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Abstract

In this paper we present a geometric way to extend the Shintani lift from even
weight cusp forms for congruence subgroups to arbitrary modular forms, in partic-
ular Eisenstein series. This is part of our efforts to extend in the noncompact sit-
uation the results of Kudla-Millson and Funke-Millson relating Fourier coefficients
of (Siegel) modular forms with intersection numbers of cycles (with coefficients)
on orthogonal locally symmetric spaces. In the present paper, the cycles in ques-
tion are the classical modular symbols with nontrivial coefficients. We introduce
“capped” modular symbols with coefficients which we call “spectacle cycles” and
show that the generating series of cohomological periods of any modular form over
the spectacle cycles is a modular form of half-integral weight. In the last section
of the paper we develop a new simplicial homology theory with local coefficients
(that are not locally constant) that allows us to extend the above results to orbifold
quotients of the upper half plane.
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1 Introduction

In a series of articles from 1979 to 1990 Steve Kudla and the second named author
developed a theory to explain the occurrence of intersection numbers of geomet-
rically defined cycles as Fourier coefficients of automorphic forms from the point
of view of Riemannian geometry and the theory of reductive dual pairs and the
theta correspondence (see e.g. [24]). Their program was motivated by the work of
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Hirzebruch-Zagier [18] on “Hirzebruch-Zagier” curves in Hilbert modular surfaces
and Shintani [27] for the “classical” modular symbols inside modular curves. They
obtain analogues of the results of [18] and [27] for orthogonal, unitary, and sym-
plectic groups of arbitrary dimension and signature. In particular, their work gives
rise to a lift from the cohomology with compact supports for the associated locally
symmetric spaces to spaces of holomorphic Siegel and Hermitian modular forms.
Note however that the restriction to cohomology with compact supports implies
that their results actually do not include the one obtained by Hirzebruch-Zagier
(which deals with a smooth compactification of the Hilbert modular surface).

The typical shape of the results of Kudla-Millson for the dual pair O(p, q)×
SL2 is as follows. There exists a theta series θ(τ, ϕ) (associated to a carefully chosen
vector-valued Schwartz function ϕ on R(p,q)) with values in the closed differential
forms on X , an appropriate, typically non-compact, arithmetic quotient of the
orthogonal symmetric space, such that its cohomology class

[θ(τ, ϕ)] =
∑
n≥0

PD(Cn)e2πinτ

is a holomorphic modular form of weight (p + q)/2 for SL2 (in τ ∈ H, the upper
half plane) with values in the cohomology of X with trivial coefficients. Here
PD(Cn) are the Poincaré dual classes to the geometrically defined, totally geodesic,
“special” cycles Cn in X , parameterized by non-negative integers n. These cycles
Cn are (usually) non-compact and hence define in general homology classes relative
to the (Borel-Serre) boundary. Then the (co)homological pairing of this generating
series with the cohomology with compact supports or equivalently with absolute
cycles gives rise to a theta lift from these (co)homology groups to classical modular
forms.

The authors of present paper have been developing a program, see [11, 12,
13, 14] (for an introductory overview also see [10]), in which they seek to generalize
the original work of Kudla-Millson in various directions. In [12], they extended
the lift to include non-trivial local coefficients systems. The main goal however, is
to extend the theta lift to cohomology groups associated to X which capture its
boundary.

Among the finite-volume non-compact quotient cases there is a family that
appears to be amenable to attack using the techniques we have developed so far.
It is the family such that the theta functions θ(ϕ) (with potentially non-trivial
coefficients) restricted to the Borel-Serre boundary of X are exact. Equivalently,
the special cycles that intersect the Borel-Serre boundary ∂X have intersections
that are boundaries in ∂X. In this case it appears that one may obtain a correction
term given by another theta series θ(φ) so that the pair (θ(ϕ), θ(φ)) is a cocycle
in the mapping cone de Rham complex associated to the pair (X, ∂X). This pair
hence corresponds to a cohomology class on X with compact supports whose image
in the absolute cohomology coincides with the class of θ(ϕ). On the cycle level
this construction corresponds to capping off the relative cycles Cn at the boundary
to form absolute cycles Ccn which are homologous to Cn as relative cycles. In this
way one can then extend the lift to the full cohomology of X .

We have in fact implemented this procedure in [14] to reprove the main
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result of Hirzebruch and Zagier [18] and give a topological interpretation of the
remarkable fact of the authors’ proof in which the desired generating series is
expressed as the difference of two non-holomorphic modular forms.

Our purpose in this paper is to deal with the most basic case of all, namely
geodesics with coefficients in modular curves, that is, we consider and extend
Shintani’s work [27]. In our set-up this is the case of SO(2, 1) whose arithmetic
quotients X via the special isomorphism with SL2 we can interpret as modular
curves (in the non-compact case). Furthermore, the special cycles Cn are closed
or infinite geodesics (in the latter case these are the classical modular symbols).
In [12] we explain (in much greater generality) how one can associate coefficient
systems to the cycles Cn. Namely, we let E2k be the 2k-th symmetric power of
the standard representation of SL2. We can then construct cycles with coefficients
Cn,[k] ∈ H1(X, ∂X, Ẽ2k), where Ẽ2k is the local system associated to E2k, see
below. Our main result of [12] specialized to this case recovers Shintani’s result
[27] and states that∑

n>0

PD(Cn,[k])e2πinτ ∈ Sk+3/2(Γ′)⊗H1(X, Ẽ2k) (1.1)

is a cusp form of weight k + 3/2 for a congruence subgroup Γ′ ⊂ SL2(Z). Note
that Shintani formulates his result in terms of weighted periods of cusp forms f of
weight 2k + 2 over the geodesics. Via the map f �→ ηf := f(z)dz ⊗ (ze1 + e2)2k,
which induces the Eichler-Shimura isomorphism, one can obtain our point of view.
Here ei, i = 1, 2 is the standard basis of E.

In this situation a remarkable phenomenon occurs. The cycles with trivial
coefficients (i.e., k = 0) cannot be capped off or equivalently the theta functions
with trivial coefficients cannot be corrected to make them into relative classes.
On the other hand for any irreducible non-trivial coefficient system E2k the cycles
Cn,[k] can be capped off. Equivalently, for non-trivial coefficients the forms θ(ϕ)
of [12] can be corrected to be compactly-supported. The actual procedure of
capping off a modular symbol (when it is an infinite geodesic joining two cusps)
with coefficients produces a “spectacle” equipped with parallel sections of the
coefficient system which we have named a “spectacle cycle (with coefficients)”.

Figure 1 A spectacle chain

The oriented graph S of Figure 1 is of course not a cycle. It only becomes
a cycle when local coefficients are added in a way that we now describe. Let p+,
resp. p−, be the intersection of the straight part a of the spectacles with the
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right-hand circle c+, resp. the left hand circle c−. Suppose S is embedded in a
topological space equipped with a flat bundle E. To promote S to a cycle with
coefficients in E we need a parallel section s on a, a parallel section on c+ with a
jump at p+ whose value is the negative of s(p+) and a parallel section on c− with
a jump at q with value equal to s(p−). It is a remarkable fact (see the discussion
below) that such cycles can be found implicitly in classical complex analysis (with
E a flat complex line bundle).

In our situation, we consider the Borel-Serre compactification X of the mod-
ular curve X = Γ\H which adds a boundary circle to each cusp and E = Ẽ2k.
Furthermore, a is a modular symbol given by an infinite geodesic in X joining two
cusps, and the section s = sv on a takes the constant value v ∈ E2k. The circles
c± are the boundary circles at the cusps joined by a. Then the sections on c± arise
from solutions to the equation (γ−1

± − Id)w = v (which are not unique, and don’t
exist if v is a lowest weight vector in E2k with respect to the Borel attached to
the given cusp). Here γ± are the (properly oriented) generators of the stabilizer
of the cusps c± in Γ.

The idea of adding “spectacles” to convert a locally-finite cycle with coeffi-
cients “joining” two punctures (or equivalently 1-cycles with coefficients relative
to small circles surrounding the punctures) into a closed cycle with coefficients
in the same relative cohomology class comes from Deligne and Mostow [8] — see
the picture at the top of page 14 (Deligne and Mostow have spectacles with rect-
angular lenses). Deligne and Mostow point out the classical antecedents of their
construction in the contour integral formula for the Γ-function. The gamma and
hypergeometric integrands should be regarded as single-valued differential one-
forms with values in a 1-dimensional flat complex line bundle. The integral of
such a form over a contour requires a section of the dual bundle over that contour.
In this paper we are dealing with differential 1-forms and 1-cycles with values in
local systems of dimension higher than one that are locally homogeneous for the
group SL(2,R).

The spectacle construction in our situation appeared earlier in the work of
Harder and his school, see e.g. Kaiser’s Diplomarbeit [20], in their investigation
of (the denominator of) Eisenstein cohomology. They discuss the cases SL2(Z)
[16] and Γ1(p) [20] in detail and integrate Eisenstein cohomology classes over the
spectacle cycles.

Throughout the paper we use the language and set-up of a rational quadratic
space V of signature (2, 1) whose arithmetic quotient gives rise to a modular curve
X = Γ\H, see Section 2. This is necessary for our theta series construction, and is
of course also the set-up in Shintani’s paper. In Section 3, we construct the special
cycles in our context and the associated spectacle cycles. The special cycles Cx

arise from a rational vector of positive length x ∈ V , and there is a natural choice
to “promote” this cycle to one with coefficients Cx,[k]. Then Cn,[k] is obtained by
summing over a set of representatives of Γ-equivalence classes of vectors of length
n in a coset of an even lattice in V .

The main result for the construction of the spectacle cycles is Lemma 3.14.
A rough summary of our considerations in Section 3 is

Proposition 1.1. Let X be the Borel-Serre compactification of X. Let Cx ⊗ sv
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be a modular symbol with coefficients, where v is a rational vector in E2k. Then
if ∂(Cx ⊗ sv) = 0 in the homology of ∂X, we can associate to Cx ⊗ sv a spectacle
cycle in X which defines an absolute cycle with rational coefficients. In particular,
there are natural choices to obtain spectacle cycles Ccx,[k] and Ccn,[k] by requiring
that the integral of the canonical generators of the cohomology at the boundary
over the “lenses” vanishes.

We did not seriously consider integral structures in this paper since our focus
is different. However, Proposition 3.15 expresses the coefficient vectors of the spec-
tacle explicitly as linear combinations of (integral) weight vectors in E2k, where
the coefficients are integral multiples of Bernoulli numbers and special values of
Bernoulli polynomials.

It is well-known that if f is a holomorphic cusp form of weight 2k+2 then the
critical values of the associated L-function has a cohomological interpretation as
the weighted periods of the closed holomorphic 1-form ηf along the y-axis which
may be considered as a locally finite 1-cycle or as a relative cycle (relative to the
Borel-Serre boundary). In fact, the y-axis can be realized as a modular symbol Cx

for a certain vector x ∈ V . Of course it is immediate that we get the same result
by integrating over the corresponding spectacle cycle assuming k > 0. However,
if f is not cuspidal then we can no longer take the period of ηf over the y-axis —
the integral diverges. For the definition of the L-function this is usually dealt with
by subtracting the constant Fourier coefficient from f . However this looses the
homological interpretation of this value as a period of ηf . We show that for k > 0
the second interpretation of the L-value as the period of ηf over the spectacle
cycle stills makes sense (we push the spectacles in, take the period and show that
this period is independent of how much we pushed in). Thus we obtain a uniform
description of the critical L-values for all holomorphic modular forms of weight
2k+ 2 with k > 0. We discuss these issues in Section 4, and obtain (Theorem 4.4)

Theorem 1.2. Let f =
∑∞

n=0 ane
2πinz/N ∈M2k+2(Γ(N)), not necessarily a cusp

form. Assume that Cx is the imaginary axis in H. Then the (co)homological
pairing 〈[ηf ], Ccx,[k]〉 is the central value of the L-function of f . We have

〈[ηf ], Ccx,[k]〉 = (−2)kik+1Λ(f, k + 1),

where Λ(f, s) is the completed Hecke L-function associated to f which (for Re(s)�
0) is given by

∫∞
0

(f(iy) − a0)ys dyy . For the pairing, we interpreted Ccx,[k] as an
absolute cycle in X. In fact, all critical values of f arise from the pairing of [ηf ]
with spectacle cycles associated to Cx (with different coefficients).

Note that Kohnen-Zagier [21], §4 give a formal definition of the periods of
Eisenstein series by extending the formulas for cusp forms. From this perspective
we give a geometric interpretation for their procedure.

There is also a different approach to consider the periods of non-cuspidal
modular forms over infinite modular symbols. Namely, one can replace ηf by a
cohomologous 1-form which extends to X . For periods of Eisenstein series this is
for example the approach of Harder and Kaiser[16, 20], and also of Stevens [28] (in
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a slightly different context). In fact, the explicit description of a spectacle cycle
given in Proposition 3.15 together with Theorem 1.2 can be used to a slightly
different approach to the arithmetic properties of Eisenstein cohomology given in
[16, 20].

In Section 5 we introduce the Schwartz forms needed to construct the theta
series. We show in Section 7 that the theta series θ(τ, ϕV1,[k]) for V underlying
our realization of the Shintani lift extends to a form on X (this is in much
greater generality the main result of [13]). The crucial point for us is that the
restriction of θ(τ, ϕV1,[k]) to the boundary face of a given cusp � is an exact dif-
ferential form, and there is a (natural) primitive θ(τ, φN�

[k] ), a theta series for a
positive definite 1-dimensional subspace of V . Hence we have found an element[
θ(τ, ϕV1,[k]),

∑
[�] θ(τ, φ

N�

[k] )
]

in the mapping cone associated to the pair (X, ∂X).
In the appendix we discuss the general mapping cone construction associated to
the pair (X, ∂X) and also its relationship to the cohomology of compact supports
for X . One reason for our detailed discussion is the need to have explicit integral
formulas for the Kronecker pairings in the different realizations of the cohomology.
For future reference we actually carry this out in greater generality needed for this
paper, namely for smooth manifolds with boundary.

The main result is the extension of (1.1) and is discussed in Sections 7 and 8.

Theorem 1.3. The mapping cone element
[
θ(τ, ϕV1,[k]),

∑
[�] θ(τ, φ

N�

[k] )
]

represent-

ing a class H1
c (X, Ẽ2k) defines a non-cuspidal holomorphic modular form of weight

k+3/2 and is equal to the (Poincaré dual of the) generating series of the spectacle
cycles with coefficients ∑

n≥0

[Ccn,[k]]e
2πinτ .

In particular, this generating series can be paired with Eisenstein series or coho-
mology classes. This gives a geometric way of extending the Shintani lift.

By (1.1) the theorem already holds for the pairing of elements in H1(X, Ẽ2k)
with

[
θLV (τ, ϕV1,[k]),

∑
[�] θL̂W�

(τ, φN�

[k] )
]
. Hence it suffices to consider the lift for

representatives of the cokernel of the natural map H1(X, ∂X, Ẽ2k)→ H1(X, Ẽ2k).
For these representatives, we take infinite modular symbols Cx with different coef-
ficients for which the boundary map does not vanish. Then we prove the theorem
by explicitly comparing the Fourier coefficients of the lift of these infinite modular
symbols with the generating series of the intersection numbers with the spectacle
cycles Cn,[k]. In a sense, we are proving the theorem by a Hirzebruch-Zagier [18]
method.

It turns out that this approach reduces the theorem to a corresponding theta
lift for a split space of signature (1, 1), which we discuss in Section 6. For k = 0,
the trivial coefficient case, this lift for signature (1, 1) is a special case of a theta
lift for the dual pair O(n, 1)×Spn studied by Kudla [22, 23]. For this (1, 1)-lift we
also establish a regularized Siegel-Weil formula in the spirit of [25] making explicit
the very general results of Kudla-Rallis. In particular, we realize classical integral
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weight Eisenstein series of k + 1 as a theta lift for O(1, 1). For example, for the
standard SL2(Z)-Eisenstein series Ek+1(τ) of even weight we have

−Bk+1

k + 1
Ek+1(τ) = −Bk+1

k + 1
+ 2

∑
x,y∈Z+

xke2πixyτ ,

which we now interpret as a theta series of signature (1, 1) (where the summation
is restricted to the positive cone). Moreover, from our perspective the Fourier
coefficients are a weighted sum over certain 0-cycles in the hyperbolic line.

It is well-known that one can extend the Shimura-Shintani correspondence
to Eisenstein series in a somewhat formal way by considering Hecke-eigenvalues.
Our point is that one can give a geometric extension of the correspondence. In
Section 9 we show (for SL2(Z)) that the lift of Eisenstein series of weight 2k + 2
indeed gives Eisenstein series of weight k + 3/2.

While the theta lift is defined for all congruence subgroups Γ, the definition
of the cycles themselves and the topology interpretation a priori require Γ to be
torsion-free. Since, in many ways the most interesting case is the modular curve
itself we conclude in Section 10 by explaining how the results of our paper [15]
allow the results of to be extended to the case of quotients of orthogonal symmetric
spaces by arithmetic subgroups that are not torsion free.

It is a great pleasure to dedicate this article to Steve Kudla. His influence in
our work is evident. We would like to thank him for by now decades of encour-
agement, collaboration, mathematical discussions, and friendship.

2 Preliminaries

2.1 The modular curve associated to the orthogonal group

Let V be a rational vector space of dimension 3 with a non-degenerate symmetric
bilinear form ( , ) of signature (2, 1). We write q(x) = 1

2 (x,x) for the associated
quadratic form. Throughout we assume that V is isotropic, and in fact we realize
V as the rational traceless 2 × 2 matrices. For simplicity we assume that the
discriminant of V is 1. Then q(x) = − det(x) and (x,y) = tr(xy).

In this model, SL2 acts on V by conjugation, g(x) = gxg−1, as isometries and
gives rise to the isomorphism G := Spin(V ) � SL2 viewed as an algebraic group
over Q. We write Ḡ � PSL2 � SO(V ), and we set G = G(R) for the real points
of G. We pick an orthogonal basis e1, e2, e3 of VR such that (e1, e1) = (e2, e2) = 1
and (e3, e3) = −1. This also gives rise to an orientation of V . Explicitly, we set
e1 = 1√

2
( 1

1 ), e2 = 1√
2

(
1
−1

)
, and e3 = 1√

2

(
1

−1

)
. We also define u = ( 1 ) and

u′ = (−1 ) so that (u, u′) = −1. Note that u and u′ are defined over Q.
We let K � SO(2) be the stabilizer of e3 in G, and we let D = G/K be the

associated symmetric space. It can be identified with the hyperboloid

D � {x ∈ V (R) : (x,x) = −1, (x, e3) < 0}.

Hence e3 represents the base point z0 of D. The tangent space Tz0(D) at the base
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point is canonically isomorphic to e⊥3 . We orient D by stipulating that e1, e2 is an
oriented basis of Tz0(D) and propagate this orientation continuously around D.

Of course we have H � D, and the isomorphism is given explicitly by

z = x+ iy �→ x(z) :=
1√
2y

(
−x zz̄
−1 x

)
.

This intertwines the natural action of G on V and on H: x(gz) = g(x(z)) and also
preserves the canonical orientation of H given by its complex structure.

Let L ⊂ V (Q) be an even lattice of full rank and write L# for the dual lattice
of L. We fix an element h ∈ L# and let Γ be a torsion-free congruence subgroup of
SL2(Z) which takes L+ h to itself. In the last section we remove this restriction.
We let X = XΓ = Γ\D be the associated arithmetic quotient. It is a modular
curve.

The set Iso(V ) of all isotropic lines in V (Q) can be identified with P 1(Q) =
Q∪∞, the set of cusps of G(Q), by means of the map [α : β] �→ span

(
−αβ α2

−β2 αβ

)
∈

Iso(V ). This maps commutes with the G(Q)-actions. So the cusps of X can
be identified with the Γ-equivalence classes of Iso(V ). The cusp ∞ ∈ P 1(Q)
corresponds to the isotropic line �∞ spanned by u = u∞ = ( 0 1

0 0 ). For � ∈ Iso(V ),
we pick σ� ∈ SL2(Z) such that σ��∞ = �. We orient all lines � ∈ Iso(V ) by
requiring that σ�u∞ =: u� is a positively oriented basis vector of �. Hence a
positively oriented basis vector of �0, the cusp 0, is given by u′ = u�0 =

(
0 0
−1 0

)
.

We let Γ� be the stabilizer of the line � and write M� for the width of the associated
cusp.

We let X be the Borel-Serre compactification of X . It is obtained by adding
to each cusp � of X the circle X� = N�/Γ� � R/M�Z, where N� = N�(R) are the
real points of the nilpotent subgroup of G corresponding to �. For the topology
of X it suffices to note that a sequence zn = xn + iyn in (a nice fundamental
domain of) X converges to the point x in X∞ if limxn = x and lim yn =∞. We
can also view X as the Γ-quotient of D, the Borel-Serre enlargement of D � H,
which is obtained by replacing each (rational) boundary point in P 1(Q) by the
corresponding nilpotent N� � R. We orient X∞ (and then any X�) by giving it
the orientation of N := N∞ = {n(x) := ( 1 x

1 ) ; x ∈ R} � R (which is the same by
stipulating that a tangent vector at a boundary point followed by its outer normal
is properly oriented). This gives rise to a basepoint z∞ of X∞, and any point in
X∞ (or D∞) can be written as n(c)z∞. By slight abuse we identify this point with
the scalar c ∈ R. Finally, we obtain for each boundary component X� a basepoint
z� = σ�z∞.

Note that X is homotopically equivalent to X .

3 Spectacle cycles

3.1 Special cycles/modular symbols

A vector x ∈ V (Q) of positive length defines a geodesic Dx in D via

Dx = {z ∈ D; z ⊥ x}.
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We let Γx be the stabilizer of x in Γ. We denote the image of the quotient Γx\Dx in
X by Cx. The stabilizer Γ̄x is either trivial (if the orthogonal complement x⊥ ⊂ V
is isotropic over Q) or infinite cyclic (if x⊥ is non-split over Q). It is well-known
(see e.g. [9], Lemma 3.6) that the first case occurs if and only if q(x) ∈ (Q×)2. If
Γx is infinite, then Cx is a closed geodesic in X , while Cx is infinite if Γ̄x is trivial.
In the latter case these are exactly the classical modular symbols.

In the upper half plane model, the cycle Dx is given for x =
(

b 2c
−2a −b

)
by

Dx = {z ∈ H; a|z|2 + bRe(z) + c = 0}.

We orient Dx by requiring that a tangent vector v ∈ Tz(Dx) � z⊥ ∩ x⊥ ⊂ V
followed by x gives a properly oriented basis of Tz(D). Now x⊥, the orthogonal
complement of x in VR, is spanned by two (not necessarily rational) cusps corre-
sponding to isotropic lines �x and �′x with positive oriented generators u�x and u�′x .
Then the geodesic Dx joins these two cusps. These isotropic lines are uniquely
determined by the condition �x and �′x both lie in x⊥. Thus

(x, u�x) = (x, u�′x) = 0.

More precisely, Dx joins two points in boundary components of the Borel-Serre
enlargement of D, and we denote the boundary points of Cx in X by cx ∈ X�x

and c′x ∈ X�′x . We distinguish �x and �′x by requiring that u�x,x, u�′x gives a
properly oriented basis of V which also gives a different way of characterizing the
orientation of Dx. Of course, Cx is an infinite geodesic if and only if �x and �′x are
rational.

For n ∈ Q>0, the discrete group Γ acts on Lh,n = {x ∈ L+h; q(x) = n} with
finitely many orbits. We define the (decomposable) special cycle of discriminant
n on X by

Cn =
∑

x∈Γ\Lh,n

Cx.

(We suppress the dependence on L, h and Γ in the notation.)

Remark 3.1. In the above we are assuming n > 0, we will later define C0 (actually
C0,[k]).

Here the sum occurs in H1(X, ∂X,Z) (or in H1(X,Z) if n /∈ (Q×)2 when
the cycles are absolute cycles). Note that by slight abuse of notation we use the
same symbol Cx for the geodesic, the cycle, and the homology class. If we want
to emphasize the homology class we write [Cx].

3.2 The local intersection multiplicity of two special cycles

Let x and y be two independent vectors such that (x,x) > 0 and (y,y) > 0
and such that the restriction of ( , ) to the planes they span is positive definite.
In this case the corresponding geodesics Dx and Dy intersect in a single point
z ∈ D. It is the goal of this subsection to compute the intersection multiplicity
multz(Dx, Dy) in terms of vector algebra in Minkowski three space V ( , ). Since
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x and y determine z we will usually drop the z in what follows. The point in
doing this is that all transverse intersection of special cycles will be locally of the
above form. In this subsection we will use the standard terminology from special
relativity, namely a vector such that (v, v) < 0 will be called “timelike” and a
vector such that (v, v) > 0 will be called “spacelike”.

3.2.1 The Minkowski cross-product and scalar triple product

First we have to choose a volume element for the dual V ∗, that is a nonzero
element of

∧3(V ∗). Note that ( , ) induces a negative definite form on the line∧3(V ∗). If we require the volume element to have inner product −1 this does not
determine the orientation (and of course the knowledge of an inner product cannot
determine an orientation of a vector space). Let e1, e2, e3 be the basis we have
chosen earlier and let α1, α2, α3 be the dual basis. We choose the e1, e2, e3 as a
positively oriented basis and hence the orientation form vol ∈ ∧3(V ∗) is given by

vol = α1 ∧ α2 ∧ α3.

The metric ( , ) induces an isomorphism g : V → V ∗ given by g(u)(v) = (u, v)
whence (g−1(α), v) = α(v). We can now define the Minkowski cross-product × by

u× v = g−1(ιu∧v vol).

Here ιu∧v vol is interior multiplication whence

ιu∧v(vol)(w) = vol(u, v, w).

Following the usual notation from elementary vector algebra we define the
Minkowski scalar product s(u, v, w) of three vectors u, v, w by

s(u, v, w) = (u× v, w).

We now compute the Minkowski cross-product in coordinates.

Lemma 3.2. (Minkowski cross-product) Let u = x1e1 + x2e2 + x3e3 and v =
y1e1 + y2e2 + y3e3. Then we have

u× v = (x2y3 − x3y2)e1 − (x1y3 − x3y1)e2 − (x1y2 − x2y1)e3.

We leave the direct computation to the reader. However we can give another
proof (under the assumption the above formula gives the usual formula in the
Euclidean case) by noting there is only one place in the above formula where
the Minkowski and Euclidean cases differ. Both cases use the usual volume form
for (R3)∗ and for both metrics g we have g−1αi = ei, i = 1, 2 (the same as the
Euclidean computation). But for the Euclidean metric we have g−1(α3) = e3
whereas for the Minkowski metric we have g−1(α3) = −e3. Thus the formulas
for the two cross-products will differ only in the sign of the last term, and we see
e1 × e2 = −e3. Thus we get the Minkowski cross-product formula above.
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3.2.2 The formula for mult(Dx, Dy)

We now recall that the formula for the intersection multiplicity. Let tx be a
positively oriented tangent vector to Dx and ty be a positively oriented tangent
vector to Dy. Let Tz(D) be the tangent space to the hyperbolic plane D at z.
Then the orientation multiplicity mult(Dx, Dy) is given by

mult(Dx, Dy) =

{
+1 if tx and ty are a positively oriented basis for Tz(D),
−1 otherwise.

Let J = Jz be the almost complex structure of D acting on Tx(D) (rotation
counterclockwise by 90 degrees). Recall we have oriented Dx so that tx followed
by x is the orientation of Tx(D). It follows then that

Jtx = cx , c > 0 and x = −1
c
Jt

x
.

To prove the following lemma it suffices to check the case u = e1, v = e2, w = e3
which is trivial.

Lemma 3.3.
vol(−Ju,−Jv, w) = vol(u, v, w).

We can now give a vector-algebra formula for the required intersection mul-
tiplicity.

Lemma 3.4.

multz(Dx, Dy) = sgn(x × y, z) = sgn s(x,y, z).

Proof. We have

multz(Dx, Dy) = sgnvol(−Jx,−Jy, z) = sgnvol(x,y, z) = sgn(x× y, z).

Noting that the inner product between any two timelike vectors depends only
whether or not their third components agree (negative inner product) or disagree
(positive inner product). Hence, since z is timelike with third-component positive
(like e3) we may replace z by e3 in the last expression and obtain

Proposition 3.5.

mult(Dx, Dy) =

{
+1 if x× y “points down”, i.e., has 3rd component negative,
−1 if x× y “points up”, i.e., has 3rd component positive.

Definition 3.6. Let x and y be a pair of spacelike vectors spanning a positive
two-plane. Then we define ε(x,y) by

ε(x,y) =

{
+1 if x× y “points down”,
−1 if x× y “points up”.

Thus from Proposition 3.5, we see that ε(x,y) is the multiplicity of the in-
tersection of Dx and Dy at their unique point of intersection.



102 Jens Funke and John Millson

3.3 A bit of the representation theory of G

We let Symk(V ) be the k-th symmetric power of V . We write vk for the vector v⊗k

in Symk(V ). Of course, Symk(V ) is not an irreducible irreducible representation
of G(Q), but contains the (rational) harmonic tensors Hk(V ) (with respect to the
indefinite Laplacian defined by ( , )) as irreducible representation of highest weight
2k. We have the orthogonal decomposition

Symk(VC) = Hk(VC)⊕ r2 Symk−2(VC), (3.1)

where r2 = e21+e22−e23. We let πk be the orthogonal projection map from Symk(V )
to Hk(V ). The bilinear form ( , ) extends to Symk(V ) such that (xk,yk) = (x,y)k .
Viewed differently, we have V � Sym2(Q2) as G(Q)-modules (for the standard
symplectic basis e1, e2 of Q2, we have e21 ↔ u, e22 ↔ u′, e1e2 ↔ − 1√

2
e2, the standard

symplectic form becomes a symmetric form on Sym2(Q2), which coincides up to
a multiple with the symmetric form on V ), so that Symk(V ) � Symk(Sym2(Q2)).
Then Hk(V ) as representation of G(Q) can be identified with Sym2k(Q2) (which
has highest weight 2k for SL2), contained in Symk(Sym2(Q2)) with multiplicity
one.

Note that the stabilizer of a vector x ∈ V of positive length defines a torus
Ax in G (which is rational if and only if x⊥ splits over Q). We obtain an element
xk ∈ Symk(V ) and then by the projection πk(xk) a vector of weight 0 for Ax

in Hk(V ). We therefore can choose in the weight decomposition of Hk(VC) with
respect to Ax-weight vectors v−2k, v−2k+2, . . . , v−2, v0, v2, . . . , v2k in a way such
that v0 = πk(xk) and v−2k+2i = 1

i!R
iv−2k, that is, v2i+2 = 1

i+k+1Rv2i, for the
raising operator R. Note that for x =

(
1 0
0 −1

)
, we have A = {

(
t
t−1

)
} and R =

( 0 1
0 0 ).

Lemma 3.7. Let x =
(

1 0
0 −1

)
∈ V . Then

πk(xk) =
(−2)kk!
(2k)!

Rku′k.

More generally,

v2i =
(−2)k(k!)2

(2k)!(k + i)!
Rk+iu′k.

In particular, v−2k = cku
′k and v2k = cku

k, where ck = (−2)k(k!)2

(2k)! . Moreover, the
weight vectors are all rational. Finally,

(v2i, v−2i) =
(−1)ic2k(2k)!

(k + i)!(k − i)!
.

Proof. Of course Rk+iu′k are weight vectors of weight 2i. Hence we only need
to determine the constant ck. We first compute (Rku′k, v0) = (Rku′k, (

√
2e2)k).

Writing n(1) =
∑∞
n=0

1
n!R

n, we see (Rku′k, (
√

2e2)k) = (2)k/2k!(n(1)u′k, ek2) =
(−2)kk!. But (Rku′k, Rku′k) = (−1)k(R2ku′k, u′k) = (−1)k(2k)!(n(1)u′k, u′k) =
(2k)!. The lemma follows.
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3.4 Cycles with coefficients

We first describe how one can equip the special cycles with coefficients. We let
E be a rational (finite-dimensional) representation of Γ(Q) which factors through
G. Hence E is self-dual, i.e., E � E∗, and by slight abuse we won’t distinguish
between E and E∗. We write Ẽ for the associated local system of E. This gives rise
to (simplicial) homology and cohomology groups of X and X with local coefficients
in Ẽ. We refer the reader to [19, 12] for more details.

Lemma 3.8. Let Cx = Γx\Dx be a special cycle.

(1) Assume Cx is closed and let v ∈ EΓx , a Γx-invariant vector in E. Then the
pair (Cx, v) defines a class in H1(X, Ẽ) (and also in H1(X, ∂X, Ẽ)).

(2) Assume Cx is infinite (so that Γx is trivial) and let v be any vector in E.
Then the pair (Cx, v) defines a class in H1(X, ∂X, Ẽ).

In both cases we denote the resulting cycle by Cx ⊗ v or [Cx ⊗ v] if we want
to emphasize its class in homology.

Proof. Since Dx is simply connected, we have

EΓx � H0(Γx, E) � H0(Cx, Ẽ) � H1(Cx, ∂Cx, Ẽ)

(∂Cx can be empty). So v ∈ EΓx gives rise to an element in H1(Cx, ∂Cx, Ẽ) which
can be pushed over to define an element in H1(X, ∂X, Ẽ) (or H1(X, Ẽ) if Cx is
closed).

Remark 3.9. These cycles are special cases of “decomposable cycles”, see [12].
In there we explain how a (simplicial) p-chain with values in Ẽ is a formal sum∑m

i=1 σi ⊗ si, where σi is an oriented p-simplex and si is a flat section over σi.
In this setting, the Γx-fixed vector v ∈ E gives rise to a parallel section sv of Ẽ.
Namely, for z ∈ Cx, the section sv for the bundle Cx ×Γx E → Cx is given by
sv(z) = (z, v). Thus sv is constant, hence parallel. So in this setting the notation
Cx ⊗ sv is more precise.

We now consider E = Hk(V ). In that case πk(xk) ∈ Hk(V ) is Γx-invariant.
In fact, if Γx is non-trivial, then πk(xk) is up to a constant the only such vector.
We obtain a cycle

Cx,[k] := Cx ⊗ πk(xk)

with values in Hk(V ). We then define for n > 0 the composite cycle Cn,[k] =∑
x∈Γ\Lh,n

Cx,[k] as before.

We write 〈 , 〉 for the pairing between H1(X, ∂X, H̃k(V )) and H1
c (X, H̃k(V ))

and also between H1(X, H̃k(V )) and H1(X, H̃k(V )). Then in [12] we explain that
for η a closed (compactly supported) differential 1-form on X with values inHk(V )

representing a class [η] in H1(X, H̃k(V )) (or H1
c (X, H̃k(V ))), one has

〈[Cx ⊗ v], [η]〉 =
∫
Cx

(η, v) . (3.2)
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Here (η, v) is the scalar-valued differential form obtained by taking the pairing ( , )
in the fiber.

3.5 Spectacle cycles

We let x ∈ V with q(x) = n > 0 such that Cx is an infinite geodesic connecting
the cusps �′x and �x. In that case Γx is trivial, so any rational vector v ∈ Hk(V )
gives rise to a cycle

Cx ⊗ v.

We obviously have

Lemma 3.10.
∂ (Cx ⊗ v) = cx ⊗ v − c′x ⊗ v.

For c ∈ X�, we will now study c ⊗ v as a 0-cycle at a boundary component
X� with coefficients in Hk(V ).

Proposition 3.11. The 0-cycle c ⊗ v is trivial in H0(X�, H̃k(V )) if and only if
v is perpendicular to the highest weight vector, i.e., if and only if the component
of the lowest weight space in the weight decomposition of v is zero. So c ⊗ v is a
boundary of a 1-chain with values in H̃k(V ) if and only if v ∈ (uk� )

⊥. In this case
there exists w ∈ Hk(V ) such that

v = γ−1w − w.

Here γ is the positively oriented generator of Γ�.

Proof. We may assume � = �∞ whence N� = N∞. Since the circle is a space of
type K(Z, 1) and Γ∞ is Zariski dense in N∞, we have

H0(X�∞ , H̃k(V )) � H0(Γ∞,Hk(V )) = H0(N∞,Hk(V )) ∼= Hk(V )N∞ .

But uk is a highest weight vector of Hk(V ) so that

Hk(V )N∞ = Quk.

Hence (dually using the inner product ( , ) on the coefficients),

H0(X�∞ , H̃k(V )) � H0(Γ∞,Hk(V )) = H0(N∞,Hk(V ))

is also 1-dimensional, and we conclude that the vector v is zero in the space of
coinvariants H0(N∞,Hk(V )) if and only if v ∈ (uk)⊥. Since Γ� is infinite cyclic it
follows from the standard resolution of the Z over the integral group ring, see [5],
Example 1, page 58, that v is the boundary of a one chain if and only if it may be
written v = γ−1w − w for some w as above.

Corollary 3.12. As a special case of the above we see that cx ⊗ πk(xk) is trivial

in H0(X�x , H̃k(V )).
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3.6 1-chains at the boundary and an explicit primitive for
c⊗ v

We will need an actual simplicial 1-chain on X� with coefficients in H̃k(V )) whose
boundary is cx ⊗ v. We have previously defined 1-cycles with coefficients Cx ⊗ sv
where sv was a parallel section globally defined on Cx. We will now extend this
notation to define certain 1-chains X�,c ⊗ sw, where sw is a possibly multi-valued
parallel-section on the horocircle X� obtained by parallel translating a vector w ∈
Hk(V ) in the fiber over the point c ∈ X� aroundX�. This produces a possible jump
at c. We construct the chain X�,c⊗ sw by triangulating X� by using three vertices
u0, u1, u2 with u0 = c. We then define single-valued parallel sections on each of the
three one simplices (u0, u1), (u1, u2) and (u2, u0) by parallel translation of w. More
precisely, we start at u0 and parallel translate along (u0, u1) to get the required
coefficient parallel section on the 1-simplex (u0, u1), we take the resulting value
at u1 and parallel translate along (u1, u2) to get the section we attach to (u1, u2).
Finally we take the resulting value at u2 and parallel translate along (u2, u0) to
get the required section on (u2, u0). We obtain a 1-chain with coefficients to be
denoted X�,c⊗ sw =: X�,c⊗w as the sum of the three resulting one-simplices with
coefficients. We leave the proof of the following lemma to the reader.

Lemma 3.13. Let γ be the (positively oriented) generator of Γ�. Then

∂(X�,c ⊗ w) = c⊗ (γ−1 − Id)w.

In particular, for v = uk� , a highest weight vector for Hk(V ), we obtain a 1-
cycle which we denote by X�⊗uk� . We let ω�,k be the unique N -invariant 1-form on

X� (generating H1(X�, H̃k(VC))) which is a Poincaré dual form of X� ⊗ uk� . That
is,

∫
X�⊗uk

�
ω�,k = 1. Note that at the cusp ∞ we have ω∞,k = (−1)k

M∞
dx⊗ n(x)u′k.

Here M∞ is the width of the cusp ∞.

Lemma 3.14. Let v ∈ Hk(V ) be a rational vector such that v ∈ (uk� )
⊥. Then

there exists a unique rational vector w in Hk(V ) such that

∂(X�,c ⊗ w) = c⊗ v

and ∫
X�,c⊗w

ω�,k = 0.

For the vector v = πk(xk) (and � = �x, c = cx) we write w = wx for this vector.

Proof. Considering Lemma 3.13, we first find any rational vector w in Hk(V ) such
that

(γ−1 − Id)w = v. (3.3)

But the endomorphism γ−1− Id on Hk(V ) has corank 1 and takes values in (uk)⊥

(since ((γ−1 − Id)w, uk� ) = (γ−1w, uk� ) − (w, uk� ) = (w, γuk� )− (w, uk� ) = 0), hence
its image is equal to (uk� )

⊥. Hence there exists a vector w satisfying (3.3), unique
up to a multiple of uk� . That is, we can modify the 1-chain X�,c⊗w by any multiple
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of the 1-cycle X� ⊗ uk� without changing (3.3). This amounts to changing w by a
multiple of uk� . We set β :=

∫
X�,c⊗w ω�,k. Then by construction∫
X�,c⊗(w−βuk)

ω�,k = 0.

We now give an explicit formula for the vector w in Lemma 3.14.

Proposition 3.15. Let v2i ∈ (uk� )
⊥, i = −k + 1, . . . , k be one of the rational

weight vectors for Hk(V ) given in Section 3.3. Consider the vector v = n(r)v2i
for some real number r. Then for the boundary point c = n(r)z�, the vector w as
in Lemma 3.14 is given by

w =
k∑

j=i−1

(−M�)j−i
(

k + j
j + 1− i

)
Bj+1−i(− r

M�
)

k + i
v2j .

Here Bj(x) is the j-th Bernoulli polynomial. Note that for i = 0, the highest
weight vector component of w is given by (2M�)k

Bk+1(−r/M�)
k+1 uk� .

Proof. We can assume � = �∞. We can write γ = exp(M∞R) so that

γ−1 − Id = exp(−M∞R)− Id = −M∞R+ 1
2M

2
∞R

2 − 1
6M

3
∞R

3 + · · · . (3.4)

From this it is clear that w can be written in the form

w =
k∑

j=i−1

αjM
j+i
∞ v2j =

1
M∞

k∑
j=0

αj+i−1

j!
(M∞R)jv2(i−1)

for some scalars αj . We consider pk(t) = (n(t)u′k, w). Note that pk is a polynomial
of degree k + 1− i such that

∫ r+M�

r
pk(t)dt = 0. We have

pk(t) = (n(t−M∞)u′k, γ−1w) = (n(t−M∞)u′k, w + n(r)v2i)

= pk(t−M∞) + (n(t−M∞ − r)u′k, v2i).

Since

(n(t−M∞ − r)u′k, v2i) = (
1

(k − i)!
(t−M∞ − r)k−iRk−iu′k, v2i)

=
(−1)ick(2k)!

(k + i)!(k − i)!
(t−M∞ − r)k−i

(see Lemma 3.7), we see

pk(t)− pk(t−M∞) =
(−1)ick(2k)!

(k + i)!(k − i)!
(t−M∞ − r)k−i.
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But this is (up to constant, shift, and scaling) the difference equation which
is satisfied by the (k + 1 − i)-th Bernoulli polynomial Bk+1−i(t). Hence, since∫M∞+r

r pk(t)dt = 0, we obtain

pk(t) = Mk−i
∞

(−1)ick(2k)!
(k + i)!(k + 1− i)!

Bk+1−i

(
t− r

M∞

)
= Mk−i

∞
(−1)k+i2k(k!)2

(k + i)!(k + 1− i)!

k+1−i∑
j=0

(
k+1−i
j

)
Bj

(
− r

M∞

)(
t

M∞

)k+1−i−j
.

On the other hand, we can easily express pk(t) explicitly in terms of the
coefficients αj (again by Lemma 3.7). We obtain

αj+i−1 = (−1)j−1

(
k + j + i− 1

j

) Bj

(
− r
M∞

)
k + i

for j = 0, . . . , k + 1− i. The proposition follows.

Let x ∈ V be a rational vector of positive length such that x⊥ is Q-split. We
have shown that for v ∈ (uk�x)⊥, we can find w such that ∂(X�x,cx ⊗ w) = cx ⊗ v

and
∫
X�x,cx⊗w

ω�x,k = 0. On the other hand, if in addition v ∈ (u′k�x)⊥, then we
can apply Lemma 3.14 also for the other endpoint of the geodesic Cx and obtain
a 1-chain X�′x,c′x ⊗ w′ such that ∂(X�′x,c′x ⊗ w′) = c′x ⊗ v and

∫
X�′x,c′x⊗w

′ ω�′x,k = 0.

Definition 3.16 (Spectacle cycles). Let x ∈ V be a rational vector of positive
length such that x⊥ is Q-split. For v ∈ (uk�x)⊥ ∩ (uk�′x)⊥ we define the spectacle
cycle Ccx ⊗ sv by

Ccx ⊗ v = Cx ⊗ v −X�x,cx ⊗ w +X�′x,c′x ⊗ w′.

Then Ccx ⊗ v defines by construction a closed cycle in X. So

[Ccx ⊗ v] ∈ H1(X, H̃k(V )).

In particular, for v = πk(xk), we make the following

Definition 3.17. Let x ∈ V be a rational vector of positive length. Then the
spectacle cycle Ccx,[k] is given by

Ccx,[k] =

{
Cx,[k] −X�x,cx ⊗ wx +X�′x,c′x ⊗ w′x if Cx is infinite,
Cx,[k] if Cx is closed.

We define the composite cycle Ccn,[k] in the same way as for trivial coefficients.

Remark 3.18. The image of the absolute cycle Ccx ⊗ v in the relative homology

group H1(X, ∂X, H̃k(V )) is homologous to the original relative cycle Ccx ⊗ v.
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Example 3.19. Assume Γ = Γ0(N). Let x =
√

2e2 so that Cx is the geodesic
joining the cusps �0 and �∞. Let k = 1 so that Hk(V ) = V . Then

wx = u′ − 1
2
x +

1
6
u.

At the other cusp with width N we have

w′x = − 1
N
u− 1

2
x− 1

6
Nu′.

4 Modular forms as differential forms and
pairings with modular symbols and

spectacle cycles

We consider f ∈ Mk(Γ) (Sk(Γ)) a holomorphic modular (cusp) form for Γ ⊆
SL2(Z) of weight 2k + 2. Then

ηf := f(z)dz ⊗ (ze1 + e2)2k = f(z)dz ⊗ (z2u−
√

2ze2 + u′)k

defines a closed holomorphic 1-form onX with values in the local system associated
to Sym2k(C2) � Hk(VC). Note that

n(z)u′k = (z2u−
√

2ze2 + u′)k.

It is well-known that this assignment induces the Eichler-Shimura isomorphisms

M2k+2(Γ)⊕ S2k+2(Γ) � H1(X, ˜Sym2k(C2)),

S2k+2(Γ)⊕ S2k+2(Γ) � H1
! (X, ˜Sym2k(C2)).

Here H1
! (X, ˜Sym2k(C2)) is the image of the compactly supported cohomology in

the absolute cohomology. It is isomorphic to H1(X̃, ˜Sym2k(C2)), the cohomology
of the smooth compactification X̃ .

4.1 Cohomological periods of cusp forms

Let x =
(

b 2c
−2a −b

)
∈ V be of positive length and consider the associated cycle

Cx,[k] with values in Hk(V ). Since

(n(z)u′k, πk(xk)) = (n(z)u′k,xk) = (n(z)u′,x)k = (−2)k(az2 + bz + c)k,

we immediately see that for f ∈ S2k+2(Γ) the cohomological pairing with the
special cycle Cx,[k] is given by

〈Cx,[k], [ηf ]〉 = (−2)k
∫
Cx

f(z)(az2 + bz + c)kdz. (4.1)

This is of course the classical formula for the weighted period of f over the cycle
Cx, see e.g. [27]. A little calculation using Lemma 3.7 also yields the well-known
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Proposition 4.1. Let x = e2 such that Cx is the imaginery axis. Let f ∈ S2k+2(Γ)
be a cusp form. Then for any weight vector v2j ∈ Hk(V ), j = −k, . . . , k, the
cohomological pairing 〈[ηf ], [Cx ⊗ v2j ]〉 is up to a constant equal to a critical value
of the L-function of the cusp form f :

〈[ηf ], [Cx ⊗ v2j ]〉 = ck,jΛ(f, k + 1− j).

Here Λ(f, s) =
∫∞
0 f(iy)ys dyy is the completed Hecke L-function associated to f

and

ck,j =
i(−i)k−j2k(k!)2
(k − j)!(k + j)!

.

4.2 Cohomological periods of arbitrary modular forms

We would like to pair also an arbitrary modular form with a special cycle with coef-
ficients and extend (4.1) and Lemma 4.1. For this it is natural to consider our spec-

tacle cycles Ccx⊗v because they define absolute homology classes in H1(X, H̃k(V )).
However, for a modular form f ∈M2k+2(Γ), the differential form ηf does not ex-
tend to a form on the Borel-Serre compactification X, and hence defines (only) a

class in H1(X, H̃k(V )). In particular, the integral of ηf over the spectacle cycle
does not converge. Therefore the cohomological pairing 〈[ηf ], [Ccx⊗v]〉 only makes
sense using the isomorphisms of the (co)homology groups of X and X. Hence to
obtain an integral formula for 〈[ηf ], [Ccx ⊗ v]〉 one has two principal approaches.
On one hand one can modify the form ηf to extend to X (hence defining a class in

H1(X, H̃k(V ))) and then integrate this modified form over the cycle [Ccx⊗v] in X .
This is the approach in e.g. [16, 20] or in somewhat different context of [28], where
they carry this out for Eisenstein series. We proceed differently by modifying the
spectacle cycles to have support on X (thus defining classes in H1(X, H̃k(V ))).

It suffices to consider the case when the infinite geodesic Dx is a vertical
line in the upper half plane. Close to the cusp at ∞, we truncate Cx at some
(sufficiently large) height T1 and do the same at the other cusp at T2 to obtain
the truncated geodesic CT1,T2

x . Furthermore, we push in the cap X∞,cx ⊗ w to
this (finite) height T1 to obtain XT1∞,cx ⊗ w. We do the same at the other cusp to
obtain XT2

�′x,c′x
⊗ w′. This gives the “pushed in” cycle

Cc,T1,T2
x ⊗ v = CT1,T2

x ⊗ v −XT1
�x,cx

⊗ w +XT2
�′x,c′x

⊗ w′.

Lemma 4.2. The cycles Ccx ⊗ v and Cc,T1,T2
x ⊗ v are homologous in the absolute

homology of X.

Proof. We assume that the first vertex of the triangulation u0 is the point cx at
infinity of the upper half plane, and we write γT for the geodesic ray from iT to
u0. The quotient XT1∞ of the horocircle at height T1 and the Borel boundary circle
X∞ bound an annulus AT1 . We orient the annulus so that ∂AT1 = X∞−XT1∞ . We
break this annulus into three cellular “rectangular” regions by vertical geodesics
joining ui, i = 0, 2, 1 to corresponding points uT1

i on the horocircle at height T1.
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The first of these geodesic segments will be γT1 . We will let uT1
0 = cT1

x , the
intersection of Cx with the quotient of the horocircle at height T1. We then
extend the three parallel sections on the simplices (u0, u1), (u1, u2), (u2, u0) by
parallel translation within the region that has the corresponding simplex as a part
of its boundary. We again denote the resulting multivalued section on AT1 by
sw. The section sw has a parallel jump along γT1 with value sv. After refining
the above cellular decomposition of AT1 to a triangulation we obtain a simplicial
2-chain with coefficients to be denoted AT1∞,γT1

⊗ sw with coefficients such that

∂AT1
∞,γT1

⊗ sw = γT1 ⊗ sv +X∞,cx ⊗ sw −XT1

∞,cT1
x

⊗ sw.

We repeat the construction at the other end of the infinite geodesic to obtain the
required primitive, roughly the union of the two annuli with coefficientsAT1∞,γT1

⊗sw
and AT2

0,γT2
⊗ sw′ where w′ is the solution of the jump equation with jump v at the

cusp 0.

As a consequence we obtain a critical lemma which will enable us to painlessly
evaluate a limit in the following Theorem 4.4.

Lemma 4.3. Let f ∈ M2k+2(Γ). Then the cohomological pairing 〈[ηf ], [Ccx ⊗ v]〉
is given by

〈[ηf ], [Ccx ⊗ v]〉 = 〈[ηf ], [Cc,T1,T2
x ⊗ v]〉 =

∫
C

c,T1,T2
x ⊗v

ηf

for any sufficiently large T1, T2 > 0.

Proof. The cycles Ccx⊗v and its pushed-in incarnation Cc,T1,T2
x ⊗v are homologous

and since the pairing is cohomological it does not depend on T1, T2.

We now see that 〈[ηf ], [Ccx ⊗ v]〉 gives a cohomological interpretation of the
critical values of the L-function of f . The point here is to deal with the case of
noncuspidal f , especially Eisenstein series, extending Proposition 4.1.

Theorem 4.4. Let f =
∑∞

n=0 ane
2πinz/N ∈M2k+2(Γ(N)), not necessarily a cusp

form. Let x = e2 as before and let v2j , j = −k + 1, . . . , k − 1 be a rational weight
vector. Then

〈[ηf ], [Ccx ⊗ v2j ]〉 = ck,jΛ(f, k + 1− j).

Here Λ(f, s) is the completed Hecke L-function associated to f which (for Re(s)�
0) is given by

∫∞
0 (f(iy) − a0)ys dyy and ck,j is the constant defined in Proposi-

tion 4.1.

Proof. We let g(z) = f |2k+2

( −1
1

)
(z) = z−(2k+2)f(−1/z) =

∑∞
n=0 bne

2πinz/N .
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We consider the individual components of
∫
C

c,T1,T2
x ⊗v2j

ηf . We easily see

c−1
k,j

∫
C

T1,T2
x ⊗v2j

ηf =
∫ T1

1

f(iy)yk+1−j dy
y + (−1)k+1

∫ T2

1

g(iy)yk+1+j dy
y (4.2)

=
∫ T1

1

(f(iy)− a0)yk+1−j dy
y + (−1)k+1

∫ T2

1

(g(iy)− b0)yk+1+j dy
y

(4.3)

− a0

k + 1− j
− (−1)k+1 b0

k + 1 + j
(4.4)

+
a0

k + 1− j
T k+1

1 +
b0

k + 1 + j
T k+1

2 . (4.5)

We also have

c−1
k,j

∫
−XT1

�x,cx
⊗w2j

ηf = −c−1
k,j

∫ N

0

f(x+ iT1)(n(x + iT1)u′k, w2j)dx (4.6)

= −c−1
k,ja0

∫ N

0

(n(x+ iT1)u′k, w2j)dx +O(e−C1T1) (4.7)

for some constant C1. Similarly,

c−1
k,j

∫
X

T2
�′x,c′x

⊗w′2j

ηf = c−1
k,jb0

∫ N

0

(n(x + iT2)u′k,
( −1

1

)
w′2j)dx+O(e−C2T2). (4.8)

Since
∫
C

c,T1,T2
x ⊗v2j

ηf is finite and independent of T1, T2, the limit as T1, T2 → ∞
must exist. The limit for the terms (4.3) and (4.4) exists and gives the value
s = k + 1− j of the standard expression in the proof of the analytic continuation
of Λ(f, k + 1− j). The leading terms in (4.7) and (4.8) are polynomials of degree
k+ 1− j in T1 and of degree k+ 1 + j in T2 respectively. By the characterization
of w2j and w′2j given in Lemma 3.14 and setting T1 = T2 = 0 we see that these
polynomials have constant terms zero. Since the limits T1, T2 → ∞ exist we see
that the leading terms of (4.7) and (4.8) are in fact monomials and must cancel
(4.5). (One can see this also by the explicit characterization of (n(x+ iT1)u′k, w2j)
in terms of Bernoulli polynomials given in the proof of Proposition 3.15). In
summary, in the limit the terms (4.5), (4.7), (4.8) cancel and do not contribute.
This proves the theorem.

5 Schwartz forms

In this section all vector spaces and associated groups are defined over R.

5.1 Schwartz forms for D

The following is a very special case of the construction of special Schwartz forms
with coefficients given in [12], §5.
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We let S(V ) be the space of Schwartz functions on V . We let G′ = Mp2(R),
the metaplectic cover of SL2(R) and let K ′ be the pullback of SO(2) under the
covering map. Note that K ′ admits a character χ1/2 whose square descends to
the character which induces the isomorphism SO(2) � U(1). Then G′ × G acts
on S(V ) via the Weil representation ω for the additive character t �→ e2πit. Note
that G acts naturally on S(V ) by ω(g)ϕ(x) = ϕ(g−1x).

We first consider the standard Gaussian ϕ0 = ϕV0 on V ,

ϕV0 (x, z) = e−π(x,x)z ,

where (x,x)z is the majorant associated to z ∈ D. At the base point z0 we also
write (x,x)0 for (x,x)z0 , and for ϕV0 we also just drop the argument z0. Note
ϕV0 (x, z) = ϕ0(g−1

z x). Here gz = n(x)a(
√
y) = ( 1 x

1 )
(√

y
√
y−1

)
is the standard

element which moves the basepoint i in the upper half plane model to z.
We denote the coordinate functions for a vector x with respect to the basis

e1, e2, e3 by xi. We define the Howe operators Dj on S(V ) by

Dj = xj −
1
2π

∂

∂xj
.

We define a Schwartz form ϕ1,k = ϕV1,k taking values in A1(D, ˜Symk(V )), the
differential 1-forms with values in the local system for Symk(V ). More precisely,

ϕV1,k ∈ [S(V )⊗A1(D)⊗ Symk(V )]G � [S(V )⊗ p∗ ⊗ Symk(V )]K .

Here G and K act diagonally on all three factors, and the isomorphism is given by
evaluation at the basepoint z0 of D. Here g = k ⊕ p is the Cartan decomposition

of g, the Lie Algebra of G. We identify g with
∧2

V . Then e1 ∧ e3 and e2 ∧ e3 is
a basis of p. We write ω1, ω2 for the corresponding dual basis of p∗.

At the basepoint, ϕV1,k is explicitly given by

ϕV1,k =
1

2k+1/2

2∑
α=1

2∑
β1,...,βk=1

(Dα ◦ Dβ1 ◦ · · · ◦ Dβk
)(ϕ0)⊗ ωα ⊗ (eβ1 · · · eβk

) .

The form ϕV1,k is closed ([12], Theorem 5.7):

dϕV1,k(x) = 0 (5.1)

for all x ∈ V . Furthermore, ϕV1,k has weight k + 3
2 under the Weil representation

of K ′ ([12], Theorem 5.6). That is,

ω(k′)ϕV1,k = χ2k+3
1/2 (k′)ϕV1,k. (5.2)

We then project onto Hk(V ) in the coefficients to obtain ϕV1,[k]. That is,

ϕV1,[k] =
1

2k+1/2

2∑
α=1

2∑
β1,...,βk=1

(Dα ◦ Dβ1 ◦ · · · ◦ Dβk
)(ϕ0)⊗ ωα ⊗ πk (eβ1 · · · eβk

) .
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Thus
ϕV1,[k] ∈ [S(V )⊗ p∗ ⊗Hk(V )]K .

Of course, ϕV1,[k] is also closed and has weight k + 3/2 as well. Note

Djα(e−πx
2
α) = (2π)−j/2Hj

(√
2πxα

)
e−πx

2
α ,

where Hj(t) = (−1)jet
2 dj

dtj e
−t2 is the j-th Hermite polynomial. Thus the Schwartz

function component of ϕ1,k consists of products of Hermite polynomials times the
Gaussian ϕ0. We write H̃j(xα) = (2π)−j/2Hj

(√
2πxα

)
. Then explicitly we have

ϕV1,k(x, z)

=
1

2k+1/2

k+1∑
j=1

H̃j((g−1
z x)1)H̃k+1−j((g−1

z x)2)ϕ0(g−1
z x)

dy

y
⊗ gz(e

j−1
1 ek+1−j

2 )

− 1
2k+1/2

k∑
j=0

H̃j((g−1
z x)1)H̃k+1−j((g−1

z x)2)ϕ0(g−1
z x)

dx

y
⊗ gz(e

j
1e
k−j
2 ).

5.2 Schwartz forms at the boundary

In this subsection we discuss certain Schwartz forms at the boundary components
of the Borel-Serre enlargement of D. We consider the boundary component D� =
N� � R associated to the cusp �. The (rational) isotropic vectors u� and u′� =
u�′ = σ�u

′ define a positive definite subspace W� = �⊥ ∩ �′⊥. This gives rise to a
Witt splitting of V :

V = �⊕W� ⊕ �′.

For �∞ we have W = Re2, and we use this to identify W with R. Hence (w,w) =
w2. We define a Schwartz form

ϕW�
j ∈ [S(W�)⊗ Symj(W�)]

on W� which for �∞ is given by

ϕWj (w) = − 1
2j+1/2

H̃j+1(w)e−πw
2 ⊗ ej+1

2 ,

and similarly at the other cusps. It is easy to see ([12], Theorem 5.6) that ϕW�

j

has weight j + 3/2.
The Schwartz function ϕW�

k+1 gives rise to a differential 1-form ϕN�

1,[k] on W�

on the boundary component D� of D with values in the Hk(V ). At ∞ it is given
by

ϕN1,[k](w, x) = − 1
2k+1/2

H̃k+1(w)e−πw
2 ⊗ dx⊗ n(x)πk(ek2).

Here w ∈ WR and x ∈ D∞ � R. We therefore have

ϕN�

1,[k] ∈ [S(W�)⊗A1(D�)⊗Hk(V )]N� .
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Here N� acts diagonally, where the action on the first factor is trivial. This con-
struction is a very special case of our general construction given in [13], which
assigns to a Schwartz form for the smaller orthogonal space W a form on a bound-
ary component of the Borel-Serre enlargement of the symmetric space associated
to the larger space V . In the present situation something special occurs. For
k > 0, the form ϕN�

1,[k] is an exact differential form on D�. At ∞, a primitive is
given by

φN[k](w, x) :=

− 1
23k/2+1/2k

H̃k+1(w)e−πw
2 ⊗ 1⊗ n(x)v−2 ∈ [S(W ) ⊗A0(D∞)⊗Hk(V )]N .

Here v−2 is the weight −2 vector in the weight decomposition of Hk(V ) such that
1
kRv−2 = v0 = 2k/2πk(ek2). We easily see

Proposition 5.1. Assume k > 0. The form ϕN�

1,[k](x, x) is an exact differential

form on D� with a primitive φN�

[k] . Thus

dφN�

[k] = ϕN�

1,[k].

Proof. It is enough to check this for �∞ at the base point of D∞. Since N acts
trivial on S(W ), it suffices to solve the equation Rv = πk(ek2) for the infinitesimal
generator R of N . But 1

k2−k/2v−2 is by definition a solution.

Remark 5.2. The primitive is (of course) not unique. We could add any multiple
of the highest weight vector uk to v−2.

Remark 5.3. For k = 0 the form ϕN�

1,[k] is not exact.

5.3 Schwartz forms for the hyperbolic line

We consider a real quadratic space U of signature (1, 1). Hence U = �⊕ �′ for two
isotropic lines � = Ru and �′ = Ru with (u, u′) = −1. We obtain an orthogonal
basis ε1 = (u − u′)/

√
2, ε2 = (u + u′)/

√
2. We can realize the symmetric space

DU associated to U as

DU = {x ∈ U ; (x,x) = −1, (x, ε2) < 0}

with base point ε2. We have SO0(U) � R+, the connected component of the
identity, and we identify DU with R+ in this way. The isomorphsim R+ → DU is
explicitly given by

t �→ x(t) := (tu+ t−1u′)/
√

2.

The Schwartz forms ϕU1,k constructed in [12] for this signature satisfy

ϕU1,k ∈ [S(U)⊗A1(DU )⊗ Symk(U)]A,

and are given by

ϕU1,k(x, t) =
1

2k+1/2
H̃k+1((a(

√
t)−1x)1)ϕU0 (a(

√
t)−1x)⊗ dt

t
⊗ a(
√
t)εk1 .
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Here ϕU0 is the Gaussian for U . Note that ϕU1,k has weight k + 1 under the Weil
representation of K ′ ([12], Theorem 5.6) and defines a closed 1-form on DU ([12],
Theorem 5.7). Projecting the coefficients to Hk(U), we obtain the forms ϕU1,[k].

Of course neither Symk(U) nor Hk(U) are irreducible representations of SO0(U).
In fact, Hk(U) is 2-dimensional spanned by uk and u′k.

Now view U as a subspace of V and DU as a subsymmetric space of D.
Specifically, if U⊥ is spanned by a vector w ∈ V of positive length, then DU = Dw

in the notation of Section 3.1. We easily derive from the definitions

Lemma 5.4. The form ϕV1,k on D is functorial with respect to the restriction to
the subsymmetric space DU . We have

rDUϕ
V
1,k(x + w) =

k∑
j=0

ϕU1,j(x) · ϕU⊥k−j(w).

Here x ∈ U and w ∈ U⊥, and the product on the left hand side arises from the
natural product structure on the Schwartz spaces and on the symmetric algebra
Sym•(V ).

6 Theta series and integrals for the hyperbolic

line

In [12] we developed a general theory of generating series of cycles with non-
trivial coefficients inside locally symmetric spaces associated to orthogonal groups
of arbitrary signature. In this section, we develop rather completely the easiest
case of an extension of these results to include boundary contributions. Namely,
we consider the Q-split case of signature (1, 1). This case is not included in [12].
The results of this section should rather directly generalize to signature (1, q) with
nontrivial coefficients.

We let U be a rational split space of signature (1, 1) spanned by two isotropic
vectors u, u′ with (u, u′) = −1. We set ε1 = (u − u′)

√
2 and ε2 = (u + u′)

√
2 as

before. For the associated symmetric space DU we will also write XU (if we think
of it as a locally symmetric space of infinite volume). For an even lattice LU and
hU ∈ L#

U , we define the theta series

θLU (τ, t, ϕU1,[k]) = v−k/2
∑

x∈LU

ϕU1,[k](
√
vx, t)eπi(x,x)u,

where LU = LU +hU . This defines a closed 1-form on XU , which in the τ -variable
transforms like a non-holomorphic modular form of weight k+1 for Γ(M ′), where
M ′ is the level of LU . Assume (for simplicity)

LU = (ZM1 + h1)u ⊕ (ZM2 + h2)u′,

with 0 ≤ hi < Mi so that M ′ = M1M2.
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Proposition 6.1. With the notation above, we have

θLU (τ, ϕU1,[k])

= (−i)k+12−k/2v−k−1

(
t

M1

)k+2

∑
m≡h2M1 (M ′) n∈Z

e2πinh1/M1 (mτ̄ + n)k+1
e
−π t2

vM2
1
|mτ̄+n|2 ⊗ dt

t
⊗ (a(

√
t)ε1)k.

In particular, θLU (τ, ϕU1,[k]) is a rapidly decreasing 1-form on XU .

Proof. The formula follows by applying Poisson summation over the sum (ZM1 +
h1)u. It boils down to the fact that the Fourier transform of Hj(

√
πx)e−πx

2
is

given by (−2i
√
πx)je−πx

2
(which can be easily seen by [26], (4.11.4)).

The rapid decay as t→∞ is now obvious. The decay at the other end t = 0
follows from switching the cusps. That is, using Poisson summation for the sum
over multiples of u′.

From the proposition, we see that θLU (τ, ϕU1,[k]) defines a class in the com-
pactly supported cohomology of XU :

[θLU (τ, ϕU1,[k])] ∈ H1
c (XU , H̃k(UC)).

We can therefore pair the theta series with classes XU ⊗ w in the relative homol-
ogy H1(XU , ∂XU , H̃k(U)). Recall that Hk(U) is spanned by uk and u′k. In the
following we will only consider XU ⊗ u′k. The pairing with XU ⊗ uk is analogous.

Theorem 6.2. We associate to LU the level M ′ Eisenstein series of weight k+ 1
by

Gk+1(τ,LU , u′) := lim
s→0

∑′

m≡h2M1 (M ′)
n∈Z

e2πinh1/M1 (mτ + n)−k−1 |mτ + n|−2s.

Here
∑′

means that we only sum over pairs (m,n) �= (0, 0). (Of course, we only
need Hecke summation for k = 0, 1). Then

〈θLU (τ, ϕU1,[k]), XU ⊗ u′k〉 =
∫
XU⊗u′k

θLU (τ, z, ϕU1,[k])

= −Mk
1 k!

(
i

2π

)k+1

Gk+1(τ,LU , u′).

Proof. We use Proposition 6.1. For k ≥ 2, termwise integration is valid and easily
yields the result. For k = 0, 1, one needs to include a term ts with Re(s) large into
the integral before interchanging integration and summation.
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Remark 6.3. Theorem 6.2 is a very simple special case of the extended Siegel-
Weil formula of Kudla-Rallis [25] in the isotropic case. In our particular situation,
the choice of the Schwartz function implies that no regularization of the theta
integral is necessary.

We now give an interpretation of the cohomological pairing 〈θLU (τ, ϕU1,[k]), XU⊗
u′k〉 as a generating series of intersection numbers.

A rational vector x ∈ U of positive length defines a point CUx (and hence a
0-cycle) by the condition

(x,x(t)) = 0.

We set
ε(x) = sgn(x, ε1).

Then we define for n > 0

CUn,[k] =
∑

x∈LU

q(x)=n

ε(x)CUx ⊗ πk(xk) ∈ H0(XU ,Hk(U)).

Note here that since U is split there are only finitely many vectors x in LU of
length n.

For n = 0, we define CU0,[k] as follows. We can compactify XU by two “end-
points” XU,� (at t =∞) and XU,�′ (at t = 0). We set

CU0,[k] = −δ0,h2M
k
1

Bk+1

(
h1
M1

)
k + 1

(
XU,� ⊗ uk

)
− δ0,h1M

k
2

Bk+1

(
h2
M2

)
k + 1

(
XU,�′ ⊗ u′k

)
.

Here δi,j is the Kronecker delta.

Theorem 6.4. Let w ∈ Hk(U) and consider the relative 1-cycle XU ⊗ w. For
k �= 1, we have∫
XU⊗w

θLU (τ, z, ϕU1,[k]) =
∑
n≥0

〈CUn,[k], XU ⊗ w〉e2πinτ

= −δ0,h2M
k
1

Bk+1

„
h1
M1

«
k+1 (w, uk)− δ0,h1M

k
2

Bk+1

„
h2
M2

«
k+1 (w, u′k)

+
∑
n>0

∑
x∈LU

(x,x)>0

ε(x)(w,xk)eπi(x,x)τ

is a holomorphic modular form of weight k+1 for Γ(M ′). That is, the cohomology

class [θ(τ, z, ϕU1,[k])] ∈ H1
c (XU , H̃k(UC)) defines a holomorphic modular form of

weight k + 1 for Γ(M ′) and is equal to the generating series of the 0-cycles∑
n≥0

PD[CUn,[k]]e
2πinτ .
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For k = 1, the integral
∫
XU⊗w θLU (τ, z, ϕU1,[1]) contains an additional term

δ0,h1

(w, u)
4M2πv

+ δ0,h2

(w, u′)
4M1πv

.

Proof. We only do w = u′k. The case of coefficient uk is analogous. Let x ∈ LU
such that q(x) > 0. We need to calculate

∫
DU

(ϕ1,[k](x, τ), u′k), where ϕ1,[k](x, τ) =
v−k/2ϕU1,[k](

√
vx, t)eπi(x,x)u. We can assume x = mε1 for some nonzero m ∈ R.

We write ϕ0
1,[k](x, v) = ϕ1,[k](x, τ)e−πi(x,x)τ . Switching variables to t = er, we

obtain∫
DU

(ϕ0
1,[k](x, v), u

′k)

=
(−1)kv−

k
2 (2π)−

k+1
2

2(3k+1)/2

∫ ∞

−∞
Hk+1

(√
2πvm cosh(r)

)
e−2πm2v sinh2(r)ekrdr.

We denote the integrand by Φk(r). Using the recurrence relation for the Hermite
polynomials, Hj(y) = 2yHj−1(y) − H ′j−1(y) = 2yHj−1(y) − 2(j − 1)Hj−2(y), a
little calculation yields

Φk(r) = 2
√

2πvmΦk−1(r) − 2
∂

∂r

(
Φk−2(r)e2r

)
.

Applying this recursion k times we obtain∫
DU

(ϕ0
1,[k](x, v), u

′k) = (x, u′)kπ−1/2

∫ ∞

−∞

√
2πvm cosh(r)e−2πm2v sinh2(r)dr

= sgn(m)(x, u′)kπ−1/2

∫ ∞

−∞
e−r

2
dr = sgn(m)(x, u′)k.

For the negative Fourier coefficients of the integral, we consider x ∈ LU such that
q(x) < 0. We can assume x = mε2 for some nonzero m ∈ R. Then a similar
recursion, reduces

∫
DU

(ϕ1,[k](x, τ), u′k) to the case k = 0, which is directly seen to
vanish.

For the constant coefficient we could of course just refer to the standard
calculation for the constant term of the Eisenstein series Gk+1(τ,LU , u). We give
a more geometric approach. The constant coefficient arises from the isotropic
vectors in LU . Hence it is given by∫

XU

[
δ0,h2

∑
n∈M1Z+h1

(ϕ0
1,[k](nu, v), u

′k) + δ0,h1

∑′

m∈M2Z+h2

(ϕ0
1,[k](mu

′, v), u′k)

]
,

where
∑′

indicates that the term m = 0 is omitted if h2 = 0. For the first sum-
mation one applies Poisson summation and exactly obtains the m = 0 contribution
to the constant coefficient in the definition of the Eisenstein series Gk+1(τ,LU , u′):

−Mk
1 k!

(
i

2π

)k+1 ∑
n∈Z

e2πinh1/M1n−k−1 = (−1)k+1Mk
1

Bk+1

(
h1
M1

)
k + 1

,
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see for example [1], Chapter 12. The other term is equal to

lim
s→0

(−1)kv−
k
2 (2π)−

k+1
2

2(3k+1)/2

∫ ∞

0

∑′

m∈M2Z+h2

Hk+1(−
√
πvmt)e−πvm

2t2tk+s
dt

t
.

We introduced the complex variable s so that we can now interchange summation
and integration (which would not be possible for k = 1). We obtain

−v−
k
2 (2π)−

k+1
2

2(3k+1)/2
(
√
πvM2)−k−s

(
H

(
k + s,

h2

M2

)
+ (−1)k+1H

(
k + s, 1− h2

M2

))

×
∫ ∞

0

Hk+1(t)tk+s−1e−t
2
dt.

Here H(s, x) =
∑∞

n=1(n + x)−s is the Hurwitz zeta function. Now for k ≥ 1
and s = 0 we have

∫∞
0

Hk+1(t)tk−1e−t
2
dt = 1

2

∫∞
−∞Hk+1(t)tk−1e−t

2
dt = 0 by the

orthogonality of the Hermite polynomials. This gives vanishing for k > 1, while
for k = 1, we easily compute

∫∞
0

H2(t)tse−t
2
dt = sΓ((s + 1)/2). We then obtain

−1/(4M2πv) as s→ 0.

Remark 6.5. The theorem also holds for k = 0. This case was initially considered
by Kudla [22], Theorem 3.2. In that case one obtains Hecke’s Eisenstein series of
weight 1. Kudla considered in [22, 23] more generally 0-cycles for SO(n, 1) which
give rise to holomorphic Siegel modular forms of degree n.

Example 6.6. We consider the level 1 situation with LU = Zu⊕ Zu′. Then

〈θLU (τ, ϕU1,[k]), XU ⊗ u′k〉 = −Bk+1

k + 1
Ek+1(τ) = −Bk+1

k + 1
+ 2

∑
x,y>0

xke2πixyτ .

Here Ek+1(τ) is the standard Eisenstein series of weight k+1 for SL2(Z) given for
k > 1 by 1

2

∑
γ∈Γ∞\SL2(Z) j(γ, τ)

−k−1.

7 The generating series of the spectacle cycles

In this section we state our main result of this paper.

7.1 Generating series of modular symbols

We first recall the classical result of Shintani in our setting.
We define the theta series associated to ϕV1,[k] and the (coset of the) lattice

LV = L = L+ h in the usual way by

θL(τ, z, ϕV1,[k]) = v−k/2
∑
x∈L

ϕV1,[k](
√
vx, z)eπi(x,x)u.
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Then the principal result of [12] (in much greater generality) realizes the cohomol-
ogy class of this theta series as a holomorphic modular form and generating series
of special cycles. In the present case, we recover the Shintani lift [27].

Theorem 7.1. [27, 12] The cohomology class [θ(τ, z, ϕV1,[k])] ∈ H1(X, H̃k(VC))
defines a holomorphic cusp form of weight k + 3/2 for Γ(M) and is equal to the
generating series of the (Poincaré duals of the) modular symbols∑

n∈Q+

[Cn,[k]]e2πinτ .

Here M is the level of lattice L. That is, for any compactly supported or rapidly
decreasing closed 1-form η on X with values in Hk(VC) representing a class in

H1
c (X, H̃k(VC)) we have∫

X

η ∧ θ(τ, z, ϕV1,[k]) =
∑
n∈Q+

(∫
Cn,[k]

η

)
e2πinτ ∈ Sk+3/2(Γ(M)).

Equivalently, for any absolute 1-cycle C in X with coefficients representing a class
in H1(X, H̃k(V )), we have∫

C

θ(τ, z, ϕV1,[k]) =
∑
n∈Q+

(Cn,[k] • C)e2πinτ ∈ Sk+3/2(Γ(M)).

Here • denotes the intersection product of cycles.

Remark 7.2. Shintani formulates his result not in terms of cohomological pairings
but rather in terms of weighted periods of holomorphic cusp forms. Of course he
also uses a theta lift to obtain this result. However, he employs a different, scalar-
valued, theta kernel θ(τ, z, ϕS) which is integrated against a holomorphic cusp
form f . Shintani’s kernel function at the base point z = i is given by

ϕS(x) = (x1 + ix2)k+1ϕ0(x).

For such input, the kernels are closely related, namely one has

ηf ∧ θ(τ, z, ϕV1,[k]) = (−1)k2(k+1)/2θ(τ, z, ϕS)f(z)yk+1dμ(z),

where dμ(z) = dxdy
y2 is the invariant measure on D. This can be seen by a direct

calculation of dz ⊗ n(z)u′k ∧ ϕ1,[k](x, z). It boils down to the Hermite identity

k∑
j=0

(
k + 1
j

)
(−i)jH̃k+1−j(x1)H̃j(−x2) = (x1 + ix2)k+1.

Remark 7.3. Since Shintani only considers the lift of cusp forms, he actually
obtains a priori a slightly weaker result because H1

c (X, H̃k(VC)) not only consists
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of classes arising from cusp forms but also of the image of H0(∂X, H̃k(VC)) in

H1
c (X, H̃k(VC)) under the long exact cohomology sequence. However, this makes

no difference for k > 0, since in that case it is easy to see that the lift of classes
arising from H0(∂X, H̃k(VC)) vanishes. For k = 0, one obtains via the restriction
formula θ(τ, z, ϕV1,0) (see Theorem 7.4 below) for the lift of H0(∂X,C) unary theta
series of weight 3/2.

7.2 Restriction of the theta series and the construction of a
class in the mapping cone

For the coset LV = L = L+ h of the lattice L in V , we can write

LV ∩ �⊥ =
∐
j

(L ∩ �+ h�,j)⊕ (L ∩W� + hW�,j)

with vectors h�,j ∈ (L∩ �)# and hW�,j ∈ (L∩W�)# (if LV ∩ �⊥ �= ∅). Then we set

L̂W�
=

1
detL�

∑
j

(LW�
+ hW�,j) ,

where LW�
= L ∩W�. Here detL� := M1 where L� = L ∩ � = M1Zu�. Here we

view the sum as a sum of characteristic functions of sets on W . We then define
the positive theta series associated to ϕN�

1,[k] and L̂W�
by

θL̂W�
(τ, ϕN�

1,[k]) = v−(k+1)/2
∑

w∈W
L̂W�

(w)ϕN�

1,[k](
√
vw)eπi(w,w)u

=
v−(k+1)/2

detL�

∑
j

∑
w∈LW�

+hW�,j

ϕN�

1,[k](
√
vw)eπi(w,w)u.

Then θL̂W�
(τ, ϕN�

1,[k]) transforms like a non-holomorphic modular form of weight

k + 3/2. In the same way we define θL̂W�
(τ, φN�

[k] ).

Theorem 7.4. The differential 1-form (θLV (τ, z, ϕV1,[k]) on X extends to a form
on the Borel-Serre compactification X. More precisely, we let ι� : X� ↪→ X be the
natural inclusion of the boundary face X�. Then for the restriction we have

ι∗�θLV (τ, ϕV1,[k]) = θL̂W�
(τ, ϕN�

1,[k]).

Moreover, ι∗�θLV (τ, z, ϕV1,[k]) is an exact form on X�, and we have

ι∗�θLV (τ, ϕV1,[k]) = d
(
θL̂W�

(τ, φN�

[k] )
)
.

Proof. The extension to X and the restriction formula are (in much greater gener-
ality) the main themes of [13]. To obtain such a result we employ partial Poisson
summation on L∩ �, that is, on the u-summation. The exactness at the boundary
face X� follows from Proposition 5.1.
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From the appendix we can therefore conclude

Corollary 7.5. The pair
(
θLV (τ, ϕV1,[k]),

∑
[�] θL̂W�

(τ, φN�

[k] )
)

defines a cohomology

class of the mapping cone associated to ι : ∂X → X. Here the sum extends over
all Γ-equivalence classes of rational isotropic lines.

7.3 The main result

For a rational isotropic line � in V , we define

C�,[k] =

⎧⎨⎩−Mk
�

Bk+1

“
h�
M�

”
k+1 (X� ⊗ uk� ) if L ∩ � = (M�Z + h�)u�,

0 if L ∩ � = ∅.

We then set
Cc0,[k] =

∑
[�]

C�,[k] ∈ H1(X, H̃k(V )),

where the sum extends over all Γ-equivalence classes [�] of rational isotropic lines
in V .

The main result of the paper is

Theorem 7.6. The mapping cone element
[
θLV (τ, ϕV1,[k]),

∑
[�] θL̂W�

(τ, φN�

[k] )
]

rep-

resenting a class in H1
c (X, H̃k(VC)) defines a holomorphic modular form of weight

k + 3/2 for Γ(M) and is equal to the (Poincaré duals of the) generating series of
the spectacle cycles with coefficients∑

n≥0

[Ccn,[k]]e
2πinτ .

That is, for any closed 1-form η in X with values in Hk(VC) representing a class

in H1(X, H̃k(VC)) � H1(X, H̃k(VC)) we have〈
η,

⎡⎣θLV (τ, ϕV1,[k]),
∑
[�]

θL̂W�
(τ, φN�

[k] )

⎤⎦〉 =
∑
n≥0

(∫
Cc

n,[k]

η

)
e2πinτ ∈Mk+3/2(Γ(M)).

Equivalently, for any relative 1-cycle C in X with coefficients representing a class
in H1(X, ∂X, H̃k(V )), we have〈⎡⎣θLV (τ, ϕV1,[k]),

∑
[�]

θL̂W�
(τ, φN�

[k] )

⎤⎦ , C〉 =
∑
n≥0

(Ccn,[k]•C)e2πinτ ∈Mk+3/2(Γ(M)).

Proof. By Theorem 7.1 the homology version of the assertion holds for the image of
the full homology H1(X, H̃k(V )) inside the relative homology H1(X, ∂X, H̃k(V )).
Therefore it suffices to show the theorem for representatives of the quotient
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H1(X, ∂X, H̃k(V ))/H1(X, H̃k(V )). This means it suffices to consider preimages
under the (surjective) boundary map

∂ : H1(X, ∂X, H̃k(V ))→ H1(∂X, H̃k(V )) =
⊕
[�]

H0(X�, H̃k(V )).

Now H0(X�,Hk(V )) is 1-dimensional and spanned by c⊗u′k� for any point c ∈ X�.
We consider the Witt splitting V = �⊕W�⊕ �′ and take a nonzero y ∈ W�. Then

∂[Cy ⊗ u′k� ] = [cy ⊗ u′k� ]− [c′y ⊗ u′k� ] = [cy ⊗ u′k� ],

since (c′y ⊗ u′k� ) is trivial in H0(X�′ , H̃k(V )) because u′k� is a highest weight vector
for the cusp �′. Hence it suffices to compute the lift for Cy ⊗ u′k� . We will carry
this out in the next section.

Remark 7.7. There are other approaches to this result (for which we did not check
details). One can consider

〈
η,
[
θLV (τ, ϕV1,[k]),

∑
[�] θL̂W�

(τ, φN�

[k] )
]〉

for a closed 1-

form η on X which in a neighborhood of X� is equal to the pullback of ω�,k,

the standard generator of H1(X�, H̃k(VC)). For example, the holomorphicity of
the lift can be shown directly via an argument very similar to the one given in
[24, 12]. Alternatively, using Lemma A.9 one can also consider the lift of a holo-
morphic 1-form ηf associated to a modular form f . Since the lift of an Eisenstein
series is again an Eisenstein series (see Section 9) an explicit calculation of Fourier
coefficients should be also feasible.

We choose the present approach (which is a bit in the spirit of [18]), since it
gives us the opportunity to discuss in detail the very pretty example of the lift of
a modular symbol.

8 Lift of modular symbols

In this section, we prove Theorem 7.6 by considering the lift for a non-compact
cycle of the form Cy ⊗ u′k� .

More precisely, starting from an isotropic line � = Qu we find a Γ-inequivalent
isotropic line �′ = Qu′ with (u, u′) = −1 (the torsion-free congruence subgroup Γ
has at least two cusps). We then obtain a rational Witt splitting V = �⊕W ⊕ �′,
with W = Qy so that u,y, u′ is an oriented basis of V . Hence Dy = DW joins the
two inequivalent cusps �′ and �.

Lemma 8.1. The infinite geodesic Cy connecting two distinct cusps embeds into
X.

Proof. Let F be a convex fundamental domain for Γ (note that the Dirichlet
domain is convex). The cusps � and �′ correspond to vertices of F . These vertices
may be joined in F by a unique infinite geodesic (because F is convex) which maps
one-to-one onto Cy.
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Then Theorem 7.6 will follow from

Theorem 8.2.〈⎡⎣θLV (τ, ϕV1,[k]),
∑
[�]

θL̂W�
(τ, φN�

[k] )

⎤⎦ , (Cy ⊗ u′k)

〉
=
∑
n≥0

(Ccn,[k] • (Cy ⊗ u′k))e2πinτ .

(8.1)

The proof will occupy the rest of the section. We will compute both sides of
(8.1) explicitly. For the left hand side we have by Lemma A.9〈⎡⎣θLV (τ, ϕV1,[k]),

∑
[�]

θL̂W�
(τ, φN�

[k] )

⎤⎦ , (Cy ⊗ u′k)

〉

=
∫
Cy

(
θLV (τ, ϕV1,[k]), u

′k
)

(8.2)

−
(
θL̂W�

(τ, c�, φN�

[k] ), u
′k
)

+
(
θL̂W

�′
(τ, c�′ , φ

N�′
[k] ), u′k

)
. (8.3)

For simplicity we assume

LV = (M1Z + h1)u⊕ LW + hW ⊕ (M2Z + h2)u′,

where LW = L∩W,hW ∈ L#
W and 0 ≤ hi < Mi. (The general case goes along the

same lines but requires more notation.) We set LW = LW + hW and U = W⊥.

Proposition 8.3. For the integral (8.2) we have∫
Cy

(
θLV (τ, ϕV1,[k]), u

′k
)

=
∑

x∈U,w∈W
x+w∈LV

(x,x)>0

ε(x)(x, u′)keπi(x+w,x+w)τ + (−1)k+1δ0,h2M
k
1

Bk+1

“
h1
M1

”
k+1

∑
w∈LW

eπi(w,w)τ .

For k = 1, we have an additional term

−δ0,h1

4M2πv

∑
w∈LW

eπi(w,w)τ .

Here ε(x) = ε(x,y) = ±1 depending on whether x,y defines a properly oriented
basis of the tangent space for the point z ∈ D determined by {x,y}⊥. This coin-
cides with the definition of ε(x) for x ∈ U given in Section 6.

Proof. By Lemma 5.4 we immediately obtain∫
CW

(
θLV (τ, ϕV1,[k]), u

′k
)

=
(∫

CW

(
θLU (τ, ϕU1,[k]), u

′k
))

θLW (τ, ϕW0 ),

where LU = (M1Z + h1)u ⊕ (M2Z + h2)u′. The proposition now follows from
Theorem 6.4.
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Lemma 8.4. For k > 1, we have for the integral (8.2)(
θL̂W�

(τ, c�, φN[k]), u
′k
)

=
(
θL̂W�′

(τ, c�′ , φ
N�0
[k] ), u′k

)
= 0.

For k = 1, we have (
θL̂W�

(τ, c�, φN[1]), u
′
)

= 0,

and (
θL̂W

�′
(τ, c�′ , φ

N�′
[1] ), u′

)
=
δ0,h1

M2

∑
w∈LW

(
−(w,w) +

1
4πv

)
eπi(w,w)τ .

Proof. The coefficients for the boundary theta series at X� and X�′ are the weight
vectors v−2 and a multiple of v2 respectively. Then the claim for k > 1 is obvious,
since u′k is perpendicular to both. If k = 1, the restriction of θLV (τ, ϕV1,[k]) to the
cusp �′ is non zero if and only LV ∩ (�′)⊥ �= ∅, that is h1 = 0. Then(

θL̂W
�′

(τ, c�′ , φ
N�′
[1] ), u′

)
=
δ0,h1

M2

∑
w∈LW

(
−(w,w) +

1
4πv

)
eπi(w,w)τ .

This follows easily from H2(t) = 4t2 − 2.

The following results compute the intersection number Ccn,[k] • (Cy⊗ u′k) (as
defined by algebraic topology). Recall that by Lemma 8.1 the geodesic Cy embeds
into X . We first note

Lemma 8.5. Assume that one of the components Cv of Cn coincides with Cy

(i.e., v is a multiple of y). Then the intersection Ccy • Cy consists only of the
intersections of the caps of Cc,T1,T2

y with Cy.

Proof. We first push-in Ccy at the cusps (as described in Lemma 4.2) to obtain
Cc,T1,T2

y . Then we can apply a small normal deformation to Cy obtaining a cycle
C′y which is disjoint from Cy. Here we need that Cy has no self-intersections. We
then see that Ccy • Cy consists only of the intersections of Cy with the caps of
Cc,T1,T2

y .

Note that two modular symbols Cx1 and Cx2 either coincide or intersect in
a finite number of points in the interior of the Borel-Serre compactification X .
These intersections are generally transverse (and in this case we may compute this
intersection number by counting intersection points with signs). However, it is
possible that Cy intersects the component Cv of Cn at an m-fold multiple point p
of Cv (note that Cv may have self-intersections). We claim the contribution of p
to the global intersection number is the sum of these n multiplicities (in the sense
that if we add up the results over all p we get the global intersection number). This
may be seen in two ways. First we may triangulate each of Cy and Cv and use the
simplicial intersection number of transverse simplicial cycles. More geometrically
we can replace Cy by a path which agrees with Cy except in a small neighborhood
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of p where we replace a segment of Cy by a small semicircle that “hops over p”.
The deformed chain is clearly homologous to Cy and intersects Cv transversally
in m points close to p. We leave to the reader to check that the multiplicities of
these m intersections agree with the ones below. By slight abuse of notation we
still refer to these intersections as transverse.

In conclusion, to compute Ccn,[k]•(Cy⊗u′k) we need to compute the transver-
sal intersection numbers in X (as modified above if Cv has multiple points) and
the intersections of CW ⊗ u′k with the boundary caps of Ccn,[k].

We first treat the intersection numbers in the interior of X . Recall that
in subsection 3.2 we defined a function ε(x,y) of pairs x,y that span a positive
two-plane with values in {±1} in terms of the cross-product x × y in Minkowski
three-space and showed this function was the intersection multiplicity of of Dx

and Dy.

Proposition 8.6. The transversal intersection number of Ccn,[k] with Cy ⊗ u′k in
the interior of X is given by ∑

x∈U,w∈W
x+w∈LV

(x,x)>0
q(x+w)=n

ε(x,y)(x, u′)k.

Proof. We first show that such vectors x,w indeed parameterize all transversal
intersections. A transversal intersection point p ∈ X of Cy and Cn arises from an
intersection of Dy with a Dv at a unique point z in Dy ∈ D. (Unique since Cy

embeds into X). Here v ∈ L with q(v) = n. Now v /∈ W , for otherwise we would
have Dv = Dy. Hence we can write v = x+w with x ∈ U = W⊥ and w ∈ W with
x �= 0. If x did not have positive length, then y and v would not span a positive
definite space of dimension 2 and hence would not determine a unique point in D.
Thus x and w are as above. If p is a simple point, then the vector v is unique.
However, if p is a multiple point of order m of Cv, then each of the branches of Cv
corresponds to a geodesic Dvi meeting Dy at z ∈ D. The set of D′vi

s lie in a single
Γ-orbit so all the vi’s satisfy q(vi) = n. Then we decompose the vi’s as above.

Conversely, given x and w as above we put v = x + w and we obtain a
transversal intersection point z ∈ D of Dv and Dy. Thus we have established a
one-to-one correspondence between the interior transversal intersections of Cn and
Cy and the index set of the above sum.

As noted above we computed the intersection multiplicity ε(v,y) of Dv and
Dy in subsection 3.2. To complete the proof we have only to note

ε(v,y) = ε(x,y)

since we have an equality of cross-products v × y = x× y.

We finally turn to the boundary intersections. We denote the components
of Ccn,[k] at X� and X�′ by C�n,[k] and C�

′
n,[k] respectively. Clearly only these will

contribute to the intersection with Cy ⊗ u′k.
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Proposition 8.7. We define a constant c by c = 2 if 2hW ∈ LW and c = 1
otherwise. Then

(1) The intersection of C�n,[k] with CW ⊗ u′k is given by

c(−1)k+1δ0,h2M
k
1

Bk+1

(
h1
M1

)
k + 1

.

(2) The intersection of C�
′
n,[k] with CW ⊗u′k is zero if k > 1. For k = 1, we have

−2cn δ0,h1
M2

.

Proof. We can assume that Cy connects the cusps 0 and i∞, i.e., y is a positive
multiple of e2 and � = �∞ etc. The vectors x ∈ Ln such that Cx intersects X�

are Γ-equivalent to vectors which are perpendicular to u. So if h2 �= 0, there are
no such vectors. Otherwise we can assume x = ±m

√
2e2 + (M1j + h1)u ∈ L with

j ∈ Z and
√
n = m ∈ Q+. We assume “+” for the moment. These are exactly the

geodesics which terminate in X� (taking the orientation of Cx into account). For
the generator n(M�) of the stabilizer of the cusp Γ� we have n(M�)(m

√
2e2+h1u) =

m
√

2e2 + (−2mM� + h1)u. Hence we have 2mM�/M1 Γ-inequivalent vectors of
this form (with the “+” condition). Namely,

x = n

(−jM1

2m
− h1

2m

)
(m
√

2e2) (j = 0, . . . , 2mM�/M1 − 1).

According to Proposition 3.15 the uk component for the cap-coefficient is given by

−(2mM�)k
Bk+1

„
jM1

2mM�
+

h1
2mM�

«
k+1 uk.

The negative sign arises since we have to take −wx in the definition of the cap,
see Definition 3.17. Taking the inner product with u′k, the coefficient of CW , and
summing over j yields

(−1)k+1Mk
1

Bk+1

(
h1
M1

)
k + 1

by the multiplication property of the Bernoulli polynomial. The vectors with the
“−” condition give exactly the geodesics which originate from �. (Note that these
vectors are not necessarily Γ-inequivalent to the ones satisfying the “+” condition.
If equivalent, the geodesic both originates from and returns to X�.) A similar
analysis yields the same answer. But both cases can only occur simultaneously if
2hW ∈ LW . This shows (1).

For (2), we first note that for k > 1, the cap vector wx for Cx at the cusp
�′ only involves weight vectors of weight at most 2. So the pairing with u′k will
be zero. For k = 1 we apply a similar analysis as for (1). We first note that
we have 2mM�′/M2 Γ-inequivalent vectors x of the form m

√
2e2 + jM2u

′ giving
rise to cycles which originate from X�′ (if h1 �= 0). Using Proposition 3.15 the
corresponding caps for these vectors involve all − m

M�′
u. Pairing with u′ hence

gives − 2m2

M2
(taking the incidence number −1 into account). The vectors with the

“−” condition yield the same.
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Now Theorem 8.2 follows from comparing the combined Fourier coefficients
of the modular forms computed in Proposition 8.3 and Lemma 8.4 with the inter-
sections given in Proposition 8.6 and Proposition 8.7.

9 Lift of Eisenstein series

In this section we discuss the lift of Eisenstein cohomology classes. For z ∈ D, we
define the Eisenstein series for the cusp ∞ by

E(z, k) =
1
2

∑
γ∈Γ∞\Γ

γ∗(dx⊗ u′k).

It is well known (e.g. [28], §6) that for k > 0 the series E(z, k) converges absolutely
and defines a closed differential 1-form on the Borel-Serre compactification X. Its
restriction to X∞ is equal to dx⊗u′k and zero at the other cusps. Finally, E(z, k)
is cohomologous to the differential form ηE2k+2 = E2k+2 ⊗ dz⊗n(z)u′k defined by
the usual holomorphic Eisenstein series E2k+2 for Γ at the cusp∞. Note that the
holomorphic 1-form ηE2k+2 does not extend to X.

For simplicity we restrict to the case Γ = SL2(Z). Furthermore, it is quite
convenient to use Borcherds vector-valued modular forms/theta series setting. To
compute the lift E(z, k) we adapt the argument given in [6], Section 7 to our
situation.

We let Mp2(R) be the two-fold cover of SL2(R) realized by the two choices
of holomorphic square roots of τ �→ j(g, τ) = cτ + d, where g =

(
a b
c d

)
∈ SL2(R).

Hence elements of Mp2(R) are of the form (g, φ) with φ2 = j(g, τ). Then given
an even lattice L there is the Weil representation ρL of the inverse image Γ′ of
SL2(Z) in Mp2(R), acting on the group algebra C[L#/L] (see [4]). We denote the
standard basis elements of C[L#/L] by eh, where h ∈ L#/L.

In our situation we consider the lattice

L =
{(

b c
a −b

)
; a, b, c ∈ Z

}
.

We have L#/L ∼= Z/2Z, the level of L is 4, and Γ = SL2(Z) takes L to itself
and acts trivially on L#/L. We let e0, e1 be the standard basis of C[L#/L] cor-
responding to the cosets h =

(
h1 0
0 −h1

)
with h1 = 0 and h1 = 1/2, respectively.

We let K = KW = Z
(

1
−1

)
be the 1-dimensional lattice in the positive definite

subspace W in V . We frequently identify K (resp. W ) with Z (resp. Q) so that
(b, b′) = 2bb′. We naturally have L#/L � K#/K and ρL � ρK . Finally we easily
see L̂W = KW , see Subsection 7.2.

We then define a vector valued theta series by[
ΘLV (τ, ϕV1,[k]),ΘKW (τ, φN[k])

]
=

∑
h∈L#/L

[
θLV +h(τ, ϕV1,[k]), θKW +h(τ, φN[k])

]
eh,
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which transforms like a modular form of weight k+ 3/2 with respect to the repre-
sentation ρL. That is, for (γ′, φ) ∈ Γ′,[

ΘLV (γ′τ, ϕV1,[k]),ΘKW (γ′τ, φN[k])
]

= φ2k+3(τ)ρL(γ′, φ)
[
ΘLV (τ, ϕV1,[k]),ΘKW (τ, φN[k])

]
.

Note that the theta series vanishes identically unless k is odd. We want to compute
the cohomological pairing〈

E(z, k),
[
ΘLV (τ, ϕV1,[k]),ΘKW (τ, φN[k])

]〉
.

We also define a vector valued Eisenstein series Ek+3/2,K(τ) of half-integral weight
k + 3/2 for the representation ρK by

Ek+3/2,K(τ) =
1
2

∑
γ′∈Γ′∞\Γ′

φ(τ)−2k−3ρ−1
K (γ′)e0.

Here γ′ = (γ, φ) ∈ Γ′ and Γ′∞ is the inverse image of Γ∞ = {( 1 n
0 1 )} inside Γ′.

Remark 9.1. Let k be odd. We can view the theta series and the Eisen-
stein series naturally as scalar-valued forms of weight k + 3/2 for Γ0(4) satis-
fying the Kohnen plus space condition, which means that the n-th Fourier co-
efficient vanishes unless n ≡ 0, 1 (mod 4). Namely, it is not too hard to see
that the sum of the two components of the vector-valued form (evaluated at 4τ)(
Ek+3/2,K(4τ)

)
0
+
(
Ek+3/2,K(4τ)

)
1

is a Cohen Eisenstein series for Γ0(4) [7]. The

same procedure for the theta series gives
[
θL′V (τ, ϕV1,[k]), θKW (τ, φN[k])

]
for the lat-

tice L′ =
{(

b 2c
2a −b

)
; a, b, c ∈ Z

}
.

Theorem 9.2. Let k be odd. Then with the notation as above, we have〈
E(z, k),

[
ΘLV (τ, ϕV1,[k]),ΘKW (τ, φN[k])

]〉
=

1
2
Bk+1

k + 1
Ek+3/2,K(τ).

Remark 9.3. The constant coefficient of the e0-component of Ek+3/2,K(τ) is 2.
Hence the constant coefficient of the lift of E(z, k) is Bk+1

k+1 . This corresponds to the
geometric interpretation of the period of E(z, k) over boundary cycle Cc0,[k] given
in Theorem 7.6.

Proof. We use Lemma A.9 to compute the pairing. First note that the integral
over the boundary X∞ does not contribute since the pairing in the coefficients of
E(z, k) and ΘKW (τ, φN[k]) vanishes: (n(x)u′k, n(x)v−2) = 0 (u′k has weight −2k).
It remains to compute ∫

X

E(z, k) ∧ΘLV (τ, ϕV1,[k]).

We unfold the Eisenstein summation in the usual way and obtain for the eh com-
ponent
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∫
Γ∞\D

dx⊗ n(x)u′k ∧ΘL+h(τ, ϕV1,[k])

= 2−k−3/2v−k/2
k+1∑
j=1

∫
Γ∞\D

∑
x∈L+h

H̃j(
√
v(g−1

z x)1)H̃k+1−j(
√
v(g−1

z x)2)ϕ0(x, z, τ)

× (n(x)u′k, gz(e
j−1
1 ek+1−j

2 ))
dxdy

y
,

where ϕ0(x, z, τ) = ϕ0(
√
vg−1
z x)e2πi(x,x)u. But now (n(x)u′k, gz(e

j−1
1 ek+1−j

2 )) = 0
unless j = k + 1 in which case we obtain (−1)k2−k/2yk. Hence so far〈
E(z, k),

[
ΘL+h(τ, ϕV1,[k]),ΘK+h(τ, φN[k])

]〉
= (−1)k2−(3k+3)/2v−k/2

∫
Γ∞\D

∑
x∈L+h

H̃k+1(
√
v(g−1

z x)1)ϕ0(x, z, τ)yk−1dxdy.

(9.1)

We write x =
(
b c
−a −b

)
. Then

√
v(g−1

z x)1 =
√
v√
2y

(c+ a(x2 − y2) + 2bx)

and
ϕ0(x, z, τ) = e

−π v
y2 (c+a(x2−y2)+2bx)2

e (−acτ̄) e
(
2ia2x2v

)
e(b2τ).

Here e(t) = e2πit. We apply Poisson summation on the summation on c ∈ Z.
This goes similarly as in [6], Section 7 (which in turn is a special case of the
considerations in [4], Section 5). After some tedious manipulations and using
that the Fourier transform of Hk+1(

√
πt)e−πt

2
is given by (−2i

√
πα)k+1e−πα

2
we

obtain for (9.1)

− ik+12−k−1v−k−1
∑

h∈K#/K

(∫
Γ∞\D

∑
a,α∈Z
b∈K+h

(aτ̄ + α)k+1e−π|aτ̄+α|
2y2/v

× e
(
τ(b + ax)2 + 2αx

(
b+

ax

2

))
y2k+1dxdy

)
eh. (9.2)

We define the unary theta series

ΘK(τ, α, β) =
∑

h∈K#/K

∑
b∈K+h

e
(
τ(b + β)2

)
e (−2α(b+ β/2)) eh,

as in [4], Section 4. For (9.2) we then get

− ik+12−k−1v−k−1

∫
Γ∞\D

∞∑
n=1

nk+1
∑
c,d∈Z

gcd(c,d)=1

(cτ̄ + d)k+1e−πn
2|cτ̄+d|2y2/v

×ΘK(τ,−dnx, cnx)y2k+1dxdy. (9.3)
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Now we complete each coprime pair (c, d) to an element γ′ =
((

a b
c d

)
,
√
cτ + d

)
∈

Γ′. By [4], Theorem 4.1 we find

ΘK(τ,−dnx, cnx) = (cτ + d)−1/2
ρ−1
K (γ′)ΘK(γ′τ,−nx, 0).

Using this and
∫ 1

0 ΘK(γ′τ,−nx, 0)dx = e0, we then easily obtain for (9.3)

− ik+12−k−1v−k−1
∞∑
n=1

nk+1 1
2

∑
γ′∈Γ′∞\Γ′

(cτ + d)−1/2 (cτ̄ + d)k+1

×
∫ ∞

0

e−πn
2|cτ̄+d|2y2/vy2k+1dy

(
ρ−1
K (γ′)

∫ 1

0

ΘK(γ′τ,−nx, 0)dx
)

= −ik+12−k−1ζ(k + 1)π−k−1Γ(k + 1)Ek+3/2,K(τ).

The theorem follows.

10 The extension of the main theorem to the
orbifold case

In this section we will prove that if Γ′ is a normal subgroup of the congruence
subgroup Γ with finite index and the main theorem holds for Γ′ then it holds for
Γ even if Γ has elements of finite order, say Γ = SL2(Z). To this end we develop
in [15] a theory of simplicial homology with local coefficients for orbifolds.

In the following we abbreviate the theta series element [θ(ϕV1,[k]),
∑

[�] θ(φ
N�

[k] )]
in the cohomology of the mapping cone complex by θ(ϕ, φ,Γ) emphasizing the
level Γ (and omitting all the other data). We want to prove

[θ(ϕ, φ,Γ)] =
∞∑
n=0

PD(Ccn(Γ)) qn, (∗Γ)

where q = e2πiτ .

Theorem 10.1. Suppose that for some normal subgroup Γ′ of Γ of finite index
we have

[θ(ϕ, φ,Γ′)] =
∞∑
n=0

PD(Ccn(Γ′)) qn. (∗Γ′)

Then (∗Γ) holds as well for a proper definition of the cycles Ccn(Γ) and the
(co)homology groups for X, see below.

The proof will depend heavily on the constructions and results from [15].
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10.1 Simplicial homology with local coefficients

10.1.1 Local coefficient systems over a simplicial complex

We will follow now the presentation of [19], page 69. However in the presentation
of [19], loc.cit., homology and cohomology were treated at the same time. This
requires the arrows in the local system to be bijective (see Remark 10.4 below).
We let M be a triangulated space. We will abuse notation and use M to denote
both the simplicial complex and its underlying space. We refine the triangulation
of M by taking the barycentric subdivision sd M . We order the vertices of each
simplex σ of sd M so that the barycenter of a larger dimensional simplex precedes
the barycenter of a smaller dimensional one. Note that Φ will preserve this partial
order. The point is that the boundary operators ∂p depend only on this partial
order.

Because of the above partial order the 1-skeleton is a directed graph (quiver)
(where each edge is directed from its smaller vertex towards its larger vertex) and
the vertices in each simplex are totally ordered. We can consider a directed graph
as a category where the objects are the vertices and the morphisms are the edges.

Definition 10.2. A local system E on M is a covariant functor from the directed
graph to the category of finite-dimensional vector spaces (so a representation of
the quiver) satisfying the following “zero curvature condition”.

Suppose (v0, v1, v2) is an ordered two simplex of M . Then we have

T ((v0, v2)) = T ((v1, v2)) ◦ T ((v0, v1)) (zero curvature).

Here if (x, y) is a directed edge of M then T ((x, y)) : E(x) → E(y) denotes the
associated linear transformation.

Remark 10.3. The reader will observe that in order to prove that ∂p−1 ◦ ∂p = 0
the zero curvature condition is needed.

The standard example of a local system comes from a flat vector bundle E
over M . In this case E(x) is the fiber Ex over x and T ((x, y)) : Ex → Ey is
given by parallel translation. In this case T ((x, y)) is invertible for all (x, y). The
following remark is critical.

Remark 10.4. The morphisms corresponding to the edges need not be either in-
jective or surjective (unlike the case of flat bundles). In the case we need here some
edge morphisms will be the projections of the generic fiber onto its coinvariants
under a (finite) group action.

Remark 10.5. Note that we have changed the notation for the local system
associated to the flat bundle E from Ẽ to E . The reason for doing this is that in
this paper for the orbifold case (e.g. for the full modular curve) the local system
we consider is not the local system associated to a flat bundle, it is the quotient
of such a local system by a finite group, see below. For our later research (and for
that of others) it is important to separate the two notions, for example it will be
necessary to consider local systems with values in the category of abelian groups
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(not necessarily free) — that is, the functor from the directed graph consisting of
the one skeleton taking values in the category of abelian groups (not necessarily
free).

Suppose M and N are simplicial complexes and f : M → N is a simplicial
map. Suppose E is a local system over M and F is a local system over N . Then a
morphism f̃ : E → F over f consists of an assignment for each vertex x ∈M of a
linear map f̃(x) : E(x) → F(f(x)) such that for any directed edge (x, y) we have
a commutative diagram

E(x)
T ((x,y))−−−−−→ F(y)

ef(x)

⏐⏐= ⏐⏐= ef(y))

E(f(x))
T ((f(x),f(y))−−−−−−−−−→ F(f(y)).

10.1.2 Simplicial chains with local coefficients

Now we define the complex of ordered simplicial chains with coefficients in E
following [19], also see [12]. We define a p-simplex s with coefficients in E to be a
pair s, v where s = (x0, . . . , xp) is an ordered p-simplex in M and v is an element
in the vector space E(x0). We will denote the above simplex by s⊗v and the group
of simplicial p-chains with coefficients in E by Cp(M, E). We define the boundary
operator ∂p on p-simplices with coefficients by

∂p((x0, . . . , xp)⊗ v)

= (x1, . . . , xp)⊗ T ((x0, x1))(v) +
p∑
i=1

(−1)i(x0, . . . , x̂i, . . . , xp)⊗ v. (10.1)

The following lemma is proved using the usual proof together with Remark 10.3.

Lemma 10.6.
∂p−1 ◦ ∂p = 0.

10.1.3 The quotient of a flat bundle by a finite group action

Now assume that we are given a flat bundle E over M and that Φ is a finite group
acting simplicially on M and also on a flat bundle p : E → M such that the
action on E covers the action on M and preserves the connection. We let E be
the associated local system. Let N be the quotient of M by Φ. In our paper [15]
we have constructed a new local system EΦ over N which is the quotient of E by
Φ. Roughly speaking (see [15] for the actual construction which is independent
of a choice of x below) the vector space attached to a vertex y of N is the space
of coinvariants of the generic fiber (the fiber of the original flat bundle) by the
isotropy subgroup of a vertex x of M lying over y. Now suppose (y1, y2) is an
ordered edge of N and (x1, x2) is an ordered edge of M lying over (y1, y2). We
claim (see below) that for the case of quotients of the upper half plane we may
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choose the orderings of simplices so that for any ordered edge as above we have
an inclusion of isotropy subgroups

Φy1 ⊂ Φy2

and hence parallel translation along (x1, x2) from Ex1 to Ex2 induces the required
morphism

T ((y1, y2)) : E(y1)→ E(y2).

It is very important in what follows that the morphism T ((y1, y2)) can have a
nonzero kernel.

The map π : M → N induces a morphism π̃ : E → EΦ over π. The morphism
π̃ induces a morphism to be denoted π∗ from the chain complex of simplical chains
C•(M, E) to the chain complex of simplicial chains C•(N, EΦ). In [15] we prove

Proposition 10.7. The morphism of chain complexes π∗ : C•(M, E)→ C•(N, EΦ)
induces an isomorphism of chain complexes π∗ : C•(M, E)Φ → C•(N, EΦ). Here
C•(M, E)Φ denotes the coinvariants.

Special cycles with local coefficients in orbifold quotients of the upper
half plane Now that we have developed the requisite theory of local coefficient
systems we return to the modular curve and its finite covers. We have defined
Γ,Γ′ and let Φ the quotient of Γ by Γ′. We assume Φ has order m. We obtain
the regular branched covering π : X ′ → X . We assume that we have triangulated
X ′ so that Φ acts by simplicial automorphisms. Furthermore, we assume that all
fixed points of Φ acting on X ′ are vertices of X ′. We then refine the triangulation
of X ′ by taking the barycentric subdivision sd X ′. The vertices x of a simplex
in the barycentric subdivision of X ′ correspond to a simplex s in the original
triangulation so x = xs and an two vertices xs, xs′ form an unordered edge if and
only if either s ⊂ s′ or s′ ⊂ s. We order the vertices of edges (and a fortiori of two
simplices) so that a bigger simplex corresponds to a smaller vertex in the order
i.e.

xs′ < xs ⇐⇒ s ⊂ s′.

Thus by construction if (x1, x2) is an ordered edge then the isotropy of x1 is trivial
and the above claim is proved.

As before, we let E2k = Hk(V ) be the irreducible representation of SL2 of
highest weight 2k. We obtain a flat bundle E = E2k on X ′ given by E = H×Γ′E2k.
The bundle E gives rise to the associated locally constant local system E on X ′

and hence by the theory of the previous subsection to the local system EΦ on X .
Proposition 10.7 then gives

Corollary 10.8. The homology of the complex C•(X, E)Φ is isomorphic to the
group homology H•(Γ, E2k).

Proof. Since taking coinvariants by a finite group is an exact functor on the cate-
gory of finite-dimensional vector spaces it commutes with homology and we have

H•(X, EΦ) ∼= H•(X ′, E)Φ.
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But since X ′ is a space of type K(Γ′, 1) we have H•(Γ′, E2k) ∼= H•(X ′, E). But
H•(Γ, E2k) ∼= H•(Γ′, E2k)Φ.

We have already defined special cycles C′x in X ′. They are either closed
geodesics (possibly with self-intersections) or infinite geodesics joining two cusps
— i.e. modular symbols. We will use the term “special cycle” to refer to either.
In what follows for the rest of this subsection it will be important to keep track of
the coefficient v and to write C′x ⊗ v.

In the case that C′x is a closed geodesic we use only the coefficients πk(xk).
Suppose now that C′x is a modular symbol. Then the subgroup Gx

∼= R is the real
points of a maximal torus T defined over Q. As before the torus T gives rise to a
weight decomposition of E2k defined over Q

E2k =
2k⊕

�=−2k

E2k(�),

where E2k(�) denotes the 1-dimensional weight space with weight �. We will now
define the special cycles Cx ⊗ v. We will separate into two cases, the case where
C′x is noncompact (modular symbols) and the case where C′x is compact (closed
geodesics with transverse self-intersections). The first case breaks up into two
subcases, the “unfolded” case where the image of C′x is an infinite geodesic joining
joining two distinct cusps and the “folded” case where of C′x is a geodesic ray from
an orbifold point with the label two (the image of a point with isotropy Z/2) to a
point in the boundary ∂X ′. The second case again breaks up into two subcases,
the “unfolded” case where the image of C′x is a closed geodesic with transverse
intersections and the “folded” case where the image of C′x is the geodesic segment
xy joining two orbifold singular points x and y each with label 2.

Folded modular symbols Suppose the (rational) geodesic Dx joins two cusps
c1 and c2. Since Dx is oriented (by x as explained above) we may distinguish
between the two cusps. We assume that the oriented geodesic is directed from c1
to c2. In case Dx maps into the quotient with transverse multiple points then it
is a usual modular symbol. We will now analyse the new phenomenon cause by
the existence of elements of finite order in Γ. The problem is there may now be
elements in Γ that carry Dx into itself. As we will see below, the subgroup of
Γ stabilizing Dx is either trivial or has order two. In the first case we will get a
usual modular symbol (joining two distinct cusps), in the second case we will get
a “folded modular symbol”. We now analyse this second case. Suppose then it is
an element ι ∈ Γ of order two that carries Dx into itself and reverses that cusps
c1 and c2 and hence reverses the orientation of Dx. Clearly ι has a (unique) fixed
point z0 on Dx and rotates the tangent space Tz0(D) by the angle π around this
fixed point. Hence, the subgroup {1, ι} of Γ is a subgroup of Γ that stabilizes the
set Dx and hence is the full subgroup of Γ that carries Dx into itself. Clearly the
image of Dx in X is the geodesic ray C+

x joining z0 to the point in the Borel-Serre
boundary corresponding to the geodesic ray from z0 to c2.
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To analyse the relative cycles with coefficients corresponding to this second
case it suffices to analyse the case of the folded y-axis for the case in which Γ =
PSL(2,Z). We will defer the detailed analysis as a simplicial cycle with local
coefficients to the remark following and explain the key point in terms of the ray
C+

x = (i,∞) informally first. The image Cx of Dx in the modular curve is “folded”,
as a set it is a closed half line but as a simplicial chain each simplex has coefficient
zero so we get the zero 1-chain. However if we have coefficient v we have

Cx ⊗ v = (0, i)⊗ v + (i,∞)⊗ v.

But
(0, i)⊗ v ∼ ι((0, i)⊗ v) = (∞, i)⊗ ι(v) = −(i,∞)⊗ ι(v).

Combining the two equations above we have

Cx ⊗ v = (i,∞)⊗ (v − ι(v)).

In general we let D+
x denote the positively directed half-line from z0 to the cusp

at its end. The half-line D+
x projects one-to-one to a half line in X and we have

Cx ⊗ v = C+
x ⊗ (v − ι(v)).

In case the coefficients are trivial we interpret v− ι(v) as zero. Unless the weight �
of v is zero the coefficient v− ι(v) will be nonzero but will not be a weight vector.
The point is that ιE2k(�) = E2k(−�).
Definition 10.9. We will call a relative cycle of the form C+

x ⊗ (v− ι(v)) a folded
modular symbol (with coefficients) and denote it Cx ⊗ v.

In the following remark we refine the above discussion and give a careful
description of the above “folded modular symbol” as a simplicial one-chain with
coefficients which is a cycle relative to the Borel-Serre boundary.

Remark 10.10. The folded modular symbols are cycles relative to the Borel-Serre
boundary of X with coefficients in the system EΦ. We know since they are images
of relative cycles in X under the chain map π∗ that they have to be relative cycles
but we will verify now this directly for the special case of the y-axis (the general
case is no harder, just replace i by z0). In the Borel-Serre compactification the
half-line (i,∞) has a boundary point c and we have a closed (geodesic) interval
joining i and c that we denote [i, c]. We choose an interior point z to [i, c] and
form the two ordered one simplices (z, i) and (z, c), the “barycentric subdivision”
of [i, c]. Recall the first vertex of any one-simplex in sdX is the barycenter of the
original edge ((i, c)) so z has to come first in each of the two above one simplices.
We then define (here x = e2 =

(
1 0
0 −1

)
∈ V )

C+
x ⊗ (v − ι(v)) := (z, i)⊗ (v − ι(v)) + (z, c)⊗ (ι(v) − v)).

Accordingly we have

∂ ((z, i)⊗ (v − ι(v)) + (z, c)⊗ (ι(v)− v))
= (i)⊗ T ((z, i))(v − ι(v)) − (z)⊗ (v − ι(v))

+ (c)⊗ T ((z, c))(ι(v)− v)− (z)⊗ (ι(v) − v).
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But v − ι(v) is zero in the Φi -covariants of the generic fiber and T ((z, c)) = I
hence

T ((z0, i))(v − ι(v)) = 0

and
∂ ((z, i)⊗ (v − ι(v)) + (z, c)⊗ (ι(v) − v)) = (c)⊗ (v − ι(v)).

Hence we have proved by a direct calculation in the complex C•(X, EΦ) that Cx⊗
(v − ι(v)) is a relative cycle.

Remark 10.11. In case v = πk(xk) we have

C+
x ⊗ (v − ι(v)) = 2C+

x ⊗ v.

Recalling that in all cases we have defined

Cx ⊗ v := C+
x ⊗ (v − ι(v))

we have an equality of cycles with coefficients

π · C′x ⊗ v = Cx ⊗ v. (10.2)

The stabilizer of the modular symbol C′x⊗ v We will now need an analysis
of the subgroup of Φ that stabilizes the cycle C′x ⊗ v. We may assume (by our
choice of Γ′) that C′x is an infinite geodesic joining two cusps. Thus the stabilizer
of the oriented geodesic Dx in SL(2,Q) is a rational torus T which is split over Q.

The stabilizer of the underlying unoriented geodesic is the normalizer of the
torus N(T) and we have an extension T → N(T) → Z/2, which we may split by
assigning the element ι = ιx of order 4 in N(T) which for the case of the y-axis is
the matrix

(
0 −1
1 0

)
. We note that ι exchanges the two cusps which are the ends of

the geodesic. We will assume that ι ∈ Γ otherwise ι = I in the lemma below. We
abuse notation and let ι denote the element of Φ represented by ι.

We first observe

Lemma 10.12.

η · Cx ⊗ v = Cx ⊗ v =⇒ either η = ι or η = I.

Proof. η · Cx ⊗ v = Cx ⊗ v implies that we have an equality of submanifolds
η(C′x) = C′x. But this implies that η has a representative η̃ satisfying η̃(Dx) = Dx.
This in turn implies that η̃ ∈ N(T). But N(T) ∩ SL(2,Z) = {I, ι} since T is split
over Q.

We then have

Proposition 10.13. The stabilizer of the modular symbol C′x⊗ v is trivial unless
v has weight zero for T. If v has weight zero then the stabilizer is {I, ι} ∼= Z/2 if
k is odd. Otherwise, it is trivial.
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Proof. By the lemma either the isotropy group of the cycle is trivial or Z/2. Let
us examine when the later holds that is ι is in the isotropy subgroup. Now we
have

ι · Cx ⊗ v = π̃ · (ι ·Dx)⊗ ι(v).

Here we think of Dx as an oriented subcomplex of D. But ι ·Dx = −Dx whence
we have ι(v) = −v. Clearly this occurs if and only if v is the zero weight vector
πk(xk) and k is odd.

We now deduce a corollary of the proposition.

Corollary 10.14. For the case in which Cx is not compact the stabilizer of x in
PSL(2,Z) is trivial.

Proof. Clearly if γ(x) = x then γ(Dx) = Dx. But we have seen that this latter
equation holds if and only if γ ∈ {I, ι}. But we claim ι(x) = −x. Indeed ι
preserves the orientation of D and reverses the orientation of Dx. Hence it must
also reverse the orientation of the normal direction x to Dx.

Folded geodesics and closed geodesics with transverse self-intersection
We will now assume that C′x is compact. Now the torus T∩Γ is defined over Q but
not split. There are two cases depending whether of not the intersectionN(T)∩Γ is
an infinite cyclic group or an infinite dihedral group i.e. whether or not it contains
an element ι of order two. We will call the first case the “unfolded case” and the
second the “folded case”. The intersection will always contain an infinite cyclic
group which is the subgroup that fixes both ends of the infinite geodesic Dx. We
will let γx be the generator of this cyclic group which preserves the orientation of
Dx (since we have oriented Dx this generator is well-defined). Note that since we
have assumed Γ′ is torsion free we have N(T) ∩ Γ′ is infinite cyclic generated by
a power of γx. Thus in both cases the cycle C′x will be a closed geodesic with at
worst transverse self-intersections. The vector v = πk(xk) will be invariant under
γx and we obtain a cycle with coefficients C′x ⊗ v in X ′ in both cases. We let ηx
denote the element of Φ induced by γx.

Definition 10.15. For both cases we define the number dx to be the order of the
cyclic subgroup of Φ generated by ηx above.

In the unfolded case the space Cx which is the direct image of Dx under
the branched covering D → X will be a closed geodesic with possible transverse
self-intersections and we have an induced covering π : C′x → Cx of degree dx. In
this case the vector v = πk(xk) induces a parallel section over Cx and we may
define the cycle with coefficients Cx ⊗ v as usual. Note that we have

π · C′x ⊗ v = dxCx ⊗ v.
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Folded geodesic cycles with coefficients In the “folded case” we can no
longer give the straight-forward definition of the cycle Cx ⊗ v because the image
of Dx in X ′ is now a geodesic segment. It will take considerable effort to arrive at
the correct definition of Cx ⊗ v.

By a folded geodesic we mean a geodesic segment y1y2 joining two orbifold
singular points y1 and y2 each with label 2. This means that any inverse image
x1 of y1 resp. x2 of y2 in D is fixed by an element ι1, resp. ι2 of Γ of order 2.
Let α(x1, x2) be the infinite geodesic in D joining x1 and x2. Then the subgroup
Γ(1, 2) of Γ generated by ι1 and ι2 is an infinite dihedral group that acts on the
geodesic α(x1, x2) and with image the geodesic segment y1y2. This is because a
fundamental domain for Γ(1, 2) acting on α(1, 2) is the geodesic segment x1x2. We
have

Lemma 10.16. The orbifold X contains a folded geodesic if and only if it has two
distinct orbifold points with label 2.

Proof. The condition is obviously necessary. But if X has two orbifold points we
simply join them in X by a shortest geodesic segment so the condition is sufficient
as well.

Example 10.17. The famous “theta group” consisting of matrices(
a b
c d

)
with ac and bd even has two distinct orbifold points with label 2 namely i and i+1
and hence contains the folded geodesic ii+ 1. It is interesting that the modular
curve itself does not contain a folded geodesic.

Let y1y2 be a folded geodesic and v = πk(xk). We will now define a simplicial
one chain with coefficients y1y2 ⊗ v. We let z be the midpoint of the geodesic
segment y1y2. We define the one chain with coefficients y1y2 ⊗ v by

y1y2 ⊗ v = (z, y1)⊗ v − (z, y2)⊗ v.

Lemma 10.18. The chain y1y2 ⊗ v is a cycle if and only if k is odd.

Proof. Note first that although the weight space splitting of E2k is not invariant
under T the zero weight space is carried into itself (and fixed) and the Weyl group
N(T)/T ∼= Z/2 acts on the zero weight space by (−1)k. Thus the vector v is zero
in the coinvariants of both ι1 and ι2 if k is odd and nonzero in both spaces of
coinvariants if k is even (we note that since ι1 and ι are conjugate by an element
of T(R) and T(R) fixes v they both have to act the same way on v).

Next we note the relation of the chain y1y2⊗v with the direct image π ·C′x⊗v.
We leave the proof to the reader

Lemma 10.19.

(1) π · C′x ⊗ v = 2dx y1y2 ⊗ v if k is odd.
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(2) π · C′x ⊗ v = 0 y1y2 ⊗ v if k is odd.

We now have

Definition 10.20.

Cx ⊗ v :=

{
2 y1y2 ⊗ v if k is odd,

0 if k is even.

Thus with the above definition of Cx ⊗ v in the folded case we have both the
folded and unfolded cases

π · C′x ⊗ v = dxCx ⊗ v. (10.3)

We now introduce some terminology which we will use in the rest of the
paper.

Remark 10.21. We will often abuse terminology and refer to Cx as a “folded
geodesic” in the second case. In a certain sense Cx is the folded geodesic, it goes
back and forth across the segment y1y2.

The stabilizer subgroups associated to closed and folded geodesics We
will summarize the facts we will need later about the stabilizers of C′x ⊗ v for the
case that C′x is a closed geodesic in the next proposition. We will leave its proof
to the reader.

Proposition 10.22. Let ΦC′x⊗v be the stabilizer of the cycle C′x ⊗ v in Φ. Then
we have

(1) Either ΦC′x⊗v is the finite cyclic group Z/dxZ, the deck group of the covering
C′x → Cx or

(2) a finite dihedral group which is the extension by Z/2 of the above finite cyclic
group.

In the second case we let ι ∈ Γ be an element whose image modulo Γ′ is nontrivial
element of the Z/2. In the first case we have

ΦC′x⊗v = Φx

and in the second we have

ΦC′x⊗v ⊃ Φx
∼= Z/dxZ and ΦC′x⊗v/Φx

∼= Z/2.

In both cases we have

dx = |Φx|.
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Horocircles X ′� We now analyse the case of the horocircle cycles with coefficients
X ′� ⊗ uk� where � = Qu� is an isotropic rational line in V .

Proposition 10.23. The stablizer of the cycle X ′�⊗uk� in Φ is a finite cyclic group
Z/dZ, the deck group of the covering X ′� → X� and coincides with the image of the
stablizer Γ� of � in Γ modulo Γ′. This latter stabilizer Γ� equals N� ∩ Γ, is infinite
cyclic and coincides with the fundamental group of X�.

We leave the proof to the reader. We will often replace d by d� to emphasize
the dependence on �.

10.1.4 The direct image formula, the homology transfer and the Gysin
homomorphism

We first need to compute π ·C′x⊗v. The next proposition follows from the analysis
immediately above. Recall that if C′x is compact then dx is the order of the covering
C′x → Cx (and this is equal to the order of the isotropy group Φx). We will define
dx to be 1 if C′x is not compact. From equations (10.2) and (10.3), we have

Proposition 10.24.

(1) Suppose Cx is not compact, then we have

π · C′x ⊗ v = Cx ⊗ v.

(2) If Cx is compact then
π · C′x ⊗ v = dxCx ⊗ v.

(3)
π ·X ′� ⊗ uk = d�X� ⊗ uk.

We define the reducible cycles trΓΓ′(Cx ⊗ v), the transfer of the cycle Cx ⊗ v
and trΓΓ′(C�), the transfer of the cycle C� ⊗ v by

Definition 10.25.
trΓΓ′(Cx ⊗ v) =

1
dx

∑
η∈Φ

η · C′x ⊗ v

and
trΓΓ′(X� ⊗ v) =

1
d�

∑
η∈Φ

η ·X ′� ⊗ v.

Remark 10.26. In this remark we justify using the symbol trΓΓ′(Cx ⊗ v) for the
above sum. trΓΓ′(Cx ⊗ v) is the sum in the oriented simplicial chain complex for
X ′ of the oriented simplicial cycles η · C′x ⊗ v. We have

π · η · C′x ⊗ v = Cx ⊗ v.

So all the oriented simplicial cycles η·C′x⊗v are in the inverse image of the simplicial
cycle Cx⊗ v and moreover comprise the full inverse image (with multiplicity). We
then add these cycles in the inverse image to obtain trΓΓ′(Cx ⊗ v). Thus trΓΓ′ is
the operation from collections of simplicial chains to the group of simplicial chains
described in [5], page 82, paragraph (E) (except Brown used cellular chains and
assumes a free action).
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We have

Lemma 10.27.

(1) π · trΓΓ′(Cx ⊗ v) = mCx ⊗ v.
(2) π · trΓΓ′(X� ⊗ v) = mX� ⊗ v.

Proof. We will prove only the first formula.

π · trΓΓ′(Cx ⊗ v) =π · 1
dx

∑
η∈Φ

η · C′x ⊗ v =
1
dx

∑
η∈Φ

(π ◦ η) · C′x ⊗ v

=
1
dx

∑
η∈Φ

π · C′x ⊗ v =
1
dx

∑
η∈Φ

dxCx ⊗ v = mCx ⊗ v.

The following proposition is in [15] but it is so important we give it again
here.

Proposition 10.28. With the above notation we have

(1) PD(trΓΓ′(Cx ⊗ v)) = π∗ PD(Cx ⊗ v) or equivalently 1
dx

∑
η∈Φ PD(η ·C′x ⊗

v) = π∗ PD(Cx ⊗ v).
(2) PD(trΓΓ′(X�⊗v)) = π∗ PD(X�⊗v) or equivalently 1

d�

∑
η∈Φ PD(η ·X ′�⊗v) =

π∗ PD(X� ⊗ v).

Proof. We will prove the second formula in (1). Note first the formula for any
cycle C in an oriented compact manifold (possibly with boundary)

PD(η · C) = (η−1)∗ PD(C). (10.4)

We may write the left-hand side as π∗ψ for some form ψ on X . Let α be a closed
form on X of the same degree as the dimension of Cx. Then using (10.4) we have∫
X

α ∧ ψ =
1
m

∫
X′

π∗α ∧ π∗ψ =
1
m

1
dx

∑
η∈Φ

∫
X′

π∗α ∧ (η−1)∗ PD(C′x ⊗ v)

=
1
m

1
dx

∑
η∈Φ

∫
X′

η∗π∗α ∧ PD(C′x ⊗ v) =
1
m

1
dx

∑
η∈Φ

∫
X′
π∗α ∧ PD(C′x ⊗ v)

=
1
m

(m)
1
dx

∫
C′x⊗v

π∗α =
1
m

(m)
1
dx

∫
π∗(C′x⊗v)

α.

But by Equations (10.2) and (10.3) we have

π∗(C′x ⊗ v) = dxCx ⊗ v

and consequently ∫
X

α ∧ ψ =
1
m

(m)
1
dx
dx

∫
Cx⊗v

α =
∫
Cx⊗v

α.

Hence ψ = PD(Cx ⊗ v) and since π∗ is injective the proposition is proved.
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Remark 10.29. We may rewrite the formula in the proposition as

trΓΓ′(Cx ⊗ v) = PD−1(π∗ PD(Cx ⊗ v)).

The right-hand side is by definition the Gysin homomorphism usually denoted π!.
Thus we are proving that for the finite cover case the left-hand side computes this
Gysin homomophism.

Accordingly we have proved the following equation that will be of critical
importance to us.

π!(Cx ⊗ v) = trΓΓ′(Cx ⊗ v). (10.5)

The following lemma is in [15].

Lemma 10.30. Let A and B be 1-cycles with local coefficients in X. Then

π!A • π!B = mA •B.

10.2 The case of capped special cycles

In this section we extend the transfer and its relation to the Gysin homomorphism
to our capped cycles. We have previously defined the capped (spectacle) cycles
Ccx ⊗ v and (C′x)c ⊗ v. In order to simplify notation in the case that Cx ⊗ v is
already compact we will interpret the symbol Ccx ⊗ v as Cx ⊗ v. From now on we
will abbreviate C′x ⊗ v and Cx ⊗ v to C′x and Cx and the same for their capped
analogues.

We define the capped reducible cycle

Definition 10.31.

(trΓΓ′ Cx)c =
1
dx

∑
η∈Φ

η · (C′x)c.

We will see that to extend our previous work for the uncapped cycles we
need only two properties of the capped cycles with their coefficients expressing
how capping commutes with deck transformations and covering projections acting
on cycles. We state these in the following lemma. Both are true is because the
normalized caps with their coefficients are naturally determined by the infinite
geodesic with its coefficient according to geodesic→ boundary point→ Borel-Serre
boundary component and the fact that the coefficient on the geodesic uniquely
determines the coefficient on the normalized cap.

Lemma 10.32.

(1) (π · C′x)c = π · (C′x)c.

(2) (η · C′η(x))
c = η · (C′x)c.

(3) (trΓΓ′ Cx)c = trΓΓ′(C
c
x).
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We also observe the following

η · (C′x)c = (C′η(x))
c.

For any closed form α extending over the Borel-Serre boundary of X , the
pull-back π∗α := α̃ extends over the boundary of X ′ and by definition we have
the analogue of Proposition 10.24∫

(C′x)c

α̃ = dx

∫
Cc

x

α. (10.6)

We again have

Lemma 10.33.
π · π!(Ccx) = π · trΓΓ′(Ccx) = mCcx.

As before we have as a consequence∫
trΓ

Γ′ (C
c
x)

α̃ = m

∫
Cc

x

α, (10.7)

and the capped version of the critical Proposition 10.28

Lemma 10.34.
π!(Ccx) = trΓΓ′(C

c
x).

Recall also that from Proposition 10.28 we have

π!(X�) = trΓΓ′(X�). (10.8)

10.3 Generalizing our main theorem to noncompact
orbifolds

We will now prove that if the main theorem is true for neat torsion free congruence
subgroups then it extends to all arithmetic subgroups.

Recall that the capped decomposable cycle Ccn, n > 0, is given by

Ccn = Ccn(Γ) =
∑

x∈Sn(Γ)

Ccx,

where Sn(Γ) = Sn(Γ,L) denote a set of Γ orbit representatives of vectors x ∈ L
satisfying q(x) = n. We also recall that the cycle C0 is given by

C0 = C0(Γ) =
∑

�∈S0(Γ)

c� (X� ⊗ uk� ),

where S0(Γ) = Sn(Γ,L) denotes the set of Γ orbit representatives of isotropic
rational lines which meet L and the c� are rational numbers depending only on
the line �, the lattice and the congruence condition h. Here we have included the
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coefficient uk. From now on we will omit it. We make the analogous definitions
for Γ′.

Recalling the (capped) homology transfer from Definition 10.31 and Lemma
10.34 that computes it for the case in hand we have

π!Ccn(Γ) =
∑

x∈Sn(Γ)

trΓΓ′(C
c
x).

10.3.1 The transfer formula

Recall [9], Lemma 3.6, that if n is a square then Cx is noncompact for all x with
q(x) = n and if n is not a square then Cx is compact for all x with q(x) = n.

We now return to proving the extension of the main theorem. As we will
see that extension is a formal consequence of what we have proved so far and the
following (two) critical lemmas. We have separated the cases, n > 0 and n = 0.
The proofs are almost identical but the result(s) is so important we give both
cases. First we treat the case for n > 0.

Lemma 10.35. Note we have a map pn : Sn(Γ′) → Sn(Γ). This map is the
quotient map by Φ which accordingly acts transitively on the fibers of pn. Then

trΓΓ′(C
c
x) =

∑
y∈p−1

n (x)

(C′y)c.

Proof. We know, by the corollary to Proposition 10.13, that Φ acts simply tran-
sitively on the fibers of pn in the case n is a square (Cx is not compact so the
isotropy of x is trivial). In case n is not a square we know by Proposition 10.22,
that the isotropy of x is a nontrivial cyclic group of order dx, the order of the
covering C′x → Cx. Now we have

trΓΓ′(C
c
x) =

1
dx

∑
η∈Φ

η · C′x
c =

1
dx

∑
η∈Φ

(C′η(x))
c.

But since Φ acts transitively on p−1
n (x) and again because dx is the order of Φx

by Proposition 10.22, we find that the set of translates Φ · x repeats each vector
dx times in p−1

n (x) and we have∑
η∈Φ

(C′η(x))
c = dx

∑
y∈p−1

n (x)

(C′y)c. �

We now treat the case n = 0. We have a map p0 : S0(Γ′)→ S0(Γ). This map
is again the quotient map by Φ which accordingly acts transitively on the fiber of
p0.

Lemma 10.36.
trΓΓ′(X�) =

∑
�′∈p−1

0 (�)

X ′�′ .
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Proof. We know Φ acts simply transitively on the fibers of p0. Also we know the
isotropy is a nontrivial cyclic group of order d�, the order of the covering X ′� → X�.
Now we have

trΓΓ′(X
′
�) =

1
d�

∑
η∈Φ

η ·X ′� =
1
d�

∑
η∈Φ

(X ′η�).

But since Φ acts transitively on p−1
n (�) and Φ · � repeats each vector in p−1

0 (�) the
number of times equal to its stabilizer d� we have∑

η∈Φ

X ′η(�) = d�
∑

�′∈p−1
0 (�)

X ′�′ .

As an immediate consequence we have the key result, the transfer formula,
relating the homology transfer of a decomposable cycle at one level to the corre-
sponding decomposable cycle at another level. Since this Proposition is a formal
consequence of Lemmas 10.34 and 10.35 both of which we have proved carefully
for both the cases n > 0 and n = 0 we may safely treat only the case n > 0. We
should emphasize that the constants c� in the definition of C0(Γ) do not depend on
the level but only on the rational line �, the lattice L and the congruence condition
h.

Proposition 10.37. Let Ccn(Γ
′), n ≥ 0, be the decomposable cycle defined above

for the group Γ′. Then
π!(Ccn(Γ)) = Ccn(Γ′).

Proof. We have by Lemma 10.34

π!(Ccx) = trΓΓ′(C
c
x)

and by Lemma 10.35
trΓΓ′(C

c
x) =

∑
y∈p−1

n (x)

(C′y)c.

Hence

π!Cn(Γ)c =
∑

x∈Sn(Γ)

π!(Ccx) =
∑

x∈Sn(Γ)

∑
y∈p−1

n (x)

(C′y)c =
∑

z∈Sn(Γ′)

Ccz .

The proposition follows.

10.3.2 The extension of the main theorem to orbifold quotients

We now assume we have proved the main theorem for Γ′, ie. (∗Γ′),

θ(ϕ,Γ′) =
∞∑
n=0

PD(Ccn(Γ′)) qn (∗Γ′)

for X ′ and prove

θ(ϕ,Γ) =
∞∑
n=0

PD(Ccn(Γ)) qn. (∗Γ)
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Since the map π∗ on first cohomology induced by π is injective it suffices to prove

π∗θ(ϕ, φΓ) =
∞∑
n=0

π∗ PD(Ccn(Γ)) qn.

But
π∗θ(ϕ, φ,Γ) = θ(ϕ, φ,Γ′).

Hence the pull-back of the left-hand side of ∗Γ is the left-hand side of ∗Γ′ . We will
now show (term-by-term) that the pull-back of the right -hand side of ∗Γ is the
right-hand side of ∗Γ′ . But by definition

π∗ PD(Ccn(Γ)) = PD(π!Ccn(Γ))

and by Proposition 10.37
π!(Ccn(Γ)) = Ccn(Γ′).

Hence we have shown that the pull-back of the right-hand side of ∗Γ is the right-
hand side of ∗Γ′ and we have obtained the required extension of our main theorem.

10.4 The geometry of the compactified modular curve

It is our goal in this section to give a heuristic proof that the entire homology of the
compactified modular curve with coefficients in E2k is captured by the homology of
the 1-dimension simplicial complex with coefficients in the restricted local system
consisting of the barycentric subdivision of the arc of the unit circle joining the
images i and ρ. The resulting complex has two one-simplices and three vertices.

As a topological space the Borel-Serre compactification X is a closed two-
disk but of course it has more structure, it is a hyperbolic orbifold with two
singular points, the images of i and ρ which we will again denote i and ρ. We
now give a description that captures more of this hyperbolic geometry. Recall that
the fundamental domain has boundary consisting of three geodesic arcs, the two
infinite arcs from ρ and −ρ to infinity and the finite arc joining ρ to −ρ. After
making the identifications to pass to the quotient the two infinite arcs are identified
to from a ray rρ and the finite arc gets folded at i to the geodesic segment ρi. After
compactifying by adding a circle X∞ at infinity and drawing the vertical geodesic
ray ri from i to its limit point ci on X∞ the resulting space looks like an unzipped
change purse. The opened zipper at the top of the purse is the circle at infinity
X∞, the sides of the purse are the two rays ri and rρ and the (folded) bottom of
the purse is the geodesic arc ρi joining the two orbifold points i and ρ. In order to
triangulate X we first take the midpoint z of the arc ρi and draw two infinite rays
r±z from z to X∞, thereby dividing X into four rectangles. Drawing appropriate
diagonals of these rectangles we get a triangulation with eight two-simplices. In
particular, the arc ρi gets subdivided into two oriented simplices (z, i) and (z, ρ)
and from this we obtain the cycles described in Remark 10.10. We let C•(ρi, E)
denote this subcomplex. We will prove the following theorem in [15].

Theorem 10.38. The inclusion C•(ρi, E)→ C•(X, E) is a quasi-isomorphism.



148 Jens Funke and John Millson

As promised we will conclude this section with a short intuitive argument
motivating this theorem. Note that over the complement of ρi (a topological
cylinder) the local system E is locally free, a flat bundle determined by the action
of the translation subgroup associated to the cusp at infinity. The arc ρi is a
deformation retract of the space X and from the observation immediated above
it is “intuitively clear” that the entire local system E retracts onto its restriction
over ρi. The reader will also verify that the homology of C•(ρi, E) is the homology
of SL(2,Z) with values in E2k.

Appendix A Cohomology groups associated to
smooth manifolds with boundary

In this appendix, we discuss how one explicitly realize the isomorphism between the
compactly supported cohomology of a (general) smooth manifold X with boundary
and the cohomology of the mapping cone of the inclusion of the inclusion of the
boundary ∂X in X. Of course, this is in principal well-known, but for us it is
critical to obtain explicit formulae for the Kronecker pairings in this setting in
terms of integrals of forms over X and X. These will be needed for computations
in this and future papers.

In this paper, X is the Borel-Serre compactification of an arithmetic quotient
of the upper-half plane. In later papers, it will be the Borel-Serre compactification
of a Q-rank 1 arithmetically defined locally symmetric space.

A.1 The cohomology with compact supports and the
relative cohomology

In this section, X is a smooth manifold with boundary ∂X and E will be a flat vec-
tor bundle over X. We will consider the de Rham complexes A•(X,E), A•(∂X,E)
and the relative de Rham complex A•(X, ∂X,E). Henceforth when we refer to
cohomology groups — we will mean cohomology groups with coefficients.

Let i : ∂X → X be the inclusion and i∗ : A•(X,E) → A•(∂X,E) be the
restriction map. We note that i∗ fits into a short exact sequence

A•(X, ∂X,E)→ A•(X,E)→ A•(∂X,E).

Let k : A•c(X,E) → A•(X, ∂X,E) be the inclusion of the complex of com-
pactly supported forms on the open manifold X = X − ∂X into the complex of
forms on X whose restrictions to the boundary ∂X vanish. We will need a stan-
dard result from topology, the following result is stated in the proof of Theorem
3.43, page 254 of [17] with trivial coefficients. The basic argument using a collar
neighborhood works equally well with nontrivial coefficients. The details are left
to the reader.

Proposition A.1. k is a quasi-isomorphism, that is, k induces an isomorphism

H•c (X,E) ∼= H•(X, ∂X,E).
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In particular, the de Rham cohomology of the open manifold X with coeffi-
cients in E is dually paired with the compactly supported cohomology of X with
coefficients in E∗ of complementary degree by the integration pairing.

A.2 From the cohomology with compact supports to the
cohomology of the mapping cone

In what follows we wish to represent the compactly-supported cohomology of X
with coefficients in E by the cohomology of the mapping cone C• of i∗, see e.g.
[29], page 19. However we will change the sign of the differential on C• and shift
the grading down by one. Thus we have

Ci = {(a, b), a ∈ Ai(X,E), b ∈ Ai−1(∂X,E)}

with
d(a, b) = (da, i∗a− db).

If (a, b) is a cocycle in C• we will use [[a, b]] to denote its cohomology class. Hence
we obtain

Lemma A.2. A cocycle (a, b) in C• of degree i consists of a closed form a on X
of degree i and a form b on ∂X of degree i− 1 such that

db = i∗a.

We have a short exact sequence of cochain complexes

A•(∂X,E)[1]→ C• → A•(X,E). (A.1)

Here the first map is the map b → (0,−b) and the second is projection on the
first factor. The first map is a map of complexes because the differential on
A•(∂X,E)[1] is the negative of the differential on A•(∂X,E), see [29], page 10.
Here we use the standard notation, see [29], page 9, Ai(∂X,E)[1] = Ai−1(∂X,E).

We observe that if c ∈ A•(X, ∂X,E) then (c, 0) ∈ C• and the induced map
j : A•(X, ∂X,E)→ C• is a cochain map.

Lemma A.3. The map j : A•(X, ∂X,E)→ C• is a quasi-isomorphism.

Proof. From the short exact sequence Equation A.1, see also [29] page 19, 1.5.2,
the cohomology of the cochain complex C• fits into a long exact sequence

→ Hi(C•)→ Hi(X,E)→ Hi(∂X,E)→ · · · .

But the relative cohomology fits into a similar long exact sequence in the same
place. We map the exact sequence for relative cohomology to the exact sequence
for the mapping cone by mapping the class of c ∈ Hi(X, ∂X,E) to the class of j(c).
We use the identity maps on the other terms. We claim all the resulting squares are
commutative. This is obvious for the squares not involving the coboundary map
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d•−1 : H•−1(∂X,E)→ H•(X, ∂X,E). For these latter squares we are required to
prove an equality of cohomology classes

j ◦ di−1([b]) = [[0,−b]].

Here we assume b is a closed i − 1 from on ∂X with cohomology class [b]. Let b
be any extension of b to X then

j ◦ di−1([b]) = [[db, 0]].

But in Ci we have
d(b, 0) = (db, b)

whence (db, 0) is cohomologous to (0,−b) in Ci. The claim is proved and the
lemma follows from the five lemma.

We have seen that the inclusion k of the compactly supported forms A•c(X,E)
into A•(X, ∂X,E) is a quasi-isomorphism. Composing j with k we obtain an
inclusion � : A•c(X,E)→ C•. From the above results we obtain

Lemma A.4. The inclusion � : A•c(X,E)→ C• is a quasi-isomorphism.

A.3 From the cohomology of the mapping cone to the
cohomology with compact supports

In this subsection we will construct a cochain map from the mapping cone of i∗

to the cohomology of X with compact supports (viewed as a cochain complex
with zero differential) that induces the isomorphism on cohomology inverse to the
isomorphism induced by �. We assume that we have chosen a neighborhood V of
the boundary and a product decomposition V ∼= ∂X × (ε, 0]. We let t′ ∈ (ε, 0] be
the normal coordinate to ∂X.

Remark A.5. For the case of this paper we will use the geodesic flow projection
to give the normal coordinate t′ to ∂X. In more detail, we descend the map
D� × [0,∞)→ D induced by the extension of

(x, t′)→ n�(x)a((t′)−1/2)z0

to t′ = 0 to give coordinates in a product neighborhood V of ∂X.

Hence we have arranged that the subset of V defined by the equation t′ = 0
is ∂X. We let π : V → ∂X be the projection. If b is an E-valued form on ∂X we
define b̃ on V by

b̃ = π∗b.

Let f be a smooth function of the geodesic flow coordinate t′ which is 1 near t′ = 0
and zero for t′ ≥ ε′ for some small positive ε′ ≤ ε. We may regard f as a function
on a product neighborhood U of ∂X by making it constant on the ∂X factor. We
extend f to all of X by making it zero off of U . Let (a, b) be a cocycle in Ci.
We need an explicit formula for a compactly supported form α so that �(α) is in
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the same cohomology class as (a, b). In fact, we now construct a map F from the
mapping cone C• to H•c (X,E) that induces the isomorphism F on cohomology
that is inverse to that induced by �.

By Proposition A.1 we have

Lemma A.6. There exists a compactly supported closed form α and a form μ
which vanishes on ∂X such that

a− d(f b̃) = α+ dμ.

Suppose the degree of (a, b) is i. We define the cohomology class [a, b] in the
compactly supported cohomology Hi

c(X,E) to be the class of α. We wish to define
F : C• → H•c (X,E) by

F (a, b) = [a, b].

Lemma A.7. F is well-defined.

Proof. Given two decompositions as above,

a− d(f b̃) = α1 + dμ1 and a− d(f b̃) = α2 + dμ2,

we obtain
α1 − α2 = d(μ1 − μ2).

Hence the compactly supported form α1−α2 is cohomology to zero in the relative
complex. But by [17] the inclusion of complexes is injective on cohomology whence
α1 − α2 is the coboundary of a compactly supported form. Thus the class of α is
well-defined.

We next prove

Lemma A.8. (1) The map F from (a, b) to the class of α depends only on the
cohomology class [[a, b]] of (a, b).

(2) The induced map F : H•(C)→ H•c (X,E) given by

F ([[a, b]]) = [a, b]

is an isomorphism.

Proof. Suppose (a, b) is the coboundary of (a′, b′) whence we may write

a = da′ and b = i∗a′ − db′.

Then
F ((a, b)) = da′ − d(f(ĩ∗a′ − db̃′)) = d(a′ − f(ĩ∗a′ − db̃′)).

Thus ν = a′−f ĩ∗a′+fdb̃′ is a primitive for F ((a, b)). Unfortunately this primitive
does not vanish on the boundary in general. We now construct a new primitive
that does vanish on the boundary. It is immediate that a′ − f(ĩ∗a′) vanishes on
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∂X. As for the third term note that we may obtain a new primitive for F ((a, b))
by subtracting the exact (hence closed) form d(fb′) from ν. But

ν − d(fb′) = a′ − f(ĩ∗a′)− df ∧ b̃′.

Now the third term vanishes on ∂X since df does.
Finally, we observe that for a closed compactly supported form c on X we

have F ◦ �(c) is the class of c whence F is surjective and consequently is an iso-
morphism.

A.4 Integral formulas for Kronecker pairings

Let (a, b) be a cocycle in the mapping cone. Let η be a closed form on X of degree
complementary to that of a (or equivalently of (a, b)) and C be a relative cycle in
X of degree equal to that of a. We will need integral formulas for the Kronecker
pairings

〈[η], [a, b]〉 and 〈[a, b], C〉.
We need to be a bit careful about the non-trivial coefficients case since we must
pair a group with coefficients in E to a corresponding group with coefficients in the
dual E∗. In the cases we will study here E has a parallel nondegenerate symmetric
bilinear form so we will not have to change to E∗.

From the considerations in the previous subsections we easily obtain

Lemma A.9. Let η be a closed form on X of degree complementary to that of
(a, b). Let α be as in Lemma A.6. Let C be a relative cycle in X of degree equal
to that of a. Then

〈[η], [a, b]〉 =
∫
X

η ∧ α =
∫
X

η ∧ a−
∫
∂X

i∗η ∧ b,

〈[a, b], C〉 =
∫
C

α =
∫
C

a−
∫
∂C

b.

Here the η ∧ α is a scalar valued top degree differential form obtain by pairing in
the coefficients.

Furthermore, if η is a closed form on X (which might not extend to X), we
have

〈[η], [a, b]〉 =
∫
X

η ∧ (a− d(f b̃)).
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