
Bayes Linear Uncertainty Analysis for Oil Reservoirs Based on

Multiscale Computer Experiments

Jonathan Cumming and Michael Goldstein

Department of Mathematical Sciences, Durham University, U.K.

May 27, 2010

Abstract

Computer simulators are commonly used in many areas of science to investigate complex physical
systems of interest. The output of such simulators is often expensive and time-consuming to
obtain, thus limiting the amount of information we can gather about their behaviour. In some
cases, an approximate simulator is also available which can be evaluated in a fraction of the time
and which shares many qualitative features with the original simulator. Since the approximate
simulator is cheap to evaluate, large numbers of evaluations can be performed and its behaviour
can be investigated thoroughly. This information on the approximate simulator can then be
used to supplement the limited information about the accurate simulator and thus help to gain
a better understanding of the original simulator and the system. We consider a simulation of a
hydrocarbon reservoir and develop this multiscale approach to the analysis of computer models
and present appropriate methods for tackling the associated uncertainties.

1 Introduction

Reservoir simulators are important and widely-used tools for oil reservoir management. These
simulators are computer implementations of high-dimensional mathematical models for reservoirs,
where the model inputs are physical parameters, such as the permeability and porosity of various
regions of the reservoir, the extent of potential faults, aquifer strengths and so forth. The outputs
of the model, for a given choice of inputs, are observable characteristics such as pressure readings,
oil and gas production levels, for the various wells in the reservoir.

Usually, we are largely uncertain as to the physical state of the reservoir, and thus we are unsure
about appropriate choices of the input parameters for a reservoir model. Therefore, an uncertainty
analysis for the model often proceeds by first calibrating the simulator against observed production
history at the wells and then using the calibrated model to forecast future well production, and act
as an information tool for the efficient management of the reservoir.

In a Bayesian analysis, all of our uncertainties are incorporated into the system forecasts. In
addition to the uncertainty about the input values, there are three other basic sources of uncertainty.
First, although the simulator is deterministic, an evaluation of the simulator for a single choice of
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parameter values can take hours or days, so that the function is unknown to us, except at the
subset of values which we have chosen to evaluate. Secondly, the reservoir simulator, even at the
best choice of input values, is only a model for the reservoir, and we must therefore take into
account the discrepancy between the model and the reservoir. Finally, the historical data which
we are calibrating against is observed with error.

This problem is typical of a very wide and important class of problems each of which may be
broadly described as an uncertainty analysis for a complex physical system based on a model for
the system (???). Such problems arise in almost all areas of scientific enquiry; for example climate
models to study climate change, or models to explore the origins and generating principles of the
universe. In all such applications, we must deal with the same four basic types of uncertainty,
input uncertainty, function uncertainty, model discrepancy and observational error. A general
methodology has been developed to deal with this class of problems. Our aim, in this chapter, is
to provide an introduction to this methodology and to show how it may be applied for a reservoir
model of realistic size and complexity. We shall therefore analyse a particular problem in reservoir
description, based upon a description of our general approach to uncertainty analysis for complex
models. In particular, we will highlight the value of fast approximate versions of the computer
simulator for making informed prior judgements relating to the form of the full simulator. Our
account is based on the use of Bayes linear methodology for simplifying the specification and
analysis for complex high dimensional problems, and so this chapter also serves as an introduction
to the general principles of this approach.

2 Preliminaries

2.1 Model Description

The focus of our application is a simulation of a hydrocarbon reservoir provided to us by Energy
SciTech Ltd. The model is a representation of the Gullfaks oil and gas reservoir located in the
North Sea, and the model is based around a 3-dimensional grid of size 38 × 87 × 25 where each
grid cell represents a cuboid region of subterranean rock within the reservoir. Each grid cell has
different specified geological properties and contains varying proportions of oil, water and gas. The
reservoir also features a number of wells which, during the course of the simulation, either extract
fluids from or inject fluids into the reservoir. The overall purpose of the simulation is to model
changes in pressure, and the flows and changes in distribution of the different fluids throughout the
reservoir, thereby giving information on the pressures and production levels at each of the wells. A
simple map of the reservoir is shown in Figure 1.

The inputs to the computer model are a collection of scalar multipliers which adjust the magni-
tudes of the geological properties of each grid cell uniformly across the entire reservoir. This results
in four field multipliers – one each for porosity (φ), x-permeability (kx), z-permeability (kz), and
critical saturation (crw). There is no multiplier for y-permeability as the (x, y) permeabilities are
treated as isotropic. In addition to these four inputs, we have multipliers for aquifer permeability
(Ap) and aquifer height (Ah) giving a total of 6 input parameters. The input parameters and their
ranges are summarised in Table 1.

The outputs of the model are collections of time series of monthly values of various production
quantities obtained for each well in the reservoir. The output quantities comprise monthly values
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Figure 1: Map of the Gullfaks reservoir grid. Production wells are marked △, injection wells are
marked ▽, wells considered in our analysis are labelled, and the boundaries of different structural
regions of the reservoir are indicated by dotted lines.

Description Symbol Initial range

Porosity φ [0.5, 1.5]
x-permeability kx [0.25, 6]
z-permeability kz [0.1, 0.75]
Critical saturation crw [0.4, 1.6]
Aquifer height Ah [50, 500]
Aquifer permeability Ap [300, 3000]

Table 1: The six input parameters to the hydrocarbon reservoir model

of oil, water and gas production rates, oil, water and gas cumulative production totals, water-cut,
gas-oil ratio, bottom-hole pressure and tubing-head pressure. For the purposes of our analysis, we
shall focus exclusively on oil production rate since this is the quantity of greatest practical interest
and has corresponding historical observations. In terms of the time series aspect of the output, we
shall focus on a 3-year window in the operation of the reservoir beginning at the start of the third
year of production. We smooth these 36 monthly observations by taking four-month averages. By
making these restrictions, we focus our attention on the 10 production wells which were operational
throughout this period and so our outputs now consist of a collection of 10 time series with each
12 time points.

For the purposes of our analysis, it will be necessary to have access to a fast approximate version
of the simulator. To obtain such an approximation, we coarsened the vertical gridding of the model
by a factor of 10. The evaluation time for this coarse model is between 1 to 2 minutes, compared
to 1.5 to 3 hours for the full reservoir model.

2.2 Uncertainty analysis for complex physical systems

We now describe a general formulation for our approach to uncertainty analysis for complex physical
systems given a computer model for that system, which is appropriate for the analysis of the
reservoir model. There is a collection, x+, of system properties. These properties influence system
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behaviour, as represented by a vector of system attributes, y = (yh, yp), where yh is a collection of
historical values and yp is a collection of values that we may wish to predict. We have an observation
vector, zh, on yh. We write

zh = yh + e (1)

and suppose that the observational error, e, is independent of y with E [e] = 0.

Ideally, we would like to construct a deterministic computer model, F (x) = (Fh(x), Fp(x)),
embodying the laws of nature, which satisfies y = F (x+). In practice, however, our actual model F
usually simplifies the physics and approximates the solution of the resulting equations. Therefore,
our uncertainty description must allow both for the possible differences between the physical value
of x+ and the best choice of inputs to the simulator, and also for the discrepancy between the
model outputs, evaluated at this best choice, and the true values of the system attributes, y.

Therefore, we must make explicit our assumptions relating the computer model F (x) and the
physical system, y. In general, this will be problem dependent. The simplest and most common
way to relate the simulator and the system is the so-called “Best Input Approach”. We proceed as
though there exists a value x∗, independent of the function F , such that the value of F ∗ = F (x∗)
summarises all of the information that the simulator conveys about the system, in the following
sense. If we define the model discrepancy as the difference between y and F ∗, so that

y = F ∗ + ǫ (2)

then our assumption is that ǫ is independent of both F and x∗. (Here, and onwards, all probabilistic
statements relate to the uncertainty judgements of the analyst.) For some models, this assumption
will be justified as we can identify x∗ with the true system values x+. In other cases, this should be
viewed more as a convenient simplifying assumption which we consider to be approximately true
because of an approximate identification of this type. For many problems, whether this formulation
is appropriate is, itself, the question of interest; for a careful discussion of the status of the best
input approach, and a more general formulation of the nature of the relationship between simulators
and physical systems, see ?.

Given this general framework, our overall aim is to tackle previously intractable problems arising
from the uncertainties inherent in imperfect computer models of highly complex physical systems
using a Bayesian formulation. This involves a specification for (i) the prior probability distribution
for best input x∗, (ii) a probability distribution for the computer function F , (iii) a probabilistic
discrepancy measure relating F (x∗) to the system y, (iv) a likelihood function relating historical
data z to y. This full probabilistic description provides a formal framework to synthesise expert
elicitation, historical data and a careful choice of simulator runs. From this synthesis, we aim to
learn about appropriate choices for the simulator inputs and to assess, and possibly to control,
the future behaviour of the system. For problems of moderate size, this approach is appropriate,
practical and highly effective (??). As the scale of the problem increases, however, the full Bayes
analysis becomes increasingly difficult because (i) it is difficult to give a meaningful full prior
probability specification over high dimensional spaces; (ii) the computations, for learning from
data (observations and computer runs), particularly in the context of choosing informative sets of
input values at which to evaluate the simulator, become technically difficult and extremely computer
intensive; (iii) the likelihood surface tends to be very complicated, so that full Bayes calculations
may become highly non-robust.

However, the idea of the Bayesian approach, namely capturing our expert prior judgements
in stochastic form and modifying them by appropriate rules given observations, is conceptually
appropriate, and indeed there is no obvious alternative. In this chapter, we therefore describe the
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Bayes linear approach to uncertainty analysis for complex models. The Bayes linear approach is
(relatively) simple in terms of belief specification and analysis, as it is based only on mean, variance
and covariance specifications. These specifications are made directly as, following de Finetti (??),
we take expectation as our primitive quantification of uncertainty. The adjusted expectation and
variance for a random vector y, given random vector z, are as follows.

Ez [y] = E [y] + Cov [y, z] Var [z]−1 (z − E [z]), (3)

Varz [y] = Var [y] − Cov [y, z] Var [z]−1 Cov [z, y] (4)

(If Var [z] is not invertible, then an appropriate generalised inverse is used in the above forms.)

For the purpose of this account, we may either view Bayes linear analysis as a simple approxi-
mation to a full Bayes analysis, or as the appropriate analysis given a partial specification based on
expectation. We give more details of the rationale and practicalities of the Bayes linear approach
in Appendix A, and for a detailed treatment, see ?.

2.3 Overview of the analysis

The evaluation of complex computer models, such as the hydrocarbon reservoir simulation, at a
given choice of input parameters is often a highly expensive undertaking both in terms of the time
and the computation required. This expense typically precludes a large-scale investigation of the
behaviour of the simulation with respect to its input parameters on the basis of model evaluations
alone. Therefore, since the number of available model evaluations is limited by available resources
there remains a substantial amount of uncertainty about the function and its behaviour, which we
represent by means of an emulator (see Section 3.2.1).

For some problems, an approximate version of the original simulation may also be available.
This coarse simulator, denoted F c, can be evaluated in substantially less time and for substantially
less cost, albeit with a consequent lower degree of accuracy. Since, both this coarse simulator and
the original accurate simulator, F a, are models of the same physical system, it is reasonable to
expect that there will be strong qualitative and quantitative similarities between the two models.
Therefore, with an appropriate belief framework to link the two simulators, we can use a large
batch of evaluations of F c to construct a detailed emulator of the coarse simulator, which we can
then use to inform our beliefs about F a and supplement the sparse collection of available full model
evaluations. This is the essence of the multiscale emulation approach.

Our multiscale analysis of the hydrocarbon reservoir model proceeds in the following stages

1. Initial model runs and screening — we perform a large batch of evaluations of F c(x) and then
identify which wells are most informative and therefore most important to emulate.

2. Emulation of the coarse simulator — given the large batch of evaluations of F c(x), we now
emulate each of the remaining outputs after the screening process.

3. Linking the coarse and accurate emulators — we use our emulators for F c(x) to construct
an informed prior specification for the emulators of F a(x), which we then update by a small
number of evaluations of F a(x).

4. History matching — using our updated emulators of F a(x), we apply the history matching
techniques of Section 3.4.1 to identify a set X ∗ of possible values for the best model input x∗.
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5. Re-focusing — we now focus on the reduced space, X ∗, identified by our history matching
process. In addition to the previous outputs we now consider an additional time point 12
months after the end of our original time series, which is to be the object of our forecast.
We then build our emulators in the reduced space for F c(x) and F a(x) over the original time
series and the additional forecast point.

6. Forecasting — using our emulators of F a(x) within the reduced region, we forecast the ‘future’
time point using the methods from Section 3.5.1.

3 Uncertainty Analysis for the Gullfaks Reservoir

3.1 Initial model runs and screening

We begin by evaluating the coarse model F c(x) over a 1000-point Latin hypercube design (??) in
the input parameters. Since emulation, history matching and forecasting are computationally de-
manding processes, we choose to screen the collection of 120 outputs and determine an appropriate
subset which will serve as the focus of our analysis. In order to identify this reduced collection, we
will apply the principal variable selection methods of ? to the 120 × 120 correlation matrix of the
output vectors {F c(xi)}, i = 1, . . . , 1000.

3.1.1 Methodology – Principal Variables

Given a collection of outputs, y1:q, with correlation matrix R, the principal variable selection
procedure operates by assigning a score hi =

∑q
j=1 Corr [yi, yj]

2 to each output yi. The first
principal variable is then identified as the output which maximises this score. Subsequent outputs
are then selected using the partial correlation given the set of identified principal variables. This
allows for the choice of additional principal variables to be made having removed any effects of those
variables already selected. To calculate this partial correlation, we first partition the correlation
matrix into block form

R =

(

R11 R12

R21 R22

)

,

where R11 corresponds to the correlation matrix of the identified principal variables, R22 is the
correlation matrix of the remaining variables, and R12 and R21 are the matrices of correlations
between the two groups. We then determine the partial correlation matrix R22·1 as

R22·1 = R22 − R21R
−1
11 R12.

The process continues until sufficient variables are chosen that the partial variance of each remain-
ing output is small, or a sufficient proportion of the overall variability of the collection has been
explained. In general, outputs with large values of hi have, on average, large loadings on impor-
tant principal components of the correlation matrix and thus correspond to structurally important
variables.
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Well name Well hi Cumulative %
of variation

B2 4526.0 77.7
A3H 26.5 81.8
B1 19.5 84.6
B5 14.1 87.1
B10A 10.5 94.7
B7 7.0 95.2
A2AH 7.3 99.2
A17 1.1 99.7
B4 1.0 99.7
A1H 1.1 100.0

Table 2: Table of summary statistics for the selection of principal wells

3.1.2 Application and Results

The outputs from the hydrocarbon reservoir model have a group structure, with groups formed by
the different wells, and different time points. We intend to retain all time points at a given well
to allow for a multivariate temporal treatment of the emulation. Therefore we make our reduction
in the number of wells in the model output by applying a modified version of the above procedure
where, rather than selecting a single output, yi, at each stage, we instead select all 12 outputs
corresponding to the well with highest total hi score. We then continue as before, though selecting
a block of 12 outputs at each stage. The results from applying this procedure to the 10 wells in
the model are given in Table 2.

We can see from the results that there is a substantial amount of correlation among the outputs
at each of the wells, as the first identified principal well accounts for 77.7% of the variation of the
collection. Introducing additional wells into the collection of principal outputs only increases the
amount of variation of all the outputs explained by the principal variables by a small amount. On
the basis of this information one could choose to retain the first four or five principal wells and
capture between 87% and 95% of the variation in the collection. For simplicity, we choose to retain
four of the ten wells, namely B2, A3H, B1 and B5.

3.2 Representing beliefs about F using emulators

3.2.1 Methodology – Coarse model emulation

We express our beliefs about the uncertainty in the simulator output by constructing a stochastic
belief specification for the deterministic simulator, which is often referred to as an emulator. Our
emulator for component i of the coarse simulator, F c(x), takes the following form:

F c
i (x) =

∑

j

βc
ij gij(x) + uc

i (x) (5)

In this formulation, βc
i = (βc

i1, . . . , β
c
ipi

) are unknown scalars, gi(x) = (gi1(x), . . . , gipi
(x)) are known

deterministic functions of x (typically monomials), and uc
i (x) is a stochastic residual process. The

component gi(x)T βc
i is a regression term which expresses the global variation in F c

i , namely that

7



portion of the variation in F c
i (x) which we can resolve without having to make evaluations for F c

i

at input choices which are near to x. The residual uc(x) expresses local variation, which we take
to be a weakly stationary stochastic process with constant variance.

Often, we discover that most of the global variation, for output component F c
i is accounted for

by a relatively small subset, x[i] say, of the input quantities called the active variables. In such
cases, we may further simplify our emulator, as

F c
i (x) =

∑

j

βc
ij gij(x[i]) + uc

i (x[i]) + vc
i (x) (6)

where uc
i (x[i]) is now a stationary process in the x[i] only, and vc

i (x) is an uncorrelated “nugget” term
expressing all of the residual variation which is attributable to the inactive inputs. When variation
in these residual terms is small, and the number of inactive inputs is large, this simplification
enormously reduces the dimension of the computations that we must make, while usually having
only a small impact on the accuracy of our results.

The emulator expresses prior uncertainty judgements about the function. In order to fit the
emulator, we must choose the functions gij(x), specify prior uncertainties for the coefficients βc

i and
update these by carefully chosen evaluations of the simulator, and choose an appropriate form for
the local variation uc

i (x). For a full Bayesian analysis, we must make a full prior specification for
each of the key uncertain quantities, {βc

i , u
c
i (x[i]), v

c
i (x)}, often choosing a Gaussian form. Within

the Bayes linear formulation, we need only specify the mean, variance and covariance across each
of the elements and at each input value x. From the prior form (6), we obtain the prior mean and
variance of the coarse emulator as

E [F c
i (x)] = gi(x[i])

T E [βc
i ] + E

[

uc
i (x[i])

]

+ E [vc
i (x)] , (7)

Var [F c
i (x)] = gi(x[i])

T Var [βc
i ] gi(x[i]) + Var

[

uc
i(x[i])

]

+ Var [vc
i (x)] , (8)

where a priori we consider {βc
i , u

c
i (x[i]), v

c
i (x)} as independent. There is an extensive literature on

functional emulation (?????).

As the coarse simulator is quick to evaluate, emulator choice may be made solely on the basis of a
very large collection of simulator evaluations. If coarse simulator evaluations had been more costly,
then we would need to rely on prior information to direct the choice of evaluations and the form of
the collection Gi = ∪i,j{gij(·)} (?, see). We may make many runs of the fast simulator, which allows
us to develop a preliminary view of the form of the function, and therefore to make a preliminary
choice of the function collection Gi and therefore to suggest an informed prior specification for
the random quantities that determine the emulator for F a. We treat the coarse simulator as our
only source of prior information about F a(x). This prior specification will be updated by careful
choice of evaluations of the full simulator, supported by a diagnostic analysis, for example based
on looking for systematic structure in the emulator residuals.

With such a large number of evaluations of the coarse model, the emulator (6) can be iden-
tified and well-estimated from the data alone. For a Bayesian treatment at this stage, our prior
judgements would be dominated by the large number of model evaluations. In contrast, our prior
judgements will play a central role in our emulation of F a(x), as in that case the data are far more
scarce.

In general, our prior beliefs about the emulator components are structured as follows. First, we
must identify, for each F c

i (x), the collection of active inputs which describe the majority of global
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variation, their associated basis functions G and the coefficients βc. Having such an ample data
set allows for model selection and parameter estimation to be carried out independently for each
component of F c and to be driven solely by the information from the model runs. The residual
process uc

i (x[i]) is a weakly stationary process in x[i] which represents the residual variation in the
emulator that is not captured by our trend in the active variables. As such, residual values will be
strongly correlated for neighbouring values of x[i]. We therefore specify a prior covariance structure
over values of uc

i(x[i]) which is a function of the separation of the active variables. The prior form
we use is the Gaussian covariance function

Cov
[

uc
i(x[i]), u

c
i (x

′

[i])
]

= σ2
ui

exp
(

−θc
i ||x[i] − x′

[i]||
2
)

, (9)

where σ2
ui

is the point variance at any given x, θc
i is a correlation length parameter which controls

the strength of correlation between two separated points in the input space, and ||·|| is the Euclidean
norm.

The nugget process vc
i (x) expresses all the remaining variation in the emulator attributable

to the inactive inputs. The magnitude of the nugget process is often small and so is treated
as uncorrelated random noise with Var [vc

i (x)] = σ2
vi

. We consider the point variances of these
two processes to be proportions of the overall residual variance of the computer model given the
emulator trend, σ2

i , so that σ2
ui

= (1 − δi)σ
2
i , and σ2

vi
= δiσ

2
i , for some σ2

i and some typically small
value of δi.

3.2.2 Application and Results

We have accumulated 1000 simulator runs and identified which production wells in the reservoir are
of particular interest. Prior to emulation, the design was scaled so that all inputs took the range
[−1, 1], and all outputs from F c were scaled by the model runs to have mean 0 and variance 1. We
now describe the emulator of component i = (w, t) of the coarse simulator F c, where w denotes the
well, and t denotes the time associated with the ith output component of the computer model.

The first step in constructing the emulator is to identify, for each output component F c
i , the

subset of active inputs x[i] which drive the majority of global variation in F c
i . Using the large batch

of coarse model runs, we make this determination via a stepwise model search using simple linear
regression. We begin by fitting each F c

i on all linear terms in x using ordinary least squares. We
then perform a stepwise delete on each regression, progressively pruning away inactive inputs until
we are left with a reduced collection x[i] of between 3 and 5 of the original inputs. The chosen
active variables for a subset of the wells of F c

i are presented in the third column of Table 3. We
can see from these results that the inputs φ and crw are active on almost all emulators for those
two wells, a pattern that continues on the remaining two wells. Clearly φ and crw are important
in explaining the global variation of F c across the input space. Conversely, the input variable Ah

appears to have no notable effect on model output.

The next stage in emulator construction is to choose the functions gij(x[i]) for each F c
i (x) which

form the basis of the emulator trend. Again, since we have an ample supply of computer evaluations
we determine this collection by stepwise fitting. For each F c

i (x), we define the maximal set of basis
functions to include an intercept with linear, quadratic, cubic and pairwise interaction terms in
x[i]. The saturated linear regression over these terms is then fitted using the coarse model runs and
we again prune away any unnecessary terms via stepwise selection. For illustration, the trend and
coefficients of the coarse emulator for well B1 oil production rate at time t = 28 are given in the
first row of Table 4.

9



Well Time x[i] No. Model Coarse Accurate

Terms Simulator R2 Simulator R̃2

B2 4 φ, crw,Ap 9 0.886 0.951
B2 8 φ, crw,Ap 7 0.959 0.958
B2 12 φ, crw,Ap 10 0.978 0.995
B2 16 φ, crw, kz 7 0.970 0.995
B2 20 φ, crw, kx 11 0.967 0.986
B2 24 φ, crw, kx 10 0.970 0.970
B2 28 φ, crw, kx 10 0.975 0.981
B2 32 φ, crw, kx 11 0.980 0.951
B2 36 φ, crw, kx 11 0.983 0.967

A3H 4 φ, crw,Ap 9 0.962 0.824
A3H 8 φ, crw, kx 7 0.937 0.960
A3H 12 φ, crw, kz 10 0.952 0.939
A3H 16 φ, crw, kz 7 0.976 0.828
A3H 20 φ, crw, kx 11 0.971 0.993
A3H 24 φ, crw, kx 10 0.964 0.899
A3H 28 φ, kz , Ap 10 0.961 0.450
A3H 32 φ, crw, kz 11 0.968 0.217
A3H 36 φ, crw, kx 11 0.979 0.278

Table 3: Emulation summary for wells B2 and A3H

For each component F c
i , we have now identified a subset of active inputs x[i] and a collection of

pi basis functions gi(x[i]) which adequately capture the majority of the global behaviour of F c
i . The

next stage is to quantify beliefs about the emulator coefficients βc
i . We fit our linear description

in the selected active variables using ordinary least squares assuming uncorrelated errors to obtain
appropriate estimates for these coefficients. The value of E [βc

i ] is then taken to be the estimate β̂c
ij

from the linear regression and Var [βc
i ] is taken to be the estimated variance of the corresponding

estimates. As we have 1000 evaluations in an approximately orthogonal design, the estimation
error is negligible.

The results of the stepwise selection and model fitting are given in the first five columns of
Table 3. We can see from the R2 values that the emulator trends are accounting for a very high
proportion of the variation in the model output. We observe similar performance on the emulators
of the remaining wells, with the exceptions of the emulators of well B5 at times t = 4 and t = 8,
which could not be well-represented using any number or combination of basis functions. These
two model outputs were therefore omitted from our subsequent analysis leaving us with a total of
34 model outputs.

The final stage is to make assessments for the values of the hyperparameters in our covariance
specifications for ui(x[i]) and vi(x). We estimate σ2

i by the estimate of variance of the emulator
trend residuals, and then obtain estimates for θi and δi by applying the robust variogram methods
of ?. We then use these estimates as plug-in values for θi, δ2

i , and σ2
i .

For diagnostic purposes, we then performed a further 100 evaluations of F c(x) at points reason-
ably well-separated from the original design. For each of these 100 runs, we compared the actual
model output, F c

i (x), with the predictions obtained from our coarse emulators. For all emulators,
the variation of the prediction errors of the 100 new points was comparable to the residual varia-
tion of the original emulator trend, indicating that the emulators are interpolating well and are not
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over-fitted to the original coarse model runs. Investigation of residual plots also corroborated this
result.

3.3 Linking the coarse and accurate emulators

3.3.1 Methodology – Multiscale emulation

We now develop an emulator for the accurate version of the computer model F a(x). We consider
that F c(x) is sufficiently informative for F a(x) that it serves as the basis for an appropriate prior
specification for this emulator. We initially restrict our emulator for component i of F a(x) to share
the same set of active variables and the same basis functions as its coarse counterpart F c

i (x). Since
the coarse model F c(x) is well-understood due to the considerable number of model evaluations,
we consider the coarse emulator structure as known and fixed and use this as a structural basis for
building the emulator of F a(x). Thus we specify a prior accurate emulator of the form

F a
i (x) = gi(x[i])

T βa
i + βa

wi
wc

i (x) + wa
i (x), (10)

where wc
i (x) = uc

i (x[i]) + vc
i (xi), wa

i (x) = ua
i (x[i]) + va

i (xi), and we have an identical global trend
structure over the inputs albeit with different coefficients. On this accurate emulator, we also
introduce some unknown multiple of the coarse emulator residuals βa

wi
wc

i (x), and include a new
residual process wa

i (x) which will absorb any structure of the accurate computer model that cannot
be explained by our existing set of active variables and basis functions. Alternative methods for
constructing such a multiscale emulator can be found in ? and ?.

As we have performed a large number of evaluations of F c(x), over a roughly orthogonal design,
our estimation error from the model fitting is negligible and so we consider the βc

i as known for
each component i, and further for any x at which we have evaluated F c(x), the residuals wc

i (x) are
also known. Thus we incorporate the wc

i (x) into our collection of basis functions with associated
coefficient βa

wi
. Absorbing wc(x) into the basis functions and βa

wi
into the coefficient vector βa

i , we
write the prior expectation and variance for the accurate simulator as

E [F a
i (x)] = gi(x[i])

T E [βa
i ] + E [wa

i (x] , (11)

Var [F a
i (x)] = gi(x[i])

T Var [βa
i ] gi(x[i]) + Var [wa

i (x)] , (12)

where now gi(x[i]) =
(

gi1(x[i]), . . . , gipi
(x[i]), w

c
i (x)

)

, and βa
i =

(

βa
i1, . . . , β

a
ipi

, βa
wi

)

. We also specify

the expectation and variance of the residual process wa(x) to be

E [wa
i (x)] = 0, (13)

Cov
[

wa
i (x), wa

i (x′)
]

= σ2
ui

exp
(

−θc
i ||x[i] − x′

[i]||
2
)

+ σ2
vi

I, (14)

where the covariance function between any pair of residuals on the accurate emulator has the same
prior form and hyperparameter values as that used for uc(x[i]) in (9).

We now consider the prior form of βa
i in more detail. If we believe that each of the terms in

the emulator trend corresponds to a particular qualitative physical effect, then we may expect that
the magnitude of these effects will change differentially as we move from the coarse to the accurate
simulator. This would suggest allowing the contribution of each gij(x[i]) to the trend of F a(x) to
be changed individually. One prior form which allows for such changes is

βa
ij = ρijβ

c
ij + γij (15)
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where ρij is an unknown multiplier which scales the contribution of βc
ij to βa

ij , and γij is a shift that
can accommodate potential changes in location. We consider ρij to be independent of γij. In order
to construct our prior form for F a

i (x), we must specify prior means, variances and covariances for
ρij and γij. We develop choices appropriate to the hydrocarbon reservoir model in Section 3.3.2.

As our prior statements about F a(x) describe our beliefs about the uncertain value of the
simulator output, we can use observational data, namely the matrix F a(Xa) of evaluations of the
accurate simulator over the elements of the chosen design Xa, to compare our prior expectations to
what actually occurs. A simple such comparison is achieved by the discrepancy ratio for F a

i (Xa),
the vector containing accurate simulator evaluations over Xa for the ith output component, defined
as follows

Dr(F a
i (Xa)) =

{F a
i (Xa) − E [F a

i (Xa)]}T Var [F a
i (Xa)]−1 {F a

i (Xa) − E [F a
i (Xa)]}

rk{Var [F a
i (Xa)]}

, (16)

which has prior expectation 1, and where rk{Var [F a
i (Xa)]} corresponds to the rank of the matrix

Var [F a
i (Xa)]. Very large values of Dr(F a

i (Xa)) may suggest a mis-specification of the prior ex-
pectation or a substantial underestimation of the prior variance. Conversely, very small values of
Dr(F a

i (Xa)) may suggest an overestimation of the variability of F a
i (x).

Given the prior emulator for F a
i (x) and the simulator evaluations F a

i (Xa), we now update our
prior beliefs about F a

i (x) by the model runs via the Bayes linear adjustment formulae (3) and (4).
Thus we obtain an adjusted expectation and variance for F a

i (x) given F a
i (Xa)

EF a
i (Xa) [F a

i (x)] = E [F a
i (x)] + Cov [F a

i (x), F a
i (Xa)] Var [F a

i (Xa)]−1 {F a
i (Xa) − E [F a

i (Xa)]},

(17)

VarF a
i (Xa) [F a

i (x)] = Var [F a
i (x)] − Cov [F a

i (x), F a
i (Xa)] Var [F a

i (Xa)]−1 Cov [F a
i (Xa), F a

i (x)] .

(18)

The constituent elements of this update can be derived from our prior specifications for F a(x) from
(11) and (12), and our belief statements made above.

3.3.2 Application and Results

We first consider that the prior judgement that the expected values of the fine emulator coefficients
are the same as those of the coarse emulator is appropriate, and so we specify expectations E [ρij] = 1
and E [γij ] = 0. We now describe the covariance structure for the ρij and γij parameters. Every
ρij (and similarly γij) is associated with a unique well w and time point t via the simulator output
component F a

i (x). Additionally, every ρij is associated with a unique regression basis function
gij(·). Given these associations, we consider there to be two sources of correlation between the ρij

at a given well. First, for a given well w we consider there to be temporal effects correlating all
(ρij , ρi′j′) pairs to a degree governed by their separation in time. Secondly, we consider that there
are model term effects which introduce additional correlation when both ρij and ρi′j′ are multipliers
for coefficients of the same basis functions, i.e. gij(·) ≡ gi′j′(·).

To express this covariance structure concisely, we extend the previous notation and write ρij as
ρ(w,t,k) where w and t correspond to the well and time associated with F a

i (x), and where k indexes
the unique regression basis function associated with ρij, namely the single element of the set of
all basis functions G = ∪i,j{gij(·)}. Under this notation, for a pair of multipliers (ρ(w,t,k), ρ(w,t′,k′))

12



then k = k′ if and only if both are multipliers for coefficients of the same basis function, say φ2,
albeit on different emulators. On this basis, we write the covariance function for ρ(w,t,k) as

Cov
[

ρ(w,t,k), ρ(w,t′,k′)

]

=
(

σρ
2
1 + σρ

2
2Ik=k′

)

RT (t, t′), (19)

where σρ
2
1 governs the contribution of the overall temporal effect to the covariance, and σρ

2
2 controls

the magnitude of the additional model term effect, RT (t, t′) = exp{−θT (t − t′)2} is a Gaussian
correlation function over time, and Ip is the indicator function of the proposition p. Our covariance
specification for the γ(w,t,k) takes the same form as (19) albeit with variances σγ

2
1 and σγ

2
2.

To complete our prior specification over F a(x), we assign σρ
2
1 = σγ

2
1 = 0.1, and σρ

2
2 = σγ

2
2 = 0.1

for all output components, which correspond to the belief that coefficients are weakly correlated with
other coefficients on the same emulator, and that the model term effect has a similar contribution
to the covariance as the temporal effect. We also assigned θT = 1/122 to allow for a moderate
amount of correlation across time.

We now evaluate a small batch of 20 runs of the accurate simulator. The runs were cho-
sen by generating a large number of Latin hypercube designs and selecting that which would

be most effective at reducing our uncertainty about βa by minimising tr{Var
[

β̂a
]

} by least

squares. Considering the simulator output for each well individually, since information on F a
w(x) =

(F a
(w,4)(x), F a

(w,8)(x), . . . , F a
(w,36)(x)) for each well w is now available in the form of the model runs

F a
w(Xa) over the design Xa, we can make a diagnostic assessment of the choices made in specifying

prior beliefs about F a
w. In the case of our prior specifications for the multivariate emulators for each

well, we obtain discrepancy ratio values of 0.86, 1.14, 0.67, and 1.07 suggesting our prior beliefs are
broadly consistent with the behaviour observed in the data. For more detailed diagnostic methods
for evaluating our prior and adjusted beliefs see ?.

Using the prior emulator for F a
w(x) and the simulator evaluations F a

w(), we update our beliefs
about F a

w(x) by the model runs via the Bayes linear adjustment formulae (17), (18). To assess the
adequacy of fit for the updated accurate emulators of the outputs updated using the 20 runs of
F a(x), we calculate a version of the R2 statistic by using the residuals obtained from the adjusted
emulator trend gi(x[i])

T EF a
i (Xa) [βa

i ], denoted R̃2. These are given in the final column of Table 3.
It is clear that the majority of the accurate emulators perform well and accurately represent the
fine simulator, except for the emulators at well A3H and times t = 28, 32, 36, which display poor
fits to the fine model due to the behaviour of F c(x) at those locations being uninformative for the
corresponding accurate model. For additional illustration, the coefficients for the coarse emulator
and the adjusted expected coefficients of the accurate emulator of well B1 oil production rate at
time t = 28 are given in the first two rows of Table 4. We can see from these values in this case
that both emulators have good fits to the simulator despite the different coefficients.

3.4 History matching and calibration

3.4.1 Methodology – History matching via implausibility

Most models go through a series of iterations before they are judged to give an adequate representa-
tion of the physical system. This is the case for reservoir simulators, where a key stage in assessing
simulator quality is termed history matching, namely identifying the set X ∗ of possible choices of
x∗ for the reservoir model (i.e. those choices of input geology which give a sufficiently good fit to
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Model Int φ φ2 φ3 crw crw2 crw3

Coarse 0.663 -0.326 -1.858 2.313 -0.219 0.064 0.079
Accurate 0.612 -0.349 -0.599 0.811 0.313 -0.331 -0.822

Refocused Coarse -0.149 2.204 -0.614 -0.858 -0.586 0.386 0.119
Refocused Accurate 0.678 0.402 -0.456 -0.098 -0.057 -0.055 0.053

φ × crw Ap kz wc(x) R2 R̃2

Coarse 0.407 -0.008 0.904
Accurate 0.072 0.111 0.112 0.952

Refocused Coarse 0.206 0.044 -0.037 0.905
Refocused Accurate -0.045 -0.034 -0.045 -0.109 0.945

Table 4: Table of mean coefficients from the emulator of oil production rate at well B1 and time 28

historical observations, relative to model discrepancy and observational error). If our search reveals
no possible choices for x∗, this is usually taken to indicate structural problems with the underlying
model, provided that we can be reasonably confident that the set X ∗ is indeed empty. This can be
difficult to determine, as the input space over which we must search may be very high dimensional,
the collection of outputs over which we may need to match may be very large, and each single
function evaluation may take a very long time. We now describe the method followed in ?.

History matching is based on the comparison of simulator output with historical observations.
If we evaluate the simulator at a value, x, then we can judge whether x is a member of X ∗ by
comparing F (x) with data z. We do not expect an exact match, due to observational error and
model discrepancy, and so we only require a match at some specified tolerance, often expressed
in terms of the number of standard deviations between the function evaluation and the data. In
practice, we cannot usually make a sufficient number of function evaluations to determine X ∗ in
this way. Therefore, using the emulator, we obtain, for each x, the values E [F (x)] and Var [F (x)].
We seek to rule out regions of x space for which we expect that the evaluation F (x) is likely to be
a very poor match to observed z.

For a particular choice of x, we may assess the potential match quality, for a single output Fi,
by evaluating

I(i)(x) =
|E [Fi(x)] − zi|

2

Var [Fi(x) − zi]
, (20)

which we term the implausibility that Fi(x) would give an acceptable match to zi. For given x,
implausibility may be evaluated over the vector of outputs, or over selected sub-vectors or over a
collection of individual components. In the latter case, the individual component implausibilities
must be combined, for example by using

IM (x) = max
i

I(i)(x). (21)

We may identify regions of x with large IM(x) as implausible, i.e. unlikely to be good choice for
x∗. These values are eliminated from our set of potential history matches, X ∗.

If we wish to assess the potential match of a collection of q outputs F , we use a multivariate
implausibility measure analogous to (20) given by

I(x) =
(E [F (x)] − z)T Var [F (x) − z]−1 (E [F (x)] − z)

q
, (22)
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where I(x) is scaled to have expectation 1 if we set x = x∗. Unlike (20), the calculation of I(x)
from (22) requires the specification of the full covariance structure between all components of z
and F , for any pair of x values.

For comparison, a direct Bayesian approach to model calibration is described in ?. The Bayesian
calibration approach involves placing a posterior probability distribution on the “true value” of x∗.
This is meaningful to the extent that the notion of a true value for x∗ is meaningful. In such
cases, we may make a direct Bayesian evaluation over the reduced region X ∗, based on careful
sampling and emulation within this region. If our history matching has been successful, the space
over which we must calibrate will have been sufficiently reduced that calibration should be tractable
and effective, provided our prior specification is sufficiently careful. As a simple approximation to
this calculation, we may re-weight the values in this region by some function of our implausibility
measure. The Bayes linear approach to prediction that we will describe in Section 3.5.1 does not
need a calibration stage and so may be used directly following a successful history matching stage.

3.4.2 Application and Results

We now use our updated emulator of F a(x) to history match the reservoir simulator At a given
well, we consider outputs corresponding to different times to be temporally correlated. Thus we
apply the multivariate implausibility measure (22) to obtain an assessment of the potential match
quality of a given input x at each well. Incorporating the definitions of z and y from (1) and (2)
into the implausibility formulation, we can write the implausibility function as

I(x) = {EF a(x) [F a(x)] − z}T {VarF a(x) [F a(x)] + Var [e] + Var [ǫ]}−1{EF a(x) [F a(x)] − z}, (23)

which is a function of the adjusted expectations and variances of our emulator for F a(x) given the
model evaluations, combined with the corresponding observational data, z, and the covariances for
the observational error, e, and the model discrepancy, ǫ.

We now specify our prior expectation and variance for the observational error e and the model
discrepancy ǫ. We do not have any prior knowledge of biases of the simulator or the data therefore
we assign E [e] = 0 and E [ǫ] = 0. It is believed that our available well production history has
an associated error of approximately ±10%, therefore we assign 2 × sd (ei) = 0.1 × zi for each
emulator component F a

i (x) and we assume that there is no prior correlation between observational
errors. Assessing model discrepancy is a more conceptually challenging task requiring assessment
of the difference between the model evaluated at the best, but unknown, input, x∗, and the true,
also unknown, value of the system. For simplicity, we assign the variance of the discrepancy to
be twice that of the observational error to reflect a belief that the discrepancy has a potentially
important and proportional effect. In contrast to observational errors, we introduce a relatively
strong temporal correlation over the ǫi = ǫ(w,t) such that Corr

[

ǫ(w,t), ǫ(w,t′)

]

= exp{−θT (t − t′)2},
where we assign θT = 1/362 to allow the correlation to persist across all 12 time points spanning
the 36-month period. We specify such a correlation over the model discrepancy since we believe
that if the simulator is, for example, substantially under-estimating the system at time t, then it
will be highly likely that it will also under-predict at time t + 1.

To assess how the implausibility of input parameter choices changes with x, we construct a grid
over the collection of active inputs spanning their feasible ranges and we evaluate (23) for each of
the four selected wells, at every x point in that grid. We then have a vector of four implausibilities
for every input parameter combination in the grid. To collapse these vectors into a scalar for each x,
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we use the maximum projection (21) where we maximise over the different wells to obtain a single
measure IM(x). This gives a conservative measure for the implausibility of a parameter choice,
x, since if x is judged implausible on any one of the wells then it is deemed implausible for the
collection. Thus the implausibility scores are combined in such a way that a particular input point
x is only ever considered a potential match to the simulator if it is an acceptable match across all
wells.

Thus we obtain a quantification for the match quality for a representative number of points
throughout the possible input space. The domain of the implausibility measure is a 5-dimensional
cube and, as such, it is hard to visualise the implausibility structure within that space. To address
this problem, we project this hypercube of implausibility values down to 2-D spaces in every pair
of active inputs using the method described in ?. If we partition x such that x = (x′, x′′), then we
obtain a projection of Î(x) onto the subspace x′ of x by calculating

min
x′′

IM (x),

which is a function only of x′.

IM (x) is a Mahalanobis distance over the four time points for each well. We produce the
projections of the implausibility surface in Figure 2, colouring by appropriate χ2

4 quantiles for
comparison. The first plot in Figure 2(a) shows the approximate proportion of the implausibility
space that would be excluded if we were to eliminate all points x with IM (x) greater than a
number of the standard deviations from the re-scaled χ2 distribution. For example, thresholding
at 3 standard deviations, corresponding to IM (x) ≃ 4, would excludes approximately 90% of of
input space. The subsequent plots in Figure 2(b) to Figure 2(f) are a subset of the 2-D projections
of the implausibility surface onto pairs of active variables. It is clear from these plots that there
are regions of low implausibility corresponding to values of φ less than approximately 0.8 which
indicates a clear region of potential matches to our reservoir history. Higher values of φ are much
more implausible and so would be unlikely history matches. Aside from φ, there appears to be
little obvious structure on the remaining active variables. This is reinforced by Figure 2(f), which
is representative of all the implausibility projections in the remaining active inputs. This plot clearly
shows that there is no particular set of choices for kx or kz that could reasonably be excluded from
consideration without making very severe restrictions of the input space. Therefore, we decide
to define our region of potential matches, X ∗, by the set {x : IM (x) ≤ 4}. Closer investigation
revealed that this set can be well-approximated by the restriction that φ should be constrained to
the sub-interval [0.5, 0.79].

3.4.3 Re-emulation of the model

Given the reduced space of input parameters, we now re-focus our analysis on this subregion with
a view towards our next major task – forecasting. Our intention for the forecasting stage is, for
each well, to use the last four time points in our existing series to forecast an additional time point
located 12-months beyond the end of our original time series at t = 48 months. Therefore, we no
longer continue investigating the behaviour of well B2 since it ceases production shortly after our
original 3-year emulation period.

To forecast, we require emulators for each the four historical time points as well as the additional
predictive point, which we now construct over the reduced space X ∗. To build the emulators,
we follow the same process as described in Section 3.2.2 and Section 3.3.1, requiring a batch of
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Figure 2: Implausibility summary and projections for the hydrocarbon reservoir simulator
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Well Time x[i] No. Model Coarse Accurate

Terms Trend R2 Trend R̃2

A3H 24 φ, crw, kx, kz 8 0.981 0.974
A3H 28 φ, crw, kx, kz , Ap 11 0.971 0.989
A3H 32 φ, crw, kx, kz 11 0.973 0.958
A3H 36 φ, crw, kx 10 0.958 0.917
A3H 48 φ, crw, kx 10 0.981 0.888

B1 24 φ, crw, kx, Ap 11 0.894 0.982
B1 28 φ, crw, kz , Ap 9 0.905 0.945
B1 32 φ, crw, kx 11 0.946 0.953
B1 36 φ, crw, kx 11 0.953 0.927
B1 48 φ, crw, kx, Ap 11 0.941 0.880

Table 5: Re-focused emulation summary for wells A3H and B1

additional model runs. Of our previous batch of 1000 evaluations of F c(x), 262 were evaluated
within X ∗ and so can be used at this stage. Similarly, of the 20 runs of F a(x) a total of 6 remain
valid. These runs will be supplemented by an additional 100 evaluations of F c(x) and then by an
additional 20 evaluations of F a(x).

Adopting the same strategy as Section 3.2.2, we construct our coarse emulators from the in-
formation contained within the large pool of model evaluations, albeit with two changes to the
process. Since we have already emulated these output components in the original input space (with
the exception of our predictive output), we already have some structural information in the form
of the x[i] and the gi(x[i]) for each F c

i (x) that we obtained from the original emulation. Rather
than completely re-executing the search for active variables and basis functions, we shall begin our
searches using the original x[i] and gi(x[i]) as the starting point. We allow for the emulators to pick
up any additional active variables, but not to exclude previously active inputs; and we allow for
basis functions in the new x[i] to be both added and deleted to refine the structure of the emulator.

An emulation summary for F c(x) within the reduced region X ∗ is given in Table 5 for wells
A3H and B1. We can see that the emulator performance is still good with high R2 indicating that
the emulators are still explaining a large proportion of the variation in model output. Observe that
many of the emulators have picked up an additional active input variable when we re-focus in the
reduced input space.

Considering the emulator for F a(x), we make a similar belief specification as before to link
our emulator of F c(x) to that of F a(x). We choose to make the same choices of parameters
(σρ1, σρ2, σγ1, σγ2, θT ) to reflect a prior belief that the relationship between the two emulators in
the reduced space is the similar to that over the original space. Comparing this prior with the data
via the discrepancy ratio (16) showed that it was again reasonably consistent with Dr(F a

) () taking
values of 2.14, 0.98, and 2.02, although perhaps we may be slightly understating our prior variance.
The prior emulator was then updated by the runs of the accurate model. Looking at the final
column at Table 5 we see that the emulator trend fits the data well, although the R̃2 values appear
to be decreasing over time. Example coarse and accurate emulator coefficients for the re-focused
emulator are also given in the bottom two rows of Table 4, which shows more variation in the
coefficients as we move from coarse to fine in the reduced space and also shows the presence of an
additional active input.
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Figure 3: Simulator outputs, observational data and forecasts for each well. The solid lines indicate
z with error bounds of 2×sd (e). The dotted and dashed lines represent the maximum and minimum
values of the runs of F c(x) and F a(x) respectively in X ∗. The solid black dots correspond to µ∗.
The forecast is indicated by a hollow circle with attached error bars.
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3.5 Forecasting

3.5.1 Methodology – Bayes linear prediction

We wish to predict the collection yp of future well production using the observed well history zh.
This is achieved by making an appropriate specification for the joint mean and variance of the
collection (yp, zh), and so our prediction for yp using the history zh is the adjusted expectation and
variance of yp given zh. This Bayes linear approach to forecasting is discussed extensively in ?.

The Bayes linear forecast equations for yp given zh are given by

Ezh
[yp] = E [yp] + Cov [yp, zh] Var [zh]−1 (zh − E [zh]), (24)

Varzh
[yp] = Var [yp] − Cov [yp, zh] Var [zh]−1 Cov [zh, yp] . (25)

Given the relations (1) and (2), we can express this forecast in terms of the “best” simulator run
F ∗ = F a(x∗), the model discrepancy ǫ, the observed history zh, and the observational error e.
From (2) we write the expectation and variance of y as E [y] = EF a(Xa) [F ∗] + E [ǫ] and Var [y] =
VarF a(Xa) [F ∗]+Var [ǫ], namely the adjusted expectation and variance of the best accurate simulator
run F ∗, given the collection of available simulator evaluations F a(Xa), plus the model discrepancy.
For simplicity of presentation, we introduce the shorthand notation µ∗ = EF a(Xa) [F ∗], Σ∗ =
VarF a(Xa) [F ∗], Σǫ = Var [ǫ], and Σe = Var [e], and we again use the subscripts h, p to indicate
the relevant sub-vectors and sub-matrices of these quantities corresponding to the historical and
predictive components. We also assume E [ǫ] = 0 to reflect the belief that there are no systematic
biases in the model known a priori. The Bayes linear forecast equations are now fully expressed as
follows

Ezh
[yp] = µ∗

p + (Σ∗

ph + Σǫ
ph) (Σ∗

h + Σǫ
h + Σe

h)−1 (zh − µ∗

h) , (26)

Varzh
[yp] = (Σ∗

p + Σǫ
p) − (Σ∗

ph + Σǫ
ph) (Σ∗

h + Σǫ
h + Σe

h)−1 (Σ∗

hp + Σǫ
hp) . (27)

Given a specification for Σǫ and Σe, we can assess the first and second order specifications
E [F a

i (x)], Cov [F a
i (x), F a

i (x′)] from our emulator of F a for every x, x′ ∈ X ∗. We may therefore
obtain the mean and variance of F ∗ = F a(x∗) by first conditioning on x∗ and then integrating
out with respect to an appropriate prior specification over X ∗ for x∗. Hence EF a(Xa) [F ∗] and
VarF a(Xa) [F ∗] are calculated to be the expectation and variance (with respect to our prior belief
specification about x∗) of our adjusted beliefs about F a(x) at x = x∗ given the model evalua-
tions F a(Xa). Specifically, this calculation requires the computation of the expectations, variances
and covariances of all gij(x[i]

∗), and wa
i (x), which, in general, may require substantial numerical

integration.

This analysis makes predictions without a preliminary calibration stage. Therefore, the ap-
proach is tractable even for large systems, as are search strategies to identify collections of simulator
evaluations chosen to minimise adjusted forecast variance. The approach is likely to be effective
when global variation outweighs local variation and the overall collection of global functional forms
g(x) for F a

h and F a
p are similar. It does not exploit the local information relevant to the predic-

tive quantities, as represented by the residual terms wa
i (x) in the component emulators. If some

quantities that we wish to predict have substantial local variation, then we may introduce a Bayes
linear calibration stage before forecasting, whilst retaining tractability, (?).
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3.5.2 Application and Results

We now apply the forecasting methodology, as described in Section 3.5.1, to the three wells under
consideration from the hydrocarbon reservoir model. The goal of this forecasting stage is to forecast
the collection of future system output, yp, using the available historical observations zh. For a given
well in the hydrocarbon reservoir, we will consider the vector of four average oil production rates
at times t = 24, 28, 32, and 36 as historical values, and the quantity to be predicted is the
corresponding production rate observed 12 months later at time t = 48. As we actually have
observations zp on yp, these may act as a check on the quality of our assessments.

By history matching the hydrocarbon reservoir, we have determined a region X ∗ in which we
believe it is feasible that an acceptable match x∗ should lie. For our forecast, we shall consider
that x∗ is equally likely to be any input point contained within the region X ∗. This means that
we take our prior for x∗ to be uniform over X ∗. As we take the gij(x) to be polynomials in x,
then the expectations, variances and covariances of the gij(x

∗) can be found analytically from the
moments of a multivariate uniform random variable which greatly simplifies the calculations of µ∗

and Σ∗, the adjusted mean and variance for F ∗ = F a(x∗). We now refine our previously generous
specification for Var [e]. Since each output quantity is an average of four monthly values, we now
take Var [e] to be 1/4 its previous value to reflect the reduced uncertainty associated with the mean
value.

Before we can obtain a prediction for yp given zh we require an appropriate belief specification
for the model discrepancy ǫ, both at the past time points, and also at the future time point to
be predicted. The role of the model discrepancy, ǫ, is important in forecasting as it quantifies the
amount by which we allow the prediction to differ from our mean simulator prediction, µ∗ = E [F ∗],
in order to move closer to the true system value yp. If the specified discrepancy variance is too small,
then we will obtain over-confident and potentially inaccurate forecasts located in the neighbourhood
of µ∗. If the discrepancy variance is too large then the forecast variances could be unfavourably
large or we could over-compensate by the discrepancy and move too far from yp. We now briefly
consider the specification of Var [ǫ].

Consider the plots in Figure 3 depicting the outputs from the reservoir model over the time
period of our predictions. Observe that for time points 24 to 36 at wells B1 and B5, the mean
values µ∗ (indicated by the solid black circles) underestimate the observational data (indicated by
the thick solid line). However at well A3H, the simulator “overestimates” observed production.
Furthermore, we observe that for well A3H the size of |µ∗ − z| is a decreasing function of time, for
well B1 this distance increases over time, and for well B5 |µ∗ − z| appears to be roughly constant.

Given the specification for the observational error used in Section 3.4.2 and the observed history,
we can compare Var [eh] to the observed values of (µ∗−zh)2 at each well and historical time point to
obtain a simple order of magnitude data assessment for the discrepancy variance at the historical
time points. To obtain our specification for Var [ǫ], we took a weighted combination of prior
information in the form of our belief specification for Var [ǫ] from Section 3.4.2 and these order of
magnitude numerical assessments. As the value of zp is unknown at the prediction time t = 48,
we must make a specification for Var [ǫp] in the absence of any sample information. To make this
assessment, we performed simple curve fitting to extrapolate the historical discrepancy variances to
the forecast point t = 48. The resulting specification for Var [ǫ] is given in Table 6; the correlation
structure over the discrepancies is the same as in Section 3.4.2

Given all these specifications, we evaluate the forecast equations (26) and (27). The results
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2 × sd
(

ǫ(w,t)

)

t = 24 t = 28 t = 32 t = 36 t = 48

A3H 504.9 390.4 124.5 71.5 14.7
B1 130.5 142.0 260.4 245.1 408.0
B5 284.3 239.3 305.8 214.7 260.8

Table 6: Table of specified values for 2 × sd
(

ǫ(w,t)

)

A3H B1 B5

Observation
zp 190.0 1598.6 227.0

2 × sd (e) 19.0 159.9 22.7

Prior
E [yp] 170.2 1027.1 69.4

2 × sd (yp) 62.9 595.1 270.3

Forecast
Ezh

[yp] 170.3 1207.1 299.8
2 × sdzh

(yp) 39.1 348.9 167.4

Table 7: Forecasts of yp at t = 48 using zh for three wells in the hydrocarbon reservoir

of the forecasts are presented in Table 7 alongside the corresponding prior values, and the actual
observed production zp at t = 48. The forecasts and their errors are also shown on Figure 3 by a
hollow circle with attached error bars.

We can interpret the prediction Ezh
[yp] as the forecast from the simulator for yp which is

modified in the light of the discrepancy between Ezh
[yh] and the observed zh. In the case of the

wells tabulated, the simulator for well A3H over-estimates the value of zh during the period t =
24, . . . , 36 resulting in a negative discrepancy and a consequent downward correction to our forecast.
However, interestingly in the intervening period the simulator changes from under-estimating to
over-estimating observed well production, and so on the basis of our observed history alone we
under-predict the oil production rate for this well. The wells B1 and B5 behaved in a more
consistent manner with a constant under-prediction of the observed data compared to the observed
history being reflected by an increase to our forecast. Note that whilst some of the best runs of our
computer model differ substantially from zp, the corrections made by the model discrepancy result
in all of our forecast intervals being within the measurement error of the data.

In practice, the uncertainty analysis for a reservoir model is an iterative process based on
monitoring the sizes of our final forecast intervals and investigating the sensitivity of our predictions
to the magnitude of the discrepancy variance and correlation, for example by repeating the forecasts
using the discrepancy variance values from Table 6 scaled by some constant α, for various values
of α and varying the degree of temporal correlation across discrepancy terms. If we obtain forecast
intervals which are sufficiently narrow to be useful to reservoir engineers then the we can end our
analysis at this stage. If, however, our prediction intervals are unhelpfully large then we return
to and repeat earlier stages of the analysis. For example, introducing additional wells and other
aspects of historical data into our analysis could be helpful in further reducing the size of X ∗, and
allow us to refocus again and therefore reduce the uncertainties attached to our emulator, and so
narrow the forecast interval.
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APPENDIX

A Foundations - Bayes Linear Analysis

The Bayes linear approach is similar in spirit to conventional Bayes analysis, but derives from
a simpler system for prior specification and analysis, and so offers a practical methodology for
analysing partially specified beliefs for large problems. The approach uses expectation rather than
probability as the primitive for quantifying uncertainty; see ??. In the Bayes linear approach, we
make direct prior specifications for that collection of means, variances and covariances which we
are both willing and able to assess. Given two random vectors, B, D, the adjusted expectation
for element Bi, given D, is the linear combination a0 + aT D minimising E

[

(Bi − a0 − aT D)2
]

over
choices of a0, a. The adjusted expectation vector, ED [B] is evaluated as

ED [B] = E [B] + Cov [B,D] (Var [D])−1(D − E [D])

(If Var [D] is not invertible, then we use an appropriate generalised inverse). The adjusted

variance matrix for B given D, is

VarD [B] = Var [B − ED [B]] = Var [B] − Cov [B,D] (Var [D])−1Cov [D,B]

?, and ? are among the first to discuss the role of such assessments in partial Bayes analysis.
A detailed account of Bayes linear methodology is given in ?, emphasising the interpretive and
diagnostic cycle of subjectivist belief analysis.

The basic approach to statistical modelling within this formalism is through second order ex-
changeability. An infinite sequence of vectors is second-order exchangeable if the mean, variance
and covariance specification is invariant under permutation. Such sequences satisfy the second or-
der representation theorem which states that each element of such a sequence may be decomposed
as the uncorrelated sum of an underlying ‘population mean’ quantity and an individual residual,
where the residual quantities are themselves uncorrelated with zero mean and equal variances. This
is similar in spirit to de Finetti’s representation theorem for fully exchangeable sequences but is
sufficiently weak, in the requirements for prior specification, that it allows us to construct statistical
models directly from simple collections of judgements over observable quantities.

Within the usual Bayesian view, adjusted expectation offers a simple, tractable approximation
to conditional expectation, and adjusted variance is a strict upper bound for expected posterior
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variance, over all prior specifications consistent with the given moment structure. The approxima-
tions are exact in certain special cases, and in particular if the joint probability distribution of B, D
is multivariate normal. Adjusted expectation is numerically equivalent to conditional expectation
when D comprises the indicator functions for the elements of a partition, i.e. each Di takes value
one or zero and precisely one element Di will equal one. We may therefore view adjusted expec-
tation as a generalisation of de Finetti’s approach to conditional expectation based on ‘called-off’
quadratic penalties, where we remove the restriction that we may only condition on the indicator
functions for a partition. Geometrically, we may view each individual random quantity as a vector,
and construct the natural inner product space based on covariance. In this construction, the ad-
justed expectation of a random quantity Y , by a further collection of random quantities D, is the
orthogonal projection of Y into the linear subspace spanned by the elements of D and the adjusted
variance is the squared distance between Y and that subspace. This formalism extends naturally to
handle infinite collections of expectation statements, for example those associated with a standard
Bayesian analysis.

A more fundamental interpretation of the Bayes linear approach derives from the temporal sure
preference principle, which says, informally, that if it is necessary that you will prefer a certain
small random penalty A to C at some given future time, then you should not now have a strict
preference for penalty C over A. A consequence of this principle is that you must judge now
that your actual posterior expectation, ET [B], at time T when you have observed D, satisfies the
relation ET [B] = ED [B] + R, where R has, a priori, zero expectation and is uncorrelated with D.
If D represents a partition, then ED [B] is equal to the conditional expectation given D, and R has
conditional expectation zero for each member of the partition. In this view, the correspondence
between actual belief revisions and formal analysis based on partial prior specifications is entirely
derived through stochastic relationships of this type.

24


