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PALAEO-ICE STREAM 

 

Synonyms: not applicable 

 

Definition: not applicable 

 

Text: 

Introduction 

An ice stream is a region in a grounded ice sheet that flows at an order of magnitude faster than 

the slow-flowing ice that borders it. The term palaeo-ice stream is used to describe ice streams 

that no longer exist as a result of deglaciation. Ice streams have been referred to as the ‘arteries’ 

of an ice sheet (Bennett, 2003) because their high velocities are responsible for the vast majority 

of ice sheet discharge, despite representing a relatively small component of their surface area 

(Bamber et al., 2000). It is for this reason that they are viewed as a critical component of ice 

sheet mass balance and have important implications for sea level change (Shepherd and 

Wingham, 2007). The dynamic nature of ice streams is further emphasised by the relatively 

recent discoveries that they are capable of accelerating, decelerating, migrating, and shutting 

down over very short time-scales (e.g. Joughin et al., 2004; Conway et al., 2002). 

Perhaps surprising, given their undoubted importance, is that ice streams are a relatively recent 

discovery. They were formally defined in the 1950s (Swithinbank, 1954) but only began to be 

intensively studied as late as the 1970s (e.g. Rose, 1979). Since that time, however, their 

identification in modern ice sheets has been enhanced by remote sensing techniques that enable a 

large-scale view of the flow features on the ice sheet surface (e.g. flow-stripes, crevasse patterns) 

and, more recently, the calculation of ice velocities and elevation (e.g. Joughin et al., 2004). 

These studies reveal that ice streams are typically large features (100s km long; 10s km wide) 

and possess very abrupt lateral shear margins, where intense crevassing is generated at the border 

with slow-flowing ice. Their rapid velocity is a defining characteristic and observations of their 

bed, whilst logistically very difficult, suggests that their motion is facilitated by a layer of 

saturated, deformable sediments that deform beneath the ice and offers minimal frictional 

resistance to basal sliding (Alley et al., 1986; Engelhardt and Kamb, 1998). Where subglacial 

sediment deformation is pervasive, high sediment transport rates are known to produce ‘till’ 

wedges at the terminus of the ice stream (Anandakrishnan et al., 2007). 

 

Identification of palaeo-ice streams 

Ice streams are a fundamental property of the flow structure of modern-day continental ice sheets 

and it can be assumed that they played a similar role in past (palaeo-) ice sheets. It was the 

recognition of their significance to ice sheet dynamics in the late 1970s and 1980s (e.g. Rose, 

1979; Alley et al., 1986) that prompted several workers to attempt to reconstruct their location 

and behaviour in palaeo-ice sheets (e.g. Denton & Hughes, 1982; Dyke and Prest, 1987). These 

pioneering workers recognised that ice streams should leave behind 

geological/geomorphological evidence of their activity that would be very different from the 
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slow-flowing regions of the ice sheet, and cited evidence of distinctive erratic dispersal trains 

with abrupt lateral margins (Hicock, 1988; Dyke and Morris, 1988). The discovery of highly 

elongated subglacial bedforms on palaeo-ice sheet beds, known as mega-scale glacial lineations 

(cf. Clark, 1993), was also linked to palaeo-ice stream activity. Despite these important 

advances, the identification of palaeo-ice streams was somewhat subjective, with a wide variety 

of evidence used to infer their location in former ice sheets (e.g. see review in Stokes and Clark, 

2001). 

Matthews (1991) highlighted the need for some objective criteria to identify palaeo-ice streams 

and Stokes and Clark (1999) later proposed some ‘geomorphological’ criteria, based on the 

characteristics of modern-day ice streams. These criteria are listed in Table 1 and, where several 

are identified together on a palaeo-ice sheet bed, are likely to indicate robust evidence of ice 

streaming. 

 

Table 1: Geomorphological criteria for identifying palaeo-ice streams (from Stokes and 

Clark, 1999) 

 

Contemporary ice stream 

characteristic 

Proposed geomorphological signature 

A. Characteristic shape and 

dimensions 

1. Characteristic shape and dimensions (>20 

km wide and >150 km long) 

2. Highly convergent flow patterns 

B. Rapid velocity 3. Highly attenuated subglacial bedforms 

4. Boothia-type erratic dispersal trains (see 

Dyke and Morris, 1988) 

C. Sharply delineated shear 

margins 

5. Abrupt lateral margins (<2 km) 

6. Ice stream marginal moraines 

D. Deformable bed conditions 7. Glaciotectonic and geotechnical evidence 

of pervasively deformed till 

E. Focused sediment delivery 8. Submarine accumulation of sediment, e.g. 

‘trough mouth fan’  or ‘till delta’ , (only 

marine terminating ice streams) 

 

The criteria, listed in Table 1, can be grouped together into a glacial landsystem, which 

represents the unique imprint (or ‘footprint’) of palaeo-ice stream activity (see Stokes and Clark, 

2001). Indeed, numerous palaeo-ice stream imprints have now been recognised from all of the 

major palaeo-ice sheets from the last ice age (e.g. Laurentide, Scandinavian-Barents Sea, British-

Irish; see special issue introduced by Clark et al., 2003) and even those from more ancient 

glaciations 100s of millions of years ago (Moreau et al., 2005). Palaeo-ice stream imprints have 

also been reported from predominantly bedrock terrain (e.g. Roberts and Long, 2003), including 
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in mountainous areas (cf. Evans, 1996), based on the morphometry and pattern of streamlined 

erosional landforms. 

Arguably, the best preserve palaeo-ice stream imprints have been identified on the sea-floor of 

the continental shelf surrounding modern-day ice sheets (e.g. in Antarctica) and associated with 

palaeo-ice sheets. Figure 1 shows an exceptionally well-preserve submarine palaeo-ice stream 

bed off the coast of northern Norway in Malangsdjupet. This ice stream ‘footprint’ contains 

many of the geomorphological criteria shown in Table 1. 

 

Figure 1: (A) Malangsdjupet palaeo-ice stream from the former Fennoscandian Ice Sheet. 

This ice stream bed contains almost all of the geomorphological criteria for a palaeo-ice 

stream imprint (see table 1) including the characteristic shape and dimensions with a 

convergent onset zone; highly attenuated mega-scale glacial lineations on the floor of the 

trough; and abrupt lateral margins with lateral shear margin moraines (identified with 

black arrows). The trough also contains evidence of focussed sediment delivery in the form 

of a grounding zone wedge, shown in a seismic profile in B (transect C to C’ shown in A) 

Sun illumination from NE (from Ottesen et al., 2008) 
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Palaeo ice streams in marine settings (e.g. see Figure 1) have been shown to exhibit a 

characteristic evolution of subglacial bedforms along their length (Wellner et al., 2001; Ó 

Cofaigh et al., 2002). The inner shelf is usually characterised by bedrock drumlins, crag-and-tails 

and meltwater channels, which progress down-stream into more elongated drumlins and highly 

attenuated mega-scale glacial lineations in major cross-shelf troughs. Significantly, the 

deglaciation signature may also be superimposed on this pattern, offering crucial insights into the 

style of ice stream retreat (O Cofaigh et al., 2008). Where ice retreat was slow and steady, a 

series of closely spaced transverse recessional ridges are found superimposed on top of the 

mega-scale glacial lineations. Major still-stand positions are marked by the intermittent building 

of ‘grounding zone wedges’ (GZWs) and a series of such features, with no recessional ridges in 

between, is thought to represent an episodic retreat. Other imprints have been identified with 

very few recessional features (GZWs or recessional moraines) and with only a thin veneer of 

deglacial sediments. Such an imprint is thought to represent a rapid retreat of the ice stream (O 

Cofaigh et al., 2008). 

The other broad approach to reconstructing palaeo-ice streams is through the use of numerical 

ice sheet models (e.g. Tarasov and Peltier, 2004). Incorporating ice stream processes into ice 

sheet models represents a major scientific and computational challenge, which has been 

described as “one of the key goals of theoretical glaciology” (Hindmarsh, 2009). The challenge 

for numerical ice sheet models is to be able to incorporate the physics of ice streaming and 

reproduce the ‘known’ location of palaeo-ice streams identified from 

geological/geomorphological evidence. This is a robust way in which the success of ice sheet 

models can be evaluated and tested (e.g. Stokes and Tarasov, 2010). Furthermore, there may be 

some palaeo-ice streams where evidence is either scarce, obscured, or yet to be discovered. 

Numerical ice sheet models have the potential to predict these palaeo-ice stream locations and 

guide the search for new discoveries.  

Once identified, palaeo-ice streams hold huge potential for advancing our understanding of past 

ice sheet dynamics and their links to the ocean-climate system. If we can reproduce a robust 

reconstruction of palaeo-ice stream activity, it is possible to learn about their behaviour over 

much longer time-scales than present-day observations permit and their links to 

palaeoceanography and abrupt climate change. Moreover, the exposed beds of palaeo-ice 

streams permit access to the basal environment and facilitate investigation of subglacial 

sedimentary processes beneath ice streams, which is logistically very difficult beneath modern 

ice streams. The following sections briefly highlight the importance of palaeo-ice stream 

research in each of these key areas. 

 

Palaeo-ice streams and past ice sheet dynamics 

Any attempt to reconstruct the behaviour of a palaeo-ice sheet that ignores ice streaming is likely 

to be unrealistic. The large ice flux of ice streams has a profound impact on ice sheet 

configuration (e.g. thickness, margin extent, ice divide locations, etc.) and so it is important to 

know where and when they operated in order to reconcile ice sheet reconstructions with their 

geological evidence. A good example to illustrate this point is the former North American 

‘Laurentide’ Ice Sheet (LIS).  

Several workers reconstructed the low-surface profile of the LIS in many of its marginal areas, 

particularly where the underlying geology was characterised by relatively ‘soft’, fine grained 
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sediments (e.g. Mathews, 1974). These areas of thin ice were in conflict with models of the LIS 

that required a thick, single-domed ice sheet, centred over Hudson Bay (e.g. Denton and Hughes, 

1981). However, the low surface slopes of the ice sheet are easily explained by the presence ice 

streams whose rapidly velocity was induced by the deformation of soft water-saturated sediments 

(Fisher et al., 1985). Indeed, the higher velocities of these ice streams can also explain the lobate 

nature of the ice sheet margin and subsequent work has reported clear evidence of palaeo-ice 

stream imprints associated with such lobes (Patterson, 1998).  

It has also been suggested that, once the LIS margin retreated back on to the more resistant 

(‘hard’) Canadian Shield rocks, ice stream activity was inhibited and ice sheet retreat was more 

stable (Clark et al., 1996). This geological control on ice streaming (which, incidentally, has also 

been suggested from work on modern-day ice streams: Winsborrow et al., 2010) has since been 

questioned; because robust evidence for ice streaming during deglaciation has been found on the 

Canadian Shield (Stokes and Clark, 2003). This discovery demonstrates that the spatial controls 

on ice streaming may be more complex than previously thought and highlights the importance of 

palaeo-ice stream research in contributing to our overall understanding of their behaviour. 

Indeed, a recent review by Winsborrow et al. (2010) identified seven potential controls on ice 

stream activity: topographic focussing, topographic steps, macro-scale bed roughness, calving 

margins, ‘soft’ subglacial geology, geothermal heat flux and subglacial meltwater routing. 

Reconstruction of palaeo-ice stream histories is also an excellent approach to understanding the 

temporal controls on ice streaming. Modern-day observations of their behaviour are often limited 

to several decades, but reconstructions of palaeo-ice streams are capable of spanning thousands 

of years of activity. For example, whilst much research is focused on the mass balance of ice 

streams draining into the Ross Ice Shelf in West Antarctica, examination of the palaeo-ice stream 

tracks in their foregrounds indicates that they have been receding since the early Holocene and 

could continue to retreat even in the absence of further external forcing (Conway et al., 1999). 

Thus, palaeo-ice stream research can provide a useful context in which to assess the significance 

of relatively small changes in their behaviour that have been and will continue to be observed in 

modern-day ice sheets. Moreover, whilst it is known from contemporary ice stream research that 

ice streams are capable of switching positions and shutting down, research on palaeo-ice streams 

has revealed equally dramatic switches in ice stream position from one glacial cycle to the next 

(e.g. Dowdeswell et al., 2006) and even during deglaciation of a single glacial cycle (e.g. Stokes 

et al., 2009).  

 

Palaeo-ice streams and subglacial processes 

Although great progress has been made in understanding the subglacial environment beneath ice 

streams and the mechanisms that lead to their rapid flow (e.g. Alley et al., 1986; Engelhardt and 

Kamb, 1998), most information from the bed of modern-day ice streams is limited by the spatial 

and temporal resolution (e.g. indirect geophysical studies or borehole investigation). For this 

reason, many workers have recognised the potential that the now-exposed beds of palaeo-ice 

streams hold for understanding their basal processes. The sediments and landforms they have 

leave behind preserve important information regarding their basal processes and operation.  

As noted above, the arrangement and morphometry of subglacial bedforms on palaeo-ice stream 

beds has been used to hypothesise that highly elongate bedforms are associated with fast ice flow 

(e.g. Clark, 1993; Stokes and Clark, 2002). Due to the inaccessibility of modern-day ice stream 
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beds, this hypothesis has been difficult to test. However, advances in geophysical techniques 

have led to their recent discovery beneath Rutford Ice Stream in West Antarctica, providing the 

first conclusive evidence of this relationship (King et al., 2009). Moreover, because ice 

streaming results in such a distinct subglacial landscape (characterised by elongated subglacial 

bedforms), it should be possible to identify and investigate the nature of localised ‘sticky spots’, 

which are known to be important from studies of modern-day ice streams (e.g. Alley, 1993) but 

which, to date, have been very difficult to observe and characterise. Sticky spots should interrupt 

the predictable pattern of landforms that characterise a palaeo-ice stream bed and be easily 

recognisable (cf. Stokes et al., 2007). They should also be manifest in the sediments preserved on 

the palaeo-ice stream bed, which may even provide a ‘smoking gun’ of the mechanisms that led 

to ice stream shut-down. For example, Christofferson and Tulaczyk (2003) reported an unusual 

till sequence from beneath the Baltic Ice Stream in southern Scandinavia, consisting of a strong 

and well-consolidated till crust, underlain by weak and poorly consolidated till. They 

hypothesised that this sequence could be associated with the processes of basal freeze-on, 

whereby meltwater is extracted from the subglacial till and accreted to the base of the ice stream. 

Such a process can starve the ice stream of its layer of lubricating water, leading ice stream shut-

down. 

 

Palaeo-ice stream sediment transport and deposition 

Palaeo-ice streams can be extremely powerful erosional agents, especially those that extend 

across continental shelves and operated over soft, deformable, marine sediments (Vorren and 

Laberg, 1997). These ice streams can be very efficient at eroding and transporting subglacial 

sediment and their sediment flux is comparable to the largest fluvial systems, despite their far 

shorter duration of operation. Moreover, the focussed sediment discharge towards the shelf edge 

can create huge depocentres, known as ‘trough mouth fans’ (Vorren and Laberg, 1997; Vorren et 

al., 1998). Significantly, investigation of the architecture of these trough mount fans has enabled 

investigators to reconstruct past sediment fluxes and the long-term record of ice stream activity 

(ice discharge, velocity), sometimes extending back through several glacial cycles (Vorren et al., 

1998). For example, the Norwegian Channel Palaeo-Ice Stream in southern Norway is thought to 

have transported >3.2 x 10
4
 km

3
 of sediment on to the North Sea Fan during the last 0.5 m.y., 

with extreme and punctuated sediment discharges as high as 1.1 Gt a-1 during the last glacial 

cycle (Nygård et al., 2007). 

The extreme sedimentation rates associated with palaeo-ice stream trough-mouth fans also holds 

implications for geohazards, such as submarine debris slides and flows. It is known that the high 

sediment supply can lead to unstable deposits and an increased likelihood of slope failures in 

these areas, particularly after seismic activity and/or decomposition of gas hydrates (Vorren et 

al., 1998).  

 

Palaeo-ice streams, palaeoceanography and abrupt climate change 

Finally, the large ice flux of palaeo-ice streams also holds important implications for the delivery 

of icebergs and freshwater fluxes into the ocean. Ocean circulation (e.g. the North Atlantic 

thermohaline circulation) is highly sensitive to such influxes of freshwater and perturbation of 

these systems can lead to major and abrupt climatic changes (Broecker, 1994). Because ice 
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streams have the capacity to drain large portions of an ice sheet relatively rapidly, they have the 

potential to deliver huge amounts of icebergs into the ocean and represent a key link in the 

coupling of the ice sheet and ocean systems. Episodes of ice streaming in Hudson Strait, for 

example, are thought to be responsible for several large iceberg export events into the North 

Atlantic between 60 and 10 ka (Broecker et al., 1992; MacAyeal, 1993). Evidence for these 

events comes from bands of ice-rafted debris in ocean cores, known as Heinrich layers, which 

have been specifically linked to sedimentary rocks beneath a palaeo-ice stream in Hudson Strait 

(Andrews and Tedesco, 1992). The influx of freshwater resulting from these events was 

sufficient to cause changes in sea surface temperature and salinity, which had a considerable 

impact on ocean circulation and northern hemisphere climate (Broecker, 1994). Although the 

trigger for these episodes of ice streaming remain unclear it is now recognised that they can be 

instrumental in driving abrupt changes in mid-high latitude climate and oceanography. 

Elsewhere in the LIS, palaeo-ice streams have been implicated in similar iceberg discharge 

events, particularly at the north-western margin in the Canadian Arctic Archipelago (e.g. Stokes 

et al., 2005). Significantly, the timing of these events are similar to those issued from the Hudson 

Strait ice stream, hinting at the possibility that they were part of a pan-ice sheet destabilisation. 

The large marine-terminating ice streams at the northern margin of the Laurentide Ice Sheet are 

also thought to have contributed to the development of a thick (>1000 m) Arctic ice shelf, which 

may have occupied the Arctic Ocean several times during the Late Pleistocene (Polyak et al., 

2001), further emphasising their important role in the ice sheet-ocean-atmosphere system. 
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