on the results in
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the aforementioned papers that we wish to focus. There are already a number of
surveys in which any such material missing from this paper might be found (no-
tably [28]), as well as the standard finite model theory reference [9]. We assume
that the reader is acquainted with the basic notions of complexity theory (as
can be found in, for example, [11]). We include sketches of important proofs and
we hope that we give a flavour of how current research at the interface between
finite model theory and computational complexity theory is progressing. We also
pose a number of problems which we believe to be worthy of investigation.

We begin, in Section 2, by giving some basic definitions relevant to the log-
ical characterization of complexity classes before saying more about Lindstrém
quantifiers and how they compare with oracles in Section 3. We exhibit a logical
characterization of the complexity class LNY | on ordered structures, in Section
4, and in Section 5, we examine the logical characterization of other log-space
oracle complexity classes. In Section 6, we return to our logical characterization
of LN® and consider it on the class of all structures.

2 Some basic definitions

We begin by giving some very basic definitions relating to how to consider a
complexity class as a class of problems, where by “problem” we mean a set of
finite structures (see below). The reader is encouraged to consult [9] and [11] for
further details regarding finite model theory and complexity theory, respectively.

In general, a signature o = (R, R,,...,R,.,C;,C,,...,C.) is a tuple of re-
lation symbols {R; : i = 1,2,...,r}, with R, of arity a;, and constant sym-
bols {C,;, : i = 1,2,...,c}. A (finite) structure of size n over o is a tuple
A= ({0,1,....n —1},R1,Rs,...,R;,C1,Co,...,C.) consisting of a universe
|A| = {0,1,...,n — 1}, relations Ry, Rs,..., R, on the universe |A| of arities
ai,as,...,ay, respectively, and constants Ci,Cs,...,C. from the universe |A]|.
The size of A is also denoted by |.A| . We denote the set of all (finite) structures
over 0 by STRUCT(o) (henceforth, we do not distinguish between relations
(resp. constants) and relation (resp. constant) symbols, and we assume that all
structures are finite and of size at least 2). A problem over o is a subset of
STRUCT(o) which is closed under isomorphism. If {2 is some problem then the
signature of (2 is denoted o({2).

We tie together classes of problems and complexity classes as follows. Com-
plexity classes are generally considered to be classes of languages over the al-
phabet {0, 1}, recognized by various resource-bounded computing devices (for
example, by log-space deterministic Turing machines), whereas problems are
(isomorphism closed) sets of finite structures. What we do is to encode, via some
(reasonable) encoding scheme (see below), our structures so that they might be
input to some computational device. For example, suppose that we have some
structure A of size n in which there is a relation R of arity a. We could encode
this relation as a string of n® bits

R(0,0,...,0,0), R(0,0,...,0,1),...,R(0,0,...,0,n— 1),
R(0,0,...,1,0),...,R(n—1,n—1,...,n—1,n—1).



Any constant of A could be encoded as a 0-1 string representing its binary
representation, and these strings, encoding relations and constants of A, could
then be concatenated, perhaps, to obtain an encoding of A. Note that there
are numerous (an infinite number, in fact) different encoding schemes we might
choose to encode the structure 4. Consequently, we can now say that some
problem is accepted by, for example, some Turing machine if some encoding of it,
according to some fixed encoding scheme, is the language accepted by the Turing
machine. By “fixed” we do not mean that the same encoding scheme should be
used for every problem, just that the same encoding scheme should be used for
every structure of our problem. Note also that because a problem is a set of
structures closed under isomorphism, there will be a number of strings encoding
the “same” structure. (This is the basic approach adopted in complexity theory
when abstract decision problems are equated with languages: see [11]).

We are now in a position to identify a complexity class CC with a class of
problems L. We identify CC with L, and write CC = L and say that L captures
CC, if, and only if:

e for every problem in L, there is an encoding of this problem in CC; and
e for every language in CC, there is a problem in L of which this language is
the encoding.

We reiterate again that any encoding scheme is only specific to the problem in
hand.

Given any language A over {0,1}, we can always obtain a problem {2 of
which this language is the encoding; and, moreover, this problem is over the sig-
nature ¢ = (M, S), where M is a unary relation symbol and S is a binary
relation symbol. For any string w € A of length n, let A be a o-structure
of size n such that S encodes a successor relation on {0,1,...,n — 1}, e.g.,
{(0,1),(1,2),(2,3),...,(n—2,n—1)} which yields the ordering 0,1,2,...,n—1,
and such that M (i) holds if, and only if, the ith bit of w, with respect to the
ordering given by S, is 1. Note that there are numerous such structures A corre-
sponding to w in this way. Let the problem (2 consist of every such o-structure
derived from some string w € A in this way (and so {2 is closed under isomor-
phism). As our encoding scheme for (2, encode any o-structure A for which S is
a successor relation as the string obtained by reversing the above process, and
encode any o-structure A for which S is not a successor relation as some fixed
string not in A (we may assume that there exists such a string). Then, via this
encoding scheme, the problem (2 is encoded as the language A. We shall return
to these “successor” structures presently.

The above discussion suffers from the fact that we have not defined exactly
what we mean by an encoding scheme. Rather than becomes embroiled in this
issue, let us refer the reader to the discussion in [11] on as to what constitutes a
“reasonable” encoding scheme.

We remark that it is usual to say that an input to some Turing machine
has size n if the input string consists of n symbols. We always work modulo
an encoding scheme and consequently we talk of some structure being input to
some Turing machine when strictly we mean that the encoding of this structure



is input. Furthermore, if we say that some structure of size n is input to some
Turing machine then “size” refers to the size of the structure and not the length
of the encoding.

3 Lindstrom quantifiers in descriptive complexity

We now show how Lindstrém quantifiers are used in the logical characterization
of complexity classes defined by a model of computation not involving oracles.
Prompted by these characterizations, we then examine the possibility of using
oracle machines to solve problems definable in other related logics formed using
Lindstrém quantifiers.

3.1 1In the absence of oracles

First-order logic, FO, consists of all formulae formed from atomic formulae (over
some signature) using the boolean connectives A, V and —, and the quantifiers V
and 3. We write FO to denote the class of first-order formulae and also the class
of problems defined by first-order sentences, and do likewise for any other logic.
Whilst it is not difficult to see that any problem in FO is in the complexity class
L, there are problems in L that are not in FO; one such being the problem, over
the empty signature, consisting of those structures of even size. Consequently,
if we are interested in capturing complexity classes such as L, NL, P and NP
then first-order logic obviously needs to be extended in some fashion.

One natural extension is to second-order logic, SO, which is obtained by al-
lowing the existential and universal quantification of new relation symbols (that
is, relation symbols not appearing in the underlying signature). For example,
if oo = (E), where E is a binary relation symbol (and so oy-structures can be
thought of as undirected graphs via “there is an edge from vertex u to vertex v
if, and only if, E(u,v) or E(v,u) holds”; and also as directed graphs via “there
is an edge from vertex u to vertex v if, and only if, E(u,v) holds”) then the
problem

3COL = {4 € STRUCT(03) : the undirected graph with vertex set
given by |A| and edge set given by the relation E can be 3-coloured}

is defined by the second-order sentence

ARIWIB(Vz(R(z) V W (z) V B(x))

AVz(=(R(z) AW (2)) A ~(B(x) A B(x)) A=(W(z) A B(2)))

A2y ((E(z,y) V E(y, z)) = (~(R(z) A B(y)) A ~(W (2) AW (y))
A=(B(z) A B(y)))))

(where R, W and B are new relation symbols af arity 1).



In a seminal result, Fagin [10] proved that a problem is in NP if, and only
if, it can be defined by a sentence of existential second-order logic, X} (that is,
the fragment of SO consisting of formulae of the form

73T, ... AT,

where each T is a new relation symbol and ¢ is a first-order formula). Stockmeyer
[36] extended Fagin’s characterization to show that SO captures the Polynomial
Hierarchy, PH.

Given the facts that FO C L and that Y] is a rather basic fragment of SO,
one still has the problem of capturing complexity classes “below” NP such as L,
NL and P. One method is to restrict the syntax of X| even further, as was done
by Grédel [14], but one can also augment FO with appropriate “operators”. We
illustrate such an approach with the best known of these operators, TC.

Define the signature o244+ = (F, C, D), where E is a binary relation symbol
and C and D are constant symbols, and define the problem TC as

TC = {4 € STRUCT (0244 ) : the digraph with vertex set |A| and
edge set given by the relation E contains a path from vertex C'
to vertex D}.

Corresponding to the problem TC is an operator of the same name; that is, an in-
finite uniform, or vectorized, sequence of Lindstrom quantifiers (whilst we do not
define here explicitly what a Lindstrém quantifier is, we hope that the essence of
Lindstrém quantifiers is gleaned from what follows). The logic (=TC)*[FO], or
transitive closure logic, is the closure of FO under the usual first-order connec-
tives and quantifiers, and also the operator TC, with TC applied as follows. Given
a formula ¢(x,y) € (£TC)*[FO], where the variables of the k-tuples x and y, for
some k, are all distinct and free in ¢, the formula ¢ defined as TC[Axy¢](u, v),
where u and v are k-tuples of (not necessarily distinct) constant symbols and
variables, is also a formula of (£TC)*[FO], with the free variables of & being
those variables in u and v, as well as the free variables of ¢ different from those
in the tuples x and y. If @ is a sentence then it is interpreted in a structure
A € STRUCT(0), where o is the underlying signature, as follows. We build a
digraph with vertex set |.A|* and edge set

{(a,b) € |A|* x |A|* : 4(a,b) holds in A},

and say that A = @ if, and only if, there is a path in this digraph from vertex u
to vertex v (the semantics can easily be extended to formulae of (=TC)*[FO]:
see, for example, [32] for a more detailed semantic definition). We also denote
the fragments of (£TC)*[FO] where applications of TC do not appear within
the scope of a negation sign by TC*[FO], and where at most m applications
of TC may be nested by (£TC)™[FO]: the fragment TC™[FO] is as expected.
We reiterate that TC is essentially an infinite sequence of Lindstrom quantifiers
{TCi} where TCy, binds 2k free variables in the formula to which it is applied.



In a celebrated result, Immerman [21,22] captured the complexity class NL
by the logic (£TC)*[FO], but only on the “successor” structures, or to give
them their popular name ordered structures, encountered earlier. More precisely,
he assumed that the logic (£TC)*[FO] has at its disposal a “built-in” binary
relation symbol suce, different from any symbol of the underlying signature, that
is always interpreted as a successor relation (i.e., succ(z,y) holds if, and only if,
y =z +1) on the domain of any structure, and also two constant symbols, 0 and
mazx, that denote the least and greatest elements with respect to the relation
suce: we denote the resulting logic by (£TC)*[FO;]. Note that sentences of a
logic such as (£TC)*[FO;] might not define problems, i.e., sets of finite structures
closed under isomorphism, as, for example, the successor relation might be used
“explicitly” in a sentence as it is in the sentence E(0,maz) of FO4(o2). We
simply ignore all such sentences and only ever concern ourselves with sentences
defining problems.

However, it is undecidable as to whether a sentence of (£TC)*[FOg] defines
a problem and consequently (£TC)*[FO;] does not have a recursive syntax and
should not really be called a logic (see [18]). Notwithstanding this remark, we
continue to call (£TC)*[FO;] a logic on the grounds that one could regard it as
the (bona fide) logic (£TC)*[FO] restricted to the class of ordered structures.
But let us press on with our discussion of Immerman’s characterization of NL.

In fact, Immerman showed that (£TC)*[FO,] = TC'[FO,] = NL and that
every formula in (£TC)*[FO,] has a simple normal form; in particular, any
problem (2 that is definable by a sentence of (£TC)*[FO,] can be defined by one
of the form

TC[Axy](0, max),

where: x and y are k-tuples of distinct variables, for some k; ¢ is a quantifier-free
formula of FO, (actually, a quantifier-free projection: see [21]); and O (resp. max)
is the constant symbol 0 (resp. maz) repeated k times. In such a circumstance we
say that there is a quantifier-free first-order translation with successor from (2 to
TC; and as {2 is an arbitrary problem in NL we have that TC is complete for NL
via quantifier-free first-order translations with successor (clearly, we may have
other translations such as first-order translations with, or without, successor).
Such a result sharpens the well-known result that TC is complete for NL via
log-space reductions [29]. An important point to note is that adopting such a
logical viewpoint to complexity theory yields techniques for proving problems
complete for some complexity class that were hitherto unavailable (see [34]) and
scope for showing that traditional complete problems might not remain complete
under restricted logical reductions (see [1]).

One can augment FO (or FO;) with an operator (or operators) such as TC
corresponding to any problem (or problems) and examine the class of problems
so captured. A variety of such logics have been formed and many well-known
complexity classes, including L, NL, P and NP, consequently captured (see,
for example, the presentation and references in [35]). Of particular interest to
us is the logic formed by extending FO, using an operator corresponding to the



problem

HP = {4 € STRUCT(02++) : the digraph with vertex set given by
|A| and edge set given by the relation E has a Hamiltonian
path from vertex C' to vertex D}.

Theorem 1. [5,31] A problem is in NP if, and only if, it can be defined by a
sentence of the logic HP*[FOy].

In fact, Theorem 1 holds in the absence of the built-in successor relation
[5], and there is a normal form result analogous to that for TC*[FO], above
[31]. Obviously a more satisfactory result would be that NP = (+HP)*[FOq].
However, this would yield as an immediate corollary that NP = co-NP! Conse-
quently, we are left with the question: “Can we characterize the class of problems
(£HP)*[FOq] in the traditional (Turing-machine-based) setting?”. Note that
such a question does not arise with regard to the analogous logical characteriza-
tions of L, NL and P as these complexity classes are closed under complemen-
tation.

3.2 Modelling Lindstrom quantifiers using oracles

Before turning to the question just stated, let us consider the possibilities of
modelling applications of Lindstrém quantifiers using oracles. For concreteness,
let us consider a sentence ¢ of the logic (XHP)*[FO,]. There are some points
worthy of note, which we return to presently.

(a) There might be a number of applications of HP within ¢ and some of these
applications might be nested.

(b) When deciding whether some appropriate structure, of size n, satisfies ¢,
every application of HP involves the building of a digraph of size n*, for
some k.

(¢) In constructing ¢, the first application of the operator HP (in the process of
constructing ¢) is to a first-order formula.

Let us consider a typical standard oracle-machine computation: for concrete-
ness, consider a log-space deterministic oracle Turing machine (DOTM) where
the oracle is the problem HP. In a computation by such a Turing machine, oracle
strings are (repeatedly) written to the unique write-only oracle tape and when
the oracle consultation state is entered, whether the string written on the oracle
tape is in the oracle (i.e., whether the string encodes a digraph and two vertices
such that there is a Hamiltonian path in the digraph from the first vertex to the
second) is reflected in the new state adopted by the machine. The oracle tape
is cleared, with the oracle head subsequently positioned over the leftmost cell
of the oracle tape; and all this happens in one move of the machine (see, for
example, [4] for more on different types of oracle machines). In comparison with
the three points remarked upon above, note the following.



(a) Whilst there are a number of different oracle access mechanisms in the liter-
ature (see, for example, [4]), it is usually the case that oracle calls can not be
nested (and this is certainly the case for the standard notion of a log-space
DOTM with an NP oracle).

(b) The lengths of different oracle strings queried in a particular computation
might vary dramatically.

(¢) The resources used to build a specific oracle query in such a computation
can be log-space.

So whilst there may be an intuitive link between Lindstrém quantifiers and
oracles, there are a number of points of divergence.

4 Characterizing Hamiltonian path logic

As it happens, the points of divergence mentioned in the previous section can of-
ten be reconciled. The complexity class LEC consists of those problems accepted
by a standard log-space DOTM with a CC oracle.

Theorem 2. [33] A problem is in LNY if, and only if, it can be defined by a
sentence of the logic (£ HP)*[FOs]. Moreover, any problem in LNY can be defined
by a sentence of (X HP)*[FOs] of the form

21325 ... Iz, (HP[Axy ¢](0, max) A ~HP[X\x'y'¢'](0, max))

where ¢ and @' are quantifier-free first-order (actually, quantifier-free projec-
tions) and z1, 22, - .., 2, are free in ¢ and ¢'.

Proof. (Sketch) Let {2 be some problem accepted by the log-space DOTM M
with an NP oracle. Without loss of generality, we may assume that the oracle is
HP (essentially because HP is complete for NP via 1-L reductions [19]). Also,
by a result of Wagner [40], we may assume that on any input structure of size
n, M makes O(logn) oracle queries.

Consider a typical computation of M on some input structure of size n.
There are some answers (0 or 1) to queries associated with this computation,
and as there are O(logn) queries, we can encode these answers using the binary
representations of k values vy, vs,...,v, € {0,1,...,n — 1}, for some k. If o is
the underlying signature of (2, denote by ¢’ the signature o with k additional
constant symbols C1,Cs, ..., Ck.

We shall define a log-space DOTM M’ that takes o'-structures as input and
which accepts some o'-structure A’ if, and only if, M accepts A = A'|, (i.e.,
the o-structure obtained from A’ by removing the constants C{“’ , 054’, PN C,;“’)
with the oracle answers as given by the constants C{“’,C{", PN C,’c“’.

The DOTM M’ proceeds as follows.

Simulate the action of M on A except that instead of writing on the
oracle tape, use the bits of C{“’,C{", PN C,’c“’ as the answers to (non-
existent) queries.



If the simulation is rejecting then reject else:

build, and query, a triple (G, a,b), where G is a digraph and a and b
are distinct vertices of GG, with the property that: if

(Glyaly b1)7 (G27 az, b2)7 RS (Gm7 Am, bm)
are the queries made by M on input A for which the answer
(according to 0{4’,054’,...,0,;4') is “yes” then (G, a,b) € HP if, and
only if, (G1,a1,b1), (G2, a2,b2), ..., (Gm,am, by) € HP;
build, and query, a triple (G’,a’,b') with the property that: if

( Ilaallabll)a( I27al27bl2)7- . -v(G;n’aa'Im':b;n’)
are the queries made by M on input A for which the answer
(according to C7¥, C5Y', ..., C) is “no” then (G',a',b') ¢ HP if,
and Only ifa ( ,17 alla bll): ( ,27 al27 bl2)) tr ( Im”a;n”b;n’) g HP.
If the answers to these two queries are “yes” and “no”,
respectively, then accept otherwise reject.

The triples (G, a,b) and (G',a’,b") can actually be built from (Gy,aq,b1), (G,
02,52)s s (Goms Gy bn) a0 (G}, 1), (G 0, BY), -, (Gl sl Bs) uSing

m'»Pm’ Ym/!
1-L reductions [31], and so M’ is indeed a log-space DOTM.
We can now encode the computation of M’ so that there are two first-
order quantifier-free (actually, quantifier-free projections) ¢'-formulae ¢(x,y)
and ¢'(x',y’) with the property that

A" E HP[Axy¢](0, max) if, and only if, there is a Hamiltonian path in
the digraph G from a to b

and

A" E HP[Xx'y'¢'](0, max) if, and only if, there is a Hamiltonian path in
the digraph G’ from a’ to b'.

Consequently, (2 can be defined by a sentence of the form
21325 ... 32, (HP[Axy ¢](0, max) A ~HP[A\x'y’¢'](0, max)).

Our only remark with regard to the encoding of the computation of M is
that ¢(x,y) and ¢'(x’,y’) do not describe the digraphs G and G’ directly. We
actually describe these digraphs using formulae of (£DTC)*[FO,] where the
problem DTC is defined as

DTC = {A € STRUCT(02+4) : the digraph with vertex set |.A| and
edge set given by the relation E contains a deterministic path

from vertex C' to vertex D},

with a deterministic path between two vertices in a digraph being one where every
vertex on the path, except perhaps the last, has out-degree 1 in the digraph
(Immerman captured L by the logic (£DTC)*[FO,] [21]). We then apply the



operator HP to these formulae and manipulate the resulting formulae to get our
normal form.

The fact that any problem definable in (+HP)*[FO,] can be accepted by a
log-space DOTM with an NP oracle is relatively straightforward to prove. O

The proof of Theorem 2 yields a number of corollaries regarding the rela-
tionship between fragments of (£HP)*[FO,] and complexity classes defined by
bounding the number of queries made by log-space and polynomial-time oracle
machines to an NP oracle. We mention one of these corollaries below as an
illustration (for others see [32, 33]).

The Boolean Hierarchy, BH, is defined as follows.

P(0) =

P(1)

P(2i) = {X NY: X e NP(2i —1),Y € co-NP};

P(2i+1)={XUY : X € NP(2i),Y € NP},

for i > 0, and BH = U{NP() : ¢ = 0,1,...}. For any function f(n),
LNP[O(f(n))] consists of those problems accepted by a log-space DOTM which
makes O(f(n)) queries to its NP oracle on every input of size n. For any logic L,
the logic Bool(L) consists of the closure of L under A, V and —. Theorem 2, a sim-
ple modification of its proof and a result in [40] (stating that if LNY[0(1)] = L™F

then the Polynomial Hierarchy collapses to LNPNP) yield the following corollary.

Corollary 1. [33] Bool(HP*[FO,]) = LN?[0(1)]; and so BH = LN?[0(1)]. If
Bool(HP*[FO,]) = (£HP)*[FO] then the Polynomial Hierarchy collapses to
NP o

The fact that BH = LN?[0O(1)] was proved in [23].

Write LYP[O(f(n))] to denote the complexity class consisting of all those
problems accepted by log-space DOTMs which make, on an input of size n,
O(f(n)) queries to an NP oracle such that all queries are made “in parallel”,
i.e., intuitively, all querles are computed before any is made. As established
in [40], if either LN® = L{P[O(logn)] or L{"[O(logn)] = LNF[O(1)] then the
Polynomial Hierarchy collapses. Thus, adhering to the current beliefs in complex-
ity theory, it is unlikely that either of these two events happens. This prompts
the question as to whether there is a logical characterization of the complexity
class LﬂIP[O(logn)] as a fragment of (XHP)*[FO;] (neither (£HP)*[FO;] nor
Bool(HP*[FOy]) seem likely to suffice).

5 Characterizations of other log-space oracle classes

Whilst Theorem 2 resolves the question posed earlier regarding identifying the
logic (£HP)*[FO,] with a traditional complexity class, it is rather specific in
that it deals only with the operator HP; and there is nothing particularly special
about HP beyond the fact that it was involved in the first characterization of



NP by what one might call a “Lindstrém logic”. However, from Theorem 2, an
analogous result holds for any operator for which the corresponding problem is
complete for NP via quantifier-free first-order translations with successor (such
as 3COL: see [30]).

Such an observation led Gottlob to consider the more general question: “If
2 is complete for some complexity class CC wvia first-order translations with
successor, under what circumstances can we deduce that (+02)*[FO,] = L€C?”,
and in [15], Gottlob provided a precise answer which revolves around the con-
cept of smoothness; where a complexity class CC is smooth if, and only if,
L€C(CC) = L€C, i.e., the class of problems that are L°C many-one reducible
to a problem in CC coincides with LC€C.

Theorem 3. [15] Let CC be some complezity class that is closed under log-space
reductions, and let {2 be some problem that is complete for CC wvia first-order
translations with successor. Then (£02)*[FO,] = LEC if, and only if, CC is
smooth.

Proof. (Sketch) For simplicity, assume that (2 is over the signature oo (the gen-
eral case is similar). We begin by showing that if CC is smooth then any problem
Iin (+02)*[FO,] is in L. We do this by induction on the length of the sen-
tence defining I'. The only non-trivial case is when this sentence @ is of the
form

Q[ xy ),

where |x| = |y| = k, for some k, and where the predicate defined by ¢(x,y) can
be checked in LE€.

Let A be some o (I")-structure of size n. In order to ascertain whether A = &,
we “build” a ga-structure B whose universe is | A|¥ and whose “binary relation”
on |A[¥ contains the pair (u,v) if, and only if, ¢(u,v) holds in .A. We then check
to see whether this structure B is such that B € (2. Thus, the problem I is LC€
many-one reducible to a problem in CC, i.e., I' € L€ because CC is smooth.

Now we show that if CC is smooth then any problem in L€C can be de-
fined by a sentence of (££2)*[FO;]. In the proof of Theorem 2, we used specific
properties of the problem HP with regard to 1-L reductions in order to replace
a number of oracle queries with just two oracle queries. However, we are now
working in a much more general context and, consequently, such problem-specific
properties are not at our disposal.

Let M be some log-space DOTM with a CC oracle that accepts the problem
I'. Consider a computation of M on the o(I")-structure A of size n. We may
clearly assume that no instantaneous description (ID) occurring in a computation
of M is ever repeated in this computation (for us, an ID of M consists of the
state, the contents of the work-tape, the work-head position and the input-head
position at any particular instant of a computation of M) and that whenever M
terminates (which it does on every input), the oracle tape is empty. Note that
because M is a log-space DOTM we can:

e encode an ID of M as k values vy, vs,...,v; € {0,1,...,n — 1}, for some k;



e “decode” a given k-tuple u € {0,1,...,n — 1}* s0 as to decide in log-space
whether it really encodes a legitimate ID of M on some input structure of
size n.

Henceforth, we assume that all k-tuples over {0,1,...,n — 1} encode potential
IDs in some computation of M on an input structure of size n; as, by above, this
property can be checked in log-space.

Let u and v be IDs of M on input A such that when M is started in ID u,
the next ID it reaches where the oracle tape is empty is v. Then we say that v is
the direct successor of u. Additionally, if there is no oracle computation between
u and v, we say that v is the strict successor of u.

Consider the following two problems.

Problem A Given two IDs u and v of M and the input structure A, u and v
are such that either: v is the strict successor of u; or v is the direct successor
of u, there is an oracle query between u and v and the answer to this oracle
query is “yes”.

Problem B Given two IDs u and v of M and the input structure A, v is
the direct successor of u, there is an oracle query between u and v and the
answer to this oracle query is “no”.

Then Problem A is log-space reducible to a problem in CC, and Problem B is
log-space reducible to a problem in co-CC. Thus, by hypothesis, Problems A
and B can be defined by o(I")-formulae of (££2)*[FO;] of the form

Qxyo(x,y,z,w)] and ~Q\x'y'¢'(x',y', 2, w)],

respectively, where ¢ and ¢’ are formulae of FO; (the tuples of free variables
z and w encode the IDs). Consequently, there is a o(I")-formula &(z, w) of
(£2)*[FOyq] of the form

QDxyd] A 02Xy ¢']

which holds in some structure A for some IDs u and v if, and only if, v is the
direct successor of u in the computation of M on input A.

We can now use the operator DTC and our formula ¢(z,w) to define the
problem consisting of all those o(I")-structures A such that on input .4, there
exists an accepting ID that can be reached from the initial ID in the digraph
defined by @(z, w); in other words, we can define the problem I'. However, as L
C CC, we can eliminate any applications of the operator DTC at the expense
of introducing applications of the operator (2. Hence, I' can be defined by a
sentence of the logic (£42)*[FO,] as required (and the defining sentence just
constructed is actually in (££2)%[FO]).

In order to prove our theorem, we need to show that if (+£2)*[FO,]
then CC is smooth. Suppose that (£2)*[FO,] = L€C. Let the problem I'
be LCC many-one reducible to the problem © € CC. By hypothesis, this LC€
many-one reduction can be defined by a formula of (££2)*[FO,], and the problem
O can be defined by a sentence of (££2)*[FO;]. Hence I' can be defined by a
sentence of (££2)*[FO;], and so CC is smooth. O

_ ,ccC



Whilst Theorem 3 gives an answer to the question posed at the beginning of
this section, it also provokes the question: “How can we tell whether a complexity
class is smooth or not?”. Indeed, for all we know all complexity classes might be
smooth. The most transparently smooth complexity class is L as it is well known
that the composition of two log-space machines can be replaced with a log-space
machine. Essentially, whenever the second machine (in the concatenation) needs
some input bit, it computes the input bit required, using log-space, and proceeds
accordingly. The important point to note is that it need not “remember” the
whole of the output from the first machine (of the concatenation), which might
be of polynomial size.

If we were to naively attempt to replicate this construction with the first
machine, Mi, a L°€ machine and the second machine, M>, a CC machine, so
as to replace the two machines with one LC¢ machine, M, then (intuitively)
we run into problems. Suppose that M is in the process of building some oracle
string to query, but half way through this building process it discovers that it
needs to compute some input bit to its simulation of Ms, i.e., an output bit
from M;. Naively, it would perform a simulation of Mj; but this might not be
possible as M; might wish to query some oracle strings in this computation, and
the oracle tape of M is blocked with a half-built query already! In fact, there do
exist complexity classes which are closed under log-space reductions and which
are not smooth although we do not prove this fact here (but simply refer the
reader to [15]).

Having satisfied ourselves that not all (reasonable) complexity classes are
smooth, let us look at some complexity classes which are smooth; and, in par-
ticular, at some criteria for smoothness. Many complexity classes (especially
deterministic ones) can easily shown to be smooth simply by working through
the definition of smoothness with the particular complexity class: such classes
include L, POLYLOGSPACE and P. Other complexity classes can easily be
shown to be smooth by applying the following lemma; but first two definitions.
Reverting back to the traditional definition of a complexity class as a class of
languages, we say that a complexity class CC is closed under marked union if for
every two languages A; and As in CC, the marked union of A; and As, namely
the language obtained by inserting a 0 before every string of A; and a 1 before
every string of A, and then taking the union of the resulting two languages, is
also in CC. The complexity class PCC consists of those problems accepted by
a standard polynomial-time DOTM with a CC oracle.

Lemma 1. [15] If P®C = CC and CC is closed under marked union then CC
is smooth. a

The complexity classes AY, for i > 1, of the Polynomial Hierarchy, and the
complexity classes PSPACE and k-EXPTIME, for k£ > 1, can be shown to be
smooth by applying Lemma 1.

Other sufficient criteria for smoothness exist. A complexity class is closed
under conjunctions if, and only if, for any finite set of instances of some problem
I' € CC, the problem of deciding whether every one of these instances is in I”



is also in CC. A problem (2 is NP-reducible to some problem I" if, and only if,
there is a non-deterministic polynomial-time transducer M such that on input
some o({2)-structure A, there is at least one computation of M on 4 which
outputs a o(I')-structure B such that B € I'.

Lemma 2. [15] If the complezity class CC is closed under NP -reductions, un-
der conjunctions and under marked union then CC is smooth. O

The complexity classes XY and II7, for i > 1, of the Polynomial Hierarchy,
and the complexity classes NEXPTIME and co-NEXPTIME can be shown
to be smooth by applying Lemma, 2.

The criteria for smoothness above, whilst widely applicable, do not seem to be
strong enough to show that every smooth complexity class is in fact smooth. The
most notable example is the complexity class NL for which smoothness follows
from results due to Immerman [21], and for which neither of Lemmas 1 nor 2
seem to be of any use. It would be interesting to derive other criteria from which
the smoothness of (complexity classes such as) NL could be deduced.

Let us end this section by remarking that the proof of Theorem 2 also yielded
a normal form result, whereas no analogous normal form result has been forth-
coming from the proof of Theorem 3. Perusal of the proof of Theorem 2 yields
that the completeness of HP via 1-L reductions played a role; and this might
imply that normal form results could be specific to particular problems. How-
ever, Gottlob has established general criteria for determining when a normal
form result, analogous to that in Theorem 2, exists.

Theorem 4. [15] Let CC be some complezity class that is closed under NP-
reductions, conjunctions and marked union, and let {2 be some problem that is

complete for CC via first-order translations with successor. Then every problem
in LCC = (£02)*[FO,)] can be defined by a sentence of the form

2132y ... T2 (B A D),

where ® and ' are formulae of 2'[FO;] formed by applying the operator 2 to
appropriate first-order formulae and where 21,25, ...,z are free in ® and '. 0O

The proof of Theorem 4 is similar to the proof of Theorem 2 except that
it uses the fact that a complexity class closed under conjunctions and NP-
reductions is necessarily closed under conjunctions and disjunctions (defined
similarly) to obviate the need for the oracle to be complete for some complexity
class via 1-L reductions. It would be interesting to investigate whether there is
any sort of relationship between a complexity class having a complete problem
via 1-L reductions and a complexity class being closed under operations such as
those in Theorem 4.

6 In the absence of successor

As remarked earlier, the motivating theorem for the thread of research presented
in this paper, Theorem 1, holds in the absence of the built-in successor relation.



Consequently, it is natural to ask whether the same can be said of the subsequent

results; in particular, Theorem 2. Dawar, Gottlob and Hella have given partial

answers in this regard, as we now explain; but first we require some definitions.
We denote by:

e L* the fragment of FO which consists of those formulae whose variables,
both bound and free, are among z1,zs, ..., Tg;

e Lk . the closure of L*¥ under the operations of conjunction and disjunc-
tion applied to arbitrary (finite and infinite) sets of formulae (with obvious
semantics);

e L% the union (J,—, Lk .

The logic L%, was introduced by Barwise [3] and is known as bounded-variable

oow

infinitary logic. It plays an important role in finite model theory (see, for exam-
ple, [9]).

However, we introduce L% here for a specific reason. Bounded-variable in-
finitary logic can be extended by a set of Lindstrém quantifiers 2 (possibly
infinite and not necessarily in the form of uniform sequences corresponding
to problems), just as FO was (and with similar semantics), to yield the logic
(£2)*[L%,,]- Dawar and Hella [8] have established certain properties of logics
of the form (££2)*[L%, ], or more specifically, of fragments of such logics where
the number of quantifiers of {2 appearing in any formula is finite, which are of
direct relevance to the investigations presented here.

Let A be some structure and let u = (uy,us,...,u;) € |A¥. The basic
equality type of u is the formula

(i,5)€S (i,J)€T

where S = {(i,j):i < jand u; =u;} and T = {(i,5) : i < j and u; # u,}.

Let ¢ be a formula of (£2)*[L% ], where 2 is a set of Lindstrom quanti-
fiers. Then ¢ is a basic flat formula if it is atomic or if it is formed by applying
a quantifier Q € (2 to some first-order quantifier-free formulae. Also, ¢ is in
flat normal form if it is obtained from basic flat formulae by successive applica-
tions of the connectives V, A and — and the first-order quantifiers V and 3. For
example, the formula HP[Axy¢](0, max) of Theorem 2 is a basic flat formula,
whereas the formula 32,3z, ... 3z, (HP[Axy#](0, max) A —HP[Ax'y’¢'](0, max))
of Theorem 2 is in flat normal form.

We are now in a position to state Dawar and Hella’s result (which although
stated in [7] is proved in [8]).

Theorem 5. [7,8] Let o be the empty signature, and denote the unique struc-
ture of size n over o, by A,,. Let {2y be a finite set of Lindstrém quantifiers.

(a) For every n, there exists a sentence 1, € (£(20)*[L*] such that for every
n', An |E nn if, and only if, A, and A, satisfy the same sentences of
(&£2)* [LE.]-



(b) The sentence ny, is of the form

/\ dxy .. Az AV .. Vg, \/ Ui A /\ le...vwk(¢jH7j),

1<i<m 1<i<m 1<j<r

where 1, s, ..., 0, are the basic equality types of k-tuples of A,, each
formula v; is a disjunction of some basic equality types and each formula ¢;
is a basic flat formula.

(¢) Given some u € |A,|', there is a formula 0, u of the form

M AVxip1 ... Vg,

where 7y is a disjunction of some basic equality types, such that for every A,
and u' € |A,|',

A E nnu (W) if, and only if, the expansions (A,,u) and (A, ,u’)
satisfy ezactly the same sentences of (££20)*[L% ]
a

Corollary 2. [7] Let 2y be a finite set of Lindstrom quantifiers and let o. be
the empty signature. For every formula ¢(x1,22,...,21) € (£820)*[L%,,(0)],
there exists a formula Y(z1, 22, . ..,7;) € (£020) [FO(0.)] such that ¢ and ¢ are
equivalent.

Proof. There is clearly some k such that ¢ € (£629)*[L% ,(0.)]. Fix n and let
1,9, ..., Y, be the basic equality types of k-tuples of elements of A,,. Let n,
be the sentence as in the statement of Theorem 5, and for every u € |A,[', let
Nn,u be as in Theorem 5. Define F' = {(n,u) : u € |A,|" such that A,, = ¢(u)}
and define ¢ as

\/ Mn,u-

(n,u)eF

Consider any n and u € |Aj,|'. Suppose that A, [= ¢(u). So, (n,u) € F, nyu
is a disjunct of ¢ and A,, |= np,u(u). Thus, A, = ¢ (u). Conversely, suppose
that A, = ¥(u). So, A, =y w (u), for some (n',u’) € F, with the result that
(A, u) and (A, ,u’) satisfy the same sentences of (+42)*[L* _]. In particular,
A, E #(u). The result follows. a

The following is immediate from Corollary 2.

Corollary 3. [7] If {2 is a set of Lindstrém quantifiers such that every quantifier
can be evaluated in NP then every sentence of (£02)*[FO(o.)] is equivalent to
a Boolean combination of NP properties. O

Given a language A over {0, 1},
tally(A) = {1™ : the binary representation of n € 14}.

The Linear Exponential Boolean Hierarchy, EBH, is defined as follows.



EBH(0) = DETIME = DTIME(2°(");

EBH(1) = NETIME = NTIME(2°(");

EBH(2i) = {XNY : X € EBH(2i — 1),Y € co-NETIME};
EBH(2i 4+ 1) = {XUY : X € EBH(2i),Y € NETIME},

for i > 0, and EBH = U{EBH() : i =0, 1,...}. The Full Exponential Boolean
Hierarchy, EXPBH, is defined as follows.

EXPBH(0) = DEXPTIME = DTIME(20(roly(n)),

EXPBH(1) = NEXPTIME = NTIME (20(r0lv(n));

EXPBH(2i) = {X NY : X € EXPBH(2i — 1),Y € co-NEXPTIME};
EXPBH(2i +1) = {XUY : X ¢ EXPBH(2i),Y ¢ NEXPTIME},

for i > 0, and EXPBH = U{EXPBH(i): i =0,1,...}.

The hierarchies EBH and EXPBH can be regarded as exponential ver-
sions of the Boolean Hierarchy. Indeed, we can go further and associate with
many complexity classes CC contained in the Polynomial Hierarchy, a linear
exponential version E(CC) and a full exponential version EX P(CC). Such an
association is detailed in Fig. 1 below, with the motivation behind such an asso-
ciation given in the subsequent lemma. The definitions of the complexity classes
have either been given or are obvious, except that {X'¢,IIf : i = 0,1,...} (resp.
{ZFPII™P 24 =0,1,...}) are the classes of the Linear (resp. Full) Ezponential
Hierarchy EH (resp. EXPH), built around ETIME and NETIME (resp. EX-
PTIME and NEXPTIME) just as the Polynomial Hierarchy is built around
P and NP.

Basic complexity class|Linear exponential version|Full exponential version
CcC E(CC) EXP(CC)
P ETIME EXPTIME
NP NETIME NEXPTIME
7 5 i
iy II¢ s
PH EH EXPH
BH(:) EBH(i) EXPBH(i)
BH EBH EXPBH
L LINSPACE PSPACE
NL NLINSPACE PSPACE
NP LINSPACEN? PSPACE"?

Figure 1. Linear and full exponential versions of complexity classes.

Lemma 3. [16] For each basic complezity class CC in the first column of Fig-

ure 1:

e the closure under polynomial-time many-one reductions of E(CC) is the
complezity class EX P(CC); and
e for every language A € CC, tally(A) € CC if, and only if, A € E(CC).

a



We are now ready to establish the results of Dawar, Gottlob and Hella.

Theorem 6. [7] If there exists a family §2 of Lindstrém quantifiers where each
quantifier in 2 can be evaluated in NP and where (£2)*[FO] = LNY then:

e EBH = LINSPACEN? and EBH collapses; and
e EXPBH = PSPACEN? 4nd EXPBH collapses.

Proof. Let A be a language in LINSPACENP. By Lemma 3, tally(A) € LNF.
Define the problem I" over o, to be such that tally(A) is the natural encoding
of I'. By hypothesis, I" € (£2)*[FO] = LNF; and so by Corollary 3,

tally(A) € EBHy, for some k.

But LINSPACENP has complete problems, and consequently LINSPACENP
C EBH;.. As EBH C LINSPACENY | the first part of the theorem follows.
However, the second part of the theorem also follows as, by Lemma 3, the
complexity classes EXPBH;, EXPBH and PSPACENP are the closures of
the complexity classes EBHy, EBH and LINSPACENP | respectively. O

Any collapses of the form detailed in Theorem 6 would cause not incon-
siderable surprise amongst many complexity theorists. Therefore, we are led to
speculate that the complexity class LYNP can not be captured on the class of
all structures by a “Lindstrom logic”. It would be extremely interesting if this
result could be established. However, a great improvement of Theorem 6 would
be if the premise in the theorem yielded a complexity-theoretic collapse “lower
down”, say of the Polynomial Hierarchy.

We close by noting that things are different for some complexity classes “be-
yond” PNP . Amalgamating results due to Gurevich [17] and Blass and Gurevich
[2], Dawar [6] observed that any recursively presented complexity class contain-
ing PNP and closed under compositions is recursively indexable, and so there is
a logic capturing this class. Other results in [6] then yield that if the complexity
class is bounded (see [6]), then it can be captured by a “Lindstrom logic”. So,

for example, L™ can be captured by a “Lindstrém logic” (as it is bounded).
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