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Abstract We study a random walk (Markov chain) in an unbounded planar do-
main whose boundary is described by two curves of the form x2 = a+xβ+

1 and

x2 = −a−xβ−

1 , with x1 ≥ 0. In the interior of the domain, the random walk has
zero drift and a given increment covariance matrix. From the vicinity of the upper
and lower sections of the boundary, the walk drifts back into the interior at a given
angle α+ or α− to the relevant inwards-pointing normal vector. Here we focus on
the case where α+ and α− are equal but opposite, which includes the case of normal
reflection. For 0≤ β+,β− < 1, we identify the phase transition between recurrence
and transience, depending on the model parameters, and quantify recurrence via
moments of passage times.
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1 Introduction and main results

1.1 Description of the model

We describe our model and then state our main results: see §1.4 for a discussion of
related literature. Write x ∈ R2 in Cartesian coordinates as x = (x1,x2). For para-
meters a+,a− > 0 and β+,β− ≥ 0, define, for z≥ 0, functions d+(z) := a+zβ+

and
d−(z) := a−zβ− . Set

D :=
{

x ∈ R2 : x1 ≥ 0,−d−(x1)≤ x2 ≤ d+(x1)
}
.

Write ‖ · ‖ for the Euclidean norm on R2. For x ∈ R2 and A⊆ R2, write d(x,A) :=
infy∈A ‖x− y‖ for the distance from x to A. Suppose that there exist B ∈ (0,∞) and
a subset DB of D for which every x ∈DB has d(x,R2 \D)≤ B. Let DI := D \DB;
we call DB the boundary and DI the interior. Set D±B := {x ∈DB :±x2 > 0} for the
parts of DB in the upper and lower half-plane, respectively.

Let ξ := (ξ0,ξ1, . . .) be a discrete-time, time-homogeneous Markov chain on
state-space S ⊆ D . Set SI := S∩DI , SB := S∩DB, and S±B := S∩D±B . Write Px
and Ex for conditional probabilities and expectations given ξ0 = x ∈ S, and suppose
that Px(ξn ∈ S for all n ≥ 0) = 1 for all x ∈ S. Set ∆ := ξ1−ξ0. Then P(ξn+1 ∈ A |
ξn = x) = Px(x+∆ ∈ A) for all x∈ S, all measurable A⊆D , and all n∈Z+. In what
follows, we will always treat vectors in R2 as column vectors.

We will assume that ξ has uniformly bounded p > 2 moments for its increments,
that in SI it has zero drift and a fixed increment covariance matrix, and that it reflects
in SB, meaning it has drift away from ∂D at a certain angle relative to the inwards-
pointing normal vector. In fact we permit perturbations of this situation that are
appropriately small as the distance from the origin increases. See Figure 1 for an
illustration.

To describe the assumptions formally, for x1 > 0 let n+(x1) denote the inwards-
pointing unit normal vector to ∂D at (x1,d+(x1)), and let n−(x1) be the correspond-
ing normal at (x1,−d−(x1)); then n+(x1) is a scalar multiple of (a+β+xβ+−1

1 ,−1),

and n−(x1) is a scalar multiple of (a−β−xβ−−1
1 ,1). Let n+(x1,α) denote the unit

vector obtained by rotating n+(x1) by angle α anticlockwise. Similarly, let n−(x1,α)
denote the unit vector obtained by rotating n−(x1) by angle α clockwise. (The ori-
entation is such that, in each case, reflection at angle α < 0 is pointing on the side
of the normal towards 0.)

We write ‖ · ‖op for the matrix (operator) norm defined by ‖M‖op := supu ‖Mu‖,
where the supremum is over all unit vectors u ∈ R2. We take ξ0 = x0 ∈ S fixed, and
impose the following assumptions for our main results.

(N) Suppose that Px(limsupn→∞ ‖ξn‖= ∞) = 1 for all x ∈ S.
(Mp) There exists p > 2 such that

sup
x∈S

Ex(‖∆‖p)< ∞. (1)
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Fig. 1 An illustration of the model parameters, in the case where β+ = β− ∈ (0,1).

(D) We have that supx∈SI :‖x‖≥r ‖Ex ∆‖= o(r−1) as r→ ∞.
(R) There exist angles α± ∈ (−π/2,π/2) and functions µ± : S±B → R with

liminf‖x‖→∞ µ±(x)> 0, such that, as r→ ∞,

sup
x∈S+B :‖x‖≥r

‖Ex ∆ −µ
+(x)n+(x1,α

+)‖= O(r−1); (2)

sup
x∈S−B :‖x‖≥r

‖Ex ∆ −µ
−(x)n−(x1,α

−)‖= O(r−1). (3)

(C) There exists a positive-definite, symmetric 2×2 matrix Σ for which

lim
r→∞

sup
x∈SI :‖x‖≥r

∥∥Ex(∆∆
>)−Σ

∥∥
op = 0.

We write the entries of Σ in (C) as

Σ =

(
σ2

1 ρ

ρ σ2
2

)
.

Here ρ is the asymptotic increment covariance, and, since Σ is positive definite,
σ1 > 0, σ2 > 0, and ρ2 < σ2

1 σ2
2 .
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To identify the critically recurrent cases, we need slightly sharper control of the
error terms in the drift assumption (D) and covariance assumption (C). In particular,
we will in some cases impose the following stronger versions of these assumptions:

(D+) There exists ε > 0 such that supx∈SI :‖x‖≥r ‖Ex ∆‖= O(r−1−ε) as r→ ∞.
(C+) There exists ε > 0 and a positive definite symmetric 2×2 matrix Σ for which

sup
x∈SI :‖x‖≥r

∥∥Ex(∆∆
>)−Σ

∥∥
op = O(r−ε), as r→ ∞.

Without loss of generality, we may use the same constant ε > 0 for both (D+)
and (C+).

The non-confinement condition (N) ensures our questions of recurrence and tran-
sience (see below) are non-trivial, and is implied by standard irreducibility or ellipt-
icity conditions: see [26] and the following example.

Example 1. Let S = Z2∩D , and take DB to be the set of x ∈D for which x is within
unit `∞-distance of some y ∈ Z2 \D . Then SB contains those points of S that have a
neighbour outside of D , and SI consists of those points of S whose neighbours are
all in D . If ξ is irreducible on S, then (N) holds (see e.g. Corollary 2.1.10 of [26]). If
β+ > 0, then, for all ‖x‖ sufficiently large, every point of x ∈ S+B has its neighbours
to the right and below in S, so if α+ = 0, for instance, we can achieve the asymptotic
drift required by (2) using only nearest-neighbour jumps if we wish; similarly in S−B .

Under the non-confinement condition (N), the first question of interest is whether
liminfn→∞ ‖ξn‖ is finite or infinite. We say that ξ is recurrent if there exists r0 ∈R+

for which liminfn→∞ ‖ξn‖ ≤ r0, a.s., and that ξ is transient if limn→∞ ‖ξn‖= ∞, a.s.
The first main aim of this paper is to classify the process into one or other of these
cases (which are not a priori exhaustive) depending on the parameters. Further, in
the recurrent cases it is of interest to quantify the recurrence by studying the tails
(or moments) of return times to compact sets. This is the second main aim of this
paper.

In the present paper we focus on the case where α+ +α− = 0, which we call
‘opposed reflection’. This case is the most subtle from the point of view of recur-
rence/transience, and, as we will see, exhibits a rich phase diagram depending on
the model parameters. We emphasize that the model in the case α+ +α− = 0 is
near-critical in that both recurrence and transience are possible, depending on the
parameters, and moreover (i) in the recurrent cases, return-times to bounded sets
have heavy tails being, in particular, non-integrable, and so stationary distributions
will not exist, and (ii) in the transient cases, escape to infinity will be only diffusive.
There is a sense in which the model studied here can be viewed as a perturbation of
zero-drift random walks, in the manner of the seminal work of Lamperti [20]: see
e.g. [26] for a discussion of near-critical phenomena. We leave for future work the
case α++α− 6= 0, in which very different behaviour will occur: if β± < 1, then
the case α++α− > 0 gives super-diffusive (but sub-ballistic) transience, while the
case α++α− < 0 leads to positive recurrence.
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Opposed reflection includes the special case where α+ = α− = 0, which is ‘nor-
mal reflection’. Since the results are in the latter case more easily digested, and since
it is an important case in its own right, we present the case of normal reflection first,
in §1.2. The general case of opposed reflection we present in §1.3. In §1.4 we review
some of the extensive related literature on reflecting processes. Then §1.5 gives an
outline of the remainder of the paper, which consists of the proofs of the results in
§§1.2–1.3.

1.2 Normal reflection

First we consider the case of normal (i.e., orthogonal) reflection.

Theorem 1. Suppose that (N), (Mp), (D), (R), and (C) hold with α+ = α− = 0.

(a) Suppose that β+,β− ∈ [0,1). Let β := max(β+,β−). Then the following hold.

(i) If β < σ2
1 /σ2

2 , then ξ is recurrent.
(ii) If σ2

1 /σ2
2 < β < 1, then ξ is transient.

(iii) If, in addition, (D+) and (C+) hold, then the case β = σ2
1 /σ2

2 is recurrent.

(b) Suppose that (D+) and (C+) hold, and β+,β− > 1. Then ξ is recurrent.

Remark 1. (i) Omitted from Theorem 1 is the case when at least one of β± is equal
to 1, or their values fall each each side of 1. Here we anticipate behaviour similar
to [5].
(ii) If σ2

1 /σ2
2 < 1, then Theorem 1 shows a striking non-monotonicity property: there

exist regions D1 ⊂D2 ⊂D3 such that the reflecting random walk is recurrent on D1
and D3, but transient on D2. This phenomenon does not occur in the classical case
when Σ is the identity: see [29] for a derivation of monotonicity in the case of
normally reflecting Brownian motion in unbounded domains in Rd , d ≥ 2.
(iii) Note that the correlation ρ and the values of a+,a− play no part in Theorem 1;
ρ will, however, play a role in the more general Theorem 3 below.

Let τr := min{n ∈ Z+ : ‖ξn‖ ≤ r}. Define

s0 := s0(Σ ,β ) :=
1
2

(
1− σ2

2 β

σ2
1

)
. (4)

Our next result concerns the moments of τr. Since most of our assumptions are
asymptotic, we only make statements about r sufficiently large; with appropriate
irreducibility assumptions, this restriction could be removed.

Theorem 2. Suppose that (N), (Mp), (D), (R), and (C) hold with α+ = α− = 0.

(a) Suppose that β+,β− ∈ [0,1). Let β := max(β+,β−). Then the following hold.

(i) If β < σ2
1 /σ2

2 , then Ex(τ
s
r )< ∞ for all s < s0 and all r sufficiently large, but

Ex(τ
s
r ) = ∞ for all s > s0 and all x with ‖x‖> r for r sufficiently large.
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(ii) If β ≥ σ2
1 /σ2

2 , then Ex(τ
s
r ) = ∞ for all s > 0 and all x with ‖x‖ > r for r

sufficiently large.

(b) Suppose that β+,β− > 1. Then Ex(τ
s
r ) = ∞ for all s > 0 and all x with ‖x‖> r

for r sufficiently large.

Remark 2. (i) Note that if β < σ2
1 /σ2

2 , then s0 > 0, while s0 < 1/2 for all β > 0,
in which case the return time to a bounded set has a heavier tail than that for one-
dimensional simple symmetric random walk.
(ii) The transience result in Theorem 1(a)(ii) is essentially stronger than the claim
in Theorem 2(a)(ii) for β < σ2

1 /σ2
2 , so the borderline (recurrent) case β = σ2

1 /σ2
2 is

the main content of the latter.
(iii) Part (b) shows that the case β± > 1 is critical: no moments of return times exist,
as in the case of, say, simple symmetric random walk in Z2 [26, p. 77].

1.3 Opposed reflection

We now consider the more general case where α++α− = 0, i.e., the two reflection
angles are equal but opposite, relative to their respective normal vectors. For α+ =
−α− 6= 0, this is a particular example of oblique reflection. The phase transition in
β now depends on ρ and α in addition to σ2

1 and σ2
2 . Define

βc := βc(Σ ,α) :=
σ2

1

σ2
2
+

(
σ2

2 −σ2
1

σ2
2

)
sin2

α +
ρ

σ2
2

sin2α. (5)

The next result gives the key properties of the critical threshold function βc which
are needed for interpreting our main result.

Proposition 1. For a fixed, positive-definite Σ such that |σ2
1 − σ2

2 |+ |ρ| > 0, the
function α 7→ βc(Σ ,α) over the interval [−π

2 ,
π

2 ] is strictly positive for |α| ≤ π/2,
with two stationary points, one in (−π

2 ,0) and the other in (0, π

2 ), at which the
function takes its maximum/minimum values of

1
2
+

σ2
1

2σ2
2
± 1

2σ2
2

√(
σ2

1 −σ2
2

)2
+4ρ2. (6)

The exception is the case where σ2
1 −σ2

2 = ρ = 0, when βc = 1 is constant.

Here is the recurrence classification in this setting.

Theorem 3. Suppose that (N), (Mp), (D), (R), and (C) hold with α+ = −α− = α

for |α|< π/2.

(a) Suppose that β+,β− ∈ [0,1). Let β := max(β+,β−). Then the following hold.

(i) If β < βc, then ξ is recurrent.
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(ii) If β > βc, then ξ is transient.
(iii) If, in addition, (D+) and (C+) hold, then the case β = βc is recurrent.

(b) Suppose that (D+) and (C+) hold, and β+,β− > 1. Then ξ is recurrent.

Remark 3. (i) The threshold (5) is invariant under the map (α,ρ) 7→ (−α,−ρ).
(ii) For fixed Σ with |σ2

1 − σ2
2 |+ |ρ| > 0, Proposition 1 shows that βc is non-

constant and has exactly one maximum and exactly one minimum in (−π

2 ,
π

2 ). Since
βc(Σ ,±π

2 ) = 1, it follows from uniqueness of the minimum that the minimum is
strictly less than 1, and so Theorem 3 shows that there is always an open interval of
α for which there is transience.
(iii) Since βc > 0 always, recurrence is certain for small enough β .
(iv) In the case where σ2

1 = σ2
2 and ρ = 0, then βc = 1, so recurrence is certain for

all β+,β− < 1 and all α .
(v) If α = 0, then βc = σ2

1 /σ2
2 , so Theorem 3 generalizes Theorem 1.

Next we turn to passage-time moments. We generalize (4) and define

s0 := s0(Σ ,α,β ) :=
1
2

(
1− β

βc

)
, (7)

with βc given by (5). The next result includes Theorem 2 as the special case α = 0.

Theorem 4. Suppose that (N), (Mp), (D), (R), and (C) hold with α+ = −α− = α

for |α|< π/2.

(a) Suppose that β+,β− ∈ [0,1). Let β := max(β+,β−). Then the following hold.

(i) If β < βc, then s0 ∈ (0,1/2], and Ex(τ
s
r ) < ∞ for all s < s0 and all r suf-

ficiently large, but Ex(τ
s
r ) = ∞ for all s > s0 and all x with ‖x‖ > r for r

sufficiently large.
(ii) If β ≥ βc, then Ex(τ

s
r ) = ∞ for all s > 0 and all x with ‖x‖ > r for r suffi-

ciently large.

(b) Suppose that β+,β− > 1. Then Ex(τ
s
r ) = ∞ for all s > 0 and all x with ‖x‖> r

for r sufficiently large.

1.4 Related literature

The stability properties of reflecting random walks or diffusions in unbounded do-
mains in Rd have been studied for many years. A pre-eminent place in the devel-
opment of the theory is occupied by processes in the quadrant R2

+ or quarter-lattice
Z2
+, due to applications arising in queueing theory and other areas. Typically, the

process is assumed to be maximally homogeneous in the sense that the transition
mechanism is fixed in the interior and on each of the two half-lines making up the
boundary. Distinct are the cases where the motion in the interior of the domain has
non-zero or zero drift.
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It was in 1961, in part motivated by queueing models, that Kingman [19] pro-
posed a general approach to the non-zero drift problem on Z2

+ via Lyapunov func-
tions and Foster’s Markov chain classification criteria [15]. A formal statement of
the classification was given in the early 1970s by Malyshev, who developed both
an analytic approach [23] as well as the Lyapunov function one [24] (the latter,
Malyshev reports, prompted by a question of Kolmogorov). Generically, the clas-
sification depends on the drift vector in the interior and the two boundary reflec-
tion angles. The Lyapunov function approach was further developed, so that the
bounded jumps condition in [24] could be relaxed to finiteness of second mo-
ments [28, 11, 30] and, ultimately, of first moments [14, 31, 34]. The analytic ap-
proach was also subsequently developed [12], and although it seems to be not as
robust as the Lyapunov function approach (the analysis in [23] was restricted to
nearest-neighbour jumps), when it is applicable it can yield very precise inform-
ation: see e.g. [16] for a recent application in the continuum setting. Intrinsically
more complicated results are available for the non-zero drift case in Z3

+ [25] and
Z4
+ [18].

The recurrence classification for the case of zero-drift reflecting random walk in
Z2
+ was given in the early 1990s in [6, 13]; see also [14]. In this case, generically, the

classification depends on the increment covariance matrix in the interior as well as
the two boundary reflection angles. Subsequently, using a semimartingale approach
extending work of Lamperti [20], passage-time moments were studied in [5], with
refinements provided in [2, 3].

Parallel continuum developments concern reflecting Brownian motion in wedges
in R2. In the zero-drift case with general (oblique) reflections, in the 1980s Varadhan
and Williams [32] had showed that the process was well-defined, and then Willi-
ams [33] gave the recurrence classification, thus preceding the random walk results
of [6, 13], and, in the recurrent cases, asymptotics of stationary measures (cf. [4]
for the discrete setting). Passage-time moments were later studied in [27, 7], by
providing a continuum version of the results of [5], and in [2], using discrete ap-
proximation [1]. The non-zero drift case was studied by Hobson and Rogers [17],
who gave an analogue of Malyshev’s theorem in the continuum setting.

For domains like our D , Pinsky [29] established recurrence in the case of reflect-
ing Brownian motion with normal reflections and standard covariance matrix in the
interior. The case of general covariance matrix and oblique reflection does not ap-
pear to have been considered, and neither has the analysis of passage-time moments.
The somewhat related problem of the asymptotics of the first exit time τe of planar
Brownian motion from domains like our D has been considered [9, 8, 21]: in the
case where β+ = β− = β ∈ (0,1), then logP(τe > t) is bounded above and below
by constants times −t(1−β )/(1+β ): see [21] and (for the case β = 1/2) [8].
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1.5 Overview of the proofs

The basic strategy is to construct suitable Lyapunov functions f :R2→R that satisfy
appropriate semimartingale (i.e., drift) conditions on Ex[ f (ξ1)− f (ξ0)] for x outside
a bounded set. In fact, since the Lyapunov functions that we use are most suitable for
the case where the interior increment covariance matrix is Σ = I, the identity, we first
apply a linear transformation T of R2 and work with T ξ . The linear transformation
is described in §2. Of course, one could combine these two steps and work directly
with the Lyapunov function given by the composition f ◦T for the appropriate f .
However, for reasons of intuitive understanding and computational convenience, we
prefer to separate the two steps.

Let β±< 1. Then for α+ =α−= 0, the reflection angles are both pointing essen-
tially vertically, with an asymptotically small component in the positive x1 direction.
After the linear transformation T , the reflection angles are no longer almost vertical,
but instead are almost opposed at some oblique angle, where the deviation from dir-
ect opposition is again asymptotically small, and in the positive x1 direction. For this
reason, the case α+ =−α− = α 6= 0 is not conceptually different from the simpler
case where α = 0, because after the linear transformation, both cases are oblique. In
the case α 6= 0, however, the details are more involved as both α and the value of the
correlation ρ enter into the analysis of the Lyapunov functions, which is presented
in §3, and is the main technical work of the paper. For β± > 1, intuition is provided
by the case of reflection in the half-plane (see e.g. [33] for the Brownian case).

Once the Lyapunov function estimates are in place, the proofs of the main the-
orems are given in §4, using some semimartingale results which are variations on
those from [26]. The appendix (§5) contains the proof of Proposition 1 on the prop-
erties of the threshold function βc defined at (5).

2 Linear transformation

The inwards pointing normal vectors to ∂D at (x1,d±(x1)) are

n±(x1) =
1

r±(x1)

(
a±β±xβ±−1

1
∓1

)
, where r±(x1) :=

√
1+(a±)2(β±)2x2β±−2

1 .

Define

n±⊥(x1) :=
1

r±(x1)

(
±1

a±β±xβ±−1
1

)
.

Recall that n±(x1,α
±) is the unit vector at angle α± to n±(x1), with positive angles

measured anticlockwise (for n+) or clockwise (for n−). Then (see Figure 2 for the
case of n+) we have n±(x1,α

±) = n±(x1)cosα±+n±⊥(x1)sinα±, so
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n±(x1,α
±) =

1
r±(x1)

(
sinα±+a±β±xβ±−1

1 cosα±

∓cosα±±a±β±xβ±−1
1 sinα±

)
.

In particular, if α+ =−α− = α ,

n±(x1,α
±) =

1
r±(x1)

(
±sinα +a±β±xβ±−1

1 cosα

∓cosα +a±β±xβ±−1
1 sinα

)
=:
(

n±1 (x1,α
±)

n±2 (x1,α
±)

)
. (8)

Recall that ∆ = ξ1−ξ0. Write ∆ = (∆1,∆2) in components.

α+

(x1,a+xβ+

1 )

n+(x1)cosα+

n+⊥(x1)sinα+

n+(x1,α
+)

Fig. 2 Diagram describing oblique reflection at angle α+ > 0.

Lemma 1. Suppose that (R) holds, with α+ =−α−=α and β+,β−≥ 0. If β±< 1,
then, for x ∈ S±B , as ‖x‖→ ∞,

Ex ∆1 =±µ
±(x)sinα +a±β

±
µ
±(x)xβ±−1

1 cosα

+O(‖x‖2β±−2)+O(‖x‖−1); (9)

Ex ∆2 =∓µ
±(x)cosα +a±β

±
µ
±(x)xβ±−1

1 sinα

+O(‖x‖2β±−2)+O(‖x‖−1). (10)

If β± > 1, then, for x ∈ S±B , as ‖x‖→ ∞,

Ex ∆1 = µ
±(x)cosα± µ±(x)sinα

a±β±
x1−β±

1 +O(x2−2β±

1 )+O(‖x‖−1); (11)

Ex ∆2 = µ
±(x)sinα∓ µ±(x)cosα

a±β±
x1−β±

1 +O(x2−2β±

1 )+O(‖x‖−1). (12)

Proof. Suppose that x ∈ S±B . By (2), we have that ‖Ex ∆ − µ±(x)n±(x1,α
±)‖ =

O(‖x‖−1). First suppose that 0 ≤ β± < 1. Then, 1/r±(x1) = 1+O(x2β±−2
1 ), and
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hence, by (8),

n±1 (x1,α
±) =±sinα +a±β

±xβ±−1
1 cosα +O(x2β±−2

1 );

n±2 (x1,α
±) =∓cosα +a±β

±xβ±−1
1 sinα +O(x2β±−2

1 ).

Then, since ‖x‖= x1 +o(x1) as ‖x‖→ ∞ with x ∈D , we obtain (9) and (10).
On the other hand, if β± > 1, then

1
r±(x1)

=
x1−β±

1
a±β±

+O(x3−3β±

1 ),

and hence, by (8),

n±1 (x1,α
±) = cosα± sinα

a±β±
x1−β±

1 +O(x2−2β±

1 );

n±2 (x1,α
±) = sinα∓ cosα

a±β±
x1−β±

1 +O(x2−2β±

1 ).

The expressions (11) and (12) follow. ut

It is convenient to introduce a linear transformation of R2 under which the
asymptotic increment covariance matrix Σ appearing in (C) is transformed to the
identity. Define

T :=

(
σ2
s −

ρ

sσ2
0 1

σ2

)
, where s :=

√
detΣ =

√
σ2

1 σ2
2 −ρ2;

recall that σ2,s> 0, since Σ is positive definite. The choice of T is such that T ΣT>=
I (the identity), and x 7→ T x leaves the horizontal direction unchanged. Explicitly,

T
(

x1
x2

)
=

(
σ2
s x1− ρ

sσ2
x2

1
σ2

x2

)
. (13)

Note that T is positive definite, and so ‖T x‖ is bounded above and below by positive
constants times ‖x‖. Also, if x ∈D and β+,β− < 1, the fact that |x2|= o(x1) means
that T x has the properties (i) (T x)1 > 0 for all x1 sufficiently large, and (ii) |(T x)2|=
o(|(T x)1|) as x1→ ∞. See Figure 3 for a picture.

The next result describes the increment moment properties of the process under
the transformation T . For convenience, we set ∆̃ := T ∆ for the transformed incre-
ment, with components ∆̃i = (T ∆)i.

Lemma 2. Suppose that (D), (R), and (C) hold, with α+=−α−=α , and β+,β−≥
0. Then, if ‖x‖→ ∞ with x ∈ SI ,

‖Ex ∆̃‖= o(‖x‖−1), and
∥∥Ex(∆̃ ∆̃

>)− I
∥∥

op = o(1). (14)
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0

T
(

x1
0

)
θ = 0

θ = θ2

T
(

0
x2

)
T ∂D

θ = θ2 +
π

2

θ = θ2− π

2

0

T
(

x1
0

)
θ = 0

θ = θ2

T
(

0
x2

)
T ∂D

θ = θ2 +
π

2

θ = θ2− π

2

Fig. 3 An illustration of the transformation T with ρ > 0 acting on a domain D with β+ = β− =
β for β ∈ (0,1) (left) and β > 1 (right). The angle θ2 is given by θ2 = arctan(ρ/s), measured
anticlockwise from the positive horizontal axis.

If, in addition, (D+) and (C+) hold with ε > 0, then, if ‖x‖→ ∞ with x ∈ SI ,

‖Ex ∆̃‖= O(‖x‖−1−ε), and
∥∥Ex(∆̃ ∆̃

>)− I
∥∥

op = O(‖x‖−ε). (15)

If β± < 1, then, as ‖x‖→ ∞ with x ∈ S±B ,

Ex ∆̃1 =±
σ2µ±(x)

s
sinα± ρµ±(x)

sσ2
cosα +

σ2a±β±µ±(x)
s

xβ±−1
1 cosα

− ρa±β±µ±(x)
sσ2

xβ±−1
1 sinα +O(‖x‖2β±−2)+O(‖x‖−1); (16)

Ex ∆̃2 =∓
µ±(x)

σ2
cosα +

a±β±µ±(x)
σ2

xβ±−1
1 sinα

+O(‖x‖2β±−2)+O(‖x‖−1). (17)

If β± > 1, then, as ‖x‖→ ∞ with x ∈ S±B ,

Ex ∆̃1 =
σ2µ±(x)

s
cosα− ρµ±(x)

sσ2
sinα± σ2µ±(x)

a±β±s
x1−β±

1 sinα

± ρµ±(x)
a±β±sσ2

x1−β±

1 cosα +O(x2−2β±

1 )+O(‖x‖−1); (18)

Ex ∆̃2 =
µ±(x)

σ2
sinα∓ µ±(x)

a±β±σ2
x1−β±

1 cosα +O(x2−2β±

1 )+O(‖x‖−1). (19)

Proof. By linearity,
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Ex ∆̃ = T Ex ∆ , (20)

which, by (D) or (D+), is, respectively, o(‖x‖−1) or O(‖x‖−1−ε) for x ∈ SI . Also,
since T ΣT> = I, we have

Ex(∆̃ ∆̃
>)− I = T Ex(∆∆

>)T> − I = T
(
Ex(∆∆

>)−Σ
)

T>.

For x ∈ SI , the middle matrix in the last product here has norm o(1) or O(‖x‖−ε),
by (C) or (C+). Thus we obtain (14) and (15). For x ∈ S±B , the claimed results follow
on using (20), (13), and the expressions for Ex ∆ in Lemma 1. ut

3 Lyapunov functions

For the rest of the paper, we suppose that α+ =−α− = α for some |α|< π/2. Our
proofs will make use of some carefully chosen functions of the process. Most of
these functions are most conveniently expressed in polar coordinates.

We write x= (r,θ) in polar coordinates, with angles measured relative to the pos-
itive horizontal axis: r := r(x) := ‖x‖ and θ := θ(x) ∈ (−π,π] is the angle between
the ray through 0 and x and the ray in the Cartesian direction (1,0), with the con-
vention that anticlockwise angles are positive. Then x1 = r cosθ and x2 = r sinθ .

For w ∈ R, θ0 ∈ (−π/2,π/2), and γ ∈ R, define

hw(x) := hw(r,θ) := rw cos(wθ −θ0), and f γ
w(x) := (hw(T x))γ , (21)

where T is the linear transformation describe at (13). The functions hw were used
in analysis of processes in wedges in e.g. [32, 30, 5, 22]. Since the hw are harmonic
for the Laplacian (see below for a proof), Lemma 2 suggests that hw(T ξn) will be
approximately a martingale in SI , and the choice of the geometrical parameter θ0
gives us the flexibility to try to arrange things so that the level curves of hw are
incident to the boundary at appropriate angles relative to the reflection vectors. The
level curves of hw cross the horizontal axis at angle θ0: see Figure 4, and (33) below.
In the case β± < 1, the interest is near the horizontal axis, and we take θ0 to be
such that the level curves cut ∂D at the reflection angles (asymptotically), so that
hw(T ξn) will be approximately a martingale also in SB. Then adjusting w and γ will
enable us to obtain a supermartingale with the properties suitable to apply some
Foster–Lyapunov theorems. This intuition is solidified in Lemma 4 below, where
we show that the parameters w, θ0, and γ can be chosen so that f γ

w(ξn) satisfies an
appropriate supermartingale condition outside a bounded set. For the case β± < 1,
since we only need to consider θ ≈ 0, we could replace these harmonic functions in
polar coordinates by suitable polynomial approximations in Cartesian components,
but since we also want to consider β± > 1, it is convenient to use the functions in
the form given. When β± > 1, the recurrence classification is particularly delicate,
so we must use another function (see (57) below), although the functions at (21) will
still be used to study passage time moments in that case.
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Fig. 4 Level curves of the function hw(x) with θ0 = π/6 and w = 1/4. The level curves cut the
horizontal axis at angle θ0 to the vertical.

If β+,β− < 1, then θ(x)→ 0 as ‖x‖ → ∞ with x ∈ D , which means that, for
any |θ0| < π/2, hw(x) ≥ δ‖x‖w for some δ > 0 and all x ∈ S with ‖x‖ sufficiently
large. On the other hand, for β+,β− > 1, we will restrict to the case with w > 0
sufficiently small such that cos(wθ −θ0) is bounded away from zero, uniformly in
θ ∈ [−π/2,π/2], so that we again have the estimate hw(x)≥ δ‖x‖w for some δ > 0
and all x ∈D , but where now D is close to the whole half-plane (see Remark 4). In
the calculations that follow, we will often use the fact that hw(x) is bounded above
and below by a constant times ‖x‖w as ‖x‖→ ∞ with x ∈D .

We use the notation Di := d
dxi

for differentials, and for f : R2→ R write D f for
the vector with components (D f )i = Di f . We use repeatedly

D1r = cosθ , D2r = sinθ , D1θ =− sinθ

r
, D2θ =

cosθ

r
. (22)

Define

θ1 := θ1(Σ ,α) := arctan
(

σ2
2
s

tanα +
ρ

s

)
∈ (−π/2,π/2). (23)

For β± > 1, we will also need

θ2 := θ2(Σ) := arctan
(

ρ

s

)
∈ (−π/2,π/2), (24)

and θ3 := θ3(Σ ,α) ∈ (−π,π) for which

sinθ3 =
ssinα

σ2d
, and cosθ3 =

σ2
2 cosα−ρ sinα

σ2d
, (25)

where
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d := d(Σ ,α) :=
√

σ2
2 cos2 α−2ρ sinα cosα +σ2

1 sin2
α. (26)

The geometric interpretation of θ1,θ2, and θ3 is as follows.

• The angle between (0,±1) and T (0,±1) has magnitude θ2. Thus, if β± < 1,
then θ2 is, as x1 → ∞, the limiting angle of the transformed inwards pointing
normal at x1 relative to the vertical. On the other hand, if β± > 1, then θ2 is,
as x1→∞, the limiting angle, relative to the horizontal, of the inwards pointing
normal to T ∂D . See Figure 3.

• The angle between (0,−1) and T (sinα,−cosα) is θ1. Thus, if β± < 1, then
θ1 is, as x1 → ∞, the limiting angle between the vertical and the transformed
reflection vector. Since the normal in the transformed domain remains asymp-
totically vertical, θ1 is in this case the limiting reflection angle, relative to the
normal, after the transformation.

• The angle between (1,0) and T (cosα,sinα) is θ3. Thus, if β± > 1, then θ3
is, as x1 → ∞, the limiting angle between the horizontal and the transformed
reflection vector. Since the transformed normal is, asymptotically, at angle θ2
relative to the horizontal, the limiting reflection angle, relative to the normal,
after the transformation is in this case θ3−θ2.

We need two simple facts.

Lemma 3. We have (i) infα∈[− π
2 ,

π
2 ]

d(Σ ,α)> 0, and (ii) |θ3−θ2|< π/2.

Proof. For (i), from (26) we may write

d2 = σ
2
2 +
(
σ

2
1 −σ

2
2
)

sin2
α−ρ sin2α. (27)

If σ2
1 6= σ2

2 , then, by Lemma 11, the extrema over α ∈ [−π

2 ,
π

2 ] of (27) are

σ
2
2 +

σ2
1 −σ2

2
2

(
1±

√
1+

4ρ2

(σ2
1 −σ2

2 )
2

)
.

Hence

d2 ≥ σ2
1 +σ2

2
2

− 1
2

√
(σ2

1 −σ2
2 )

2 +4ρ2,

which is strictly positive since ρ2 < σ2
1 σ2

2 . If σ2
1 = σ2

2 , then d2 ≥ σ2
2 − |ρ|, and

|ρ|< |σ1σ2|= σ2
2 , so d is also strictly positive in that case.

For (ii), we use the fact that cos(θ3− θ2) = cosθ3 cosθ2 + sinθ3 sinθ2, where,
by (24), sinθ2 =

ρ

σ1σ2
and cosθ2 =

s
σ1σ2

, and (25), to get cos(θ3−θ2) =
s

σ1d cosα >

0. Since |θ3−θ2|< 3π/2, it follows that |θ3−θ2|< π/2, as claimed. ut

We estimate the expected increments of our Lyapunov functions in two stages:
the main term comes from a Taylor expansion valid when the jump of the walk is
not too big compared to its current distance from the origin, while we bound the
(smaller) contribution from big jumps using the moments assumption (Mp). For
the first stage, let Bb(x) := {z ∈ R2 : ‖x− z‖ ≤ b} denote the (closed) Euclidean
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ball centred at x with radius b ≥ 0. We use the multivariable Taylor theorem in
the following form. Suppose that f : R2→R is thrice continuously differentiable in
Bb(x). Recall that D f (x) is the vector function whose components are Di f (x). Then,
for y ∈ Bb(x),

f (x+ y) = f (x)+ 〈D f (x),y〉+ y2
1

D2
1 f (x)
2

+ y2
2

D2
2 f (x)
2

+ y1y2D1D2 f (x)

+R(x,y), (28)

where, for all y ∈ Bb(x), |R(x,y)| ≤C‖y‖3R(x) for an absolute constant C < ∞ and

R(x) := max
i, j,k

sup
z∈Bb(x)

∣∣DiD jDk f (z)
∣∣ .

For dealing with the large jumps, we observe the useful fact that if p> 2 is a constant
for which (1) holds, then for some constant C < ∞, all δ ∈ (0,1), and all q ∈ [0, p],

Ex
[
‖∆‖q1{‖∆‖ ≥ ‖x‖δ}

]
≤C‖x‖−δ (p−q), (29)

for all ‖x‖ sufficiently large. To see (29), write ‖∆‖q = ‖∆‖p‖∆‖q−p and use the
fact that ‖∆‖ ≥ ‖x‖δ to bound the second factor.

Here is our first main Lyapunov function estimate.

Lemma 4. Suppose that (Mp), (D), (R), and (C) hold, with p > 2, α+ =−α− = α

for |α| < π/2, and β+,β− ≥ 0. Let w,γ ∈ R be such that 2− p < γw < p. Take
θ0 ∈ (−π/2,π/2). Then as ‖x‖→ ∞ with x ∈ SI ,

E[ f γ
w(ξn+1)− f γ

w(ξn) | ξn = x] =
γ(γ−1)

2
w2(hw(T x))γ−2‖T x‖2w−2

+o(‖x‖γw−2). (30)

We separate the boundary behaviour into two cases.

(i) If 0≤ β± < 1, take θ0 = θ1 given by (23). Then, as ‖x‖→ ∞ with x ∈ S±B ,

E[ f γ
w(ξn+1)− f γ

w(ξn) | ξn = x]

= γw‖T x‖w−1 (hw(T x))γ−1 a±µ±(x)σ2 cosθ1

scosα

(
β
±− (1−w)βc

)
xβ±−1

1

+o(‖x‖wγ+β±−2), (31)

where βc is given by (5).
(ii) If β± > 1, suppose that w ∈ (0,1/2) and θ0 = θ0(Σ ,α,w) = θ3− (1−w)θ2,

where θ2 and θ3 are given by (24) and (25), such that supθ∈[− π
2 ,

π
2 ]
|wθ −θ0|<

π/2. Then, with d = d(Σ ,α) as defined at (26), as ‖x‖→ ∞ with x ∈ S±B ,
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E[ f γ
w(ξn+1)− f γ

w(ξn) | ξn = x]

= γw‖T x‖w−1 (hw(T x))γ−1 dµ±(x)
s

(cos((1−w)(π/2))+o(1)) . (32)

Remark 4. We can choose w > 0 small enough so that |θ3− (1−w)θ2| < π/2, by
Lemma 3(ii), and so if θ0 = θ3− (1−w)θ2, we can always choose w > 0 small
enough so that supθ∈[− π

2 ,
π
2 ]
|wθ − θ0| < π/2, as required for the β± > 1 part of

Lemma 4.

Proof (of Lemma 4). Differentiating (21) and using (22) we see that

D1hw(x) = wrw−1 cos((w−1)θ −θ0) , and

D2hw(x) =−wrw−1 sin((w−1)θ −θ0) . (33)

Moreover,

D2
1hw(x) = w(w−1)rw−2 cos((w−2)θ −θ0) =−D2

2hw(x),

verifying that hw is harmonic. Also, for any i, j,k, |DiD jDkhw(x)|= O(rw−3). Writ-
ing hγ

w(x) := (hw(x))γ , we also have that Dih
γ
w(x) = γhγ−1

w (x)Dihw(x), that

DiD jhγ
w(x) = γhγ−1

w (x)DiD jhw(x)+ γ(γ−1)hγ−2
w (x)(Dihw(x))(D jhw(x)),

and |DiD jDkhγ
w(x)|= O(rγw−3). We apply Taylor’s formula (28) in the ball Br/2(x)

together with the harmonic property of hw, to obtain, for y ∈ Br/2(x),

hγ
w(x+ y) = hγ

w(x)+ γ〈Dhw(x),y〉hγ−1
w (x)+

γ(γ−1)
2

〈Dhw(x),y〉2hγ−2
w (x)

+ γ

(
(y2

1− y2
2)D

2
1hw(x)

2
+ y1y2D1D2hw(x)

)
hγ−1

w (x)

+R(x,y), (34)

where |R(x,y)| ≤ C‖y‖3‖x‖γw−3, using the fact that hw(x) is bounded above and
below by a constant times ‖x‖w.

Let Ex := {‖∆‖< ‖x‖δ}, where we fix a constant δ satisfying

max{2,γw,2− γw}
p

< δ < 1; (35)

such a choice of δ is possible since p > 2 and 2− p < γw < p. If ξ0 = x and Ex
occurs, then T x+ ∆̃ ∈ Br/2(T x) for all ‖x‖ sufficiently large. Thus, conditioning on
ξ0 = x, on the event Ex we may use the expansion in (34) for hγ

w(T x+ ∆̃), which,
after taking expectations, yields
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Ex
[
( f γ

w(ξ1)− f γ
w(ξ0))1Ex

]
= γ (hw(T x))γ−1Ex

[
〈Dhw(T x), ∆̃〉1Ex

]
+ γ (hw(T x))γ−1

[
D2

1hw(T x)Ex
[
(∆̃ 2

1 − ∆̃ 2
2 )1Ex

]
2

+D1D2hw(T x)Ex
[
∆̃1∆̃21Ex

]]

+
γ(γ−1)

2
(hw(T x))γ−2Ex

[
〈Dhw(T x), ∆̃〉21Ex

]
+Ex

[
R(T x, ∆̃)1Ex

]
. (36)

Let p′= p∧3, so that (1) also holds for p′ ∈ (2,3]. Then, writing ‖∆̃‖3 = ‖∆̃‖p′‖∆̃‖3−p′ ,

Ex
[
|R(T x, ∆̃)|1Ex

]
≤C‖x‖γw−3+(3−p′)δ Ex

[
‖∆̃‖p′]= o(‖x‖γw−2),

since (3− p′)δ < 1. If x ∈ SI , then (14) shows |Ex〈Dhw(T x), ∆̃〉|= o(‖x‖w−2), so

Ex
∣∣〈Dhw(T x), ∆̃〉1Ex

∣∣≤C‖x‖w−1Ex(‖∆‖1Ec
x )+o(‖x‖w−2).

Note that, by (35), δ > 2
p > 1

p−1 . Then, using the q = 1 case of (29), we get

Ex
∣∣〈Dhw(T x), ∆̃〉1Ex

∣∣= o(‖x‖w−2). (37)

A similar argument using the q = 2 case of (29) gives

Ex
[
〈Dhw(T x), ∆̃〉21Ec

x

]
≤C‖x‖2w−2−δ (p−2) = o(‖x‖2w−2).

If x ∈ SI , then (14) shows that Ex(∆̃
2
1 − ∆̃ 2

2 ) and Ex(∆̃1∆̃2) are both o(1), and hence,
by the q = 2 case of (29) once more, we see that Ex[|∆̃ 2

1 − ∆̃ 2
2 |1Ex ] and Ex[|∆̃1∆̃2|1Ex ]

are both o(1). Moreover, (14) also shows that

Ex〈Dhw(T x), ∆̃〉2 = Ex
(
(Dhw(T x))>∆̃ ∆̃

>Dhw(T x)
)

= (Dhw(T x))>Dhw(T x)+o(‖x‖2w−2)

= (D1hw(T x))2 +(D2hw(T x))2 +o(‖x‖2w−2).

Putting all these estimates into (36) we get, for x ∈ SI ,

Ex
[
( f γ

w(ξ1)− f γ
w(ξ0))1Ex

]
=

γ(γ−1)
2

(hw(T x))γ−2 ((D1hw(T x))2 +(D2hw(T x))2)
+o(‖x‖γw−2). (38)

On the other hand, given ξ0 = x, if γw≥ 0, by the triangle inequality,∣∣ f γ
w(ξ1)− f γ

w(x)
∣∣≤ ‖T ξ1‖γw +‖T x‖γw ≤ 2

(
‖T ξ1‖+‖T x‖

)γw

≤ 2
(
2‖T x‖+‖∆̃‖

)γw
. (39)

It follows from (39) that | f γ
w(ξ1)− f γ

w(x)|1Ec
x ≤C‖∆‖γw/δ , for some constant C < ∞

and all ‖x‖ sufficiently large. Hence
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Ex
∣∣( f γ

w(ξ1)− f γ
w(ξ0))1Ec

x

∣∣≤CEx
[
‖∆‖γw/δ 1Ec

x

]
.

Since δ > γw
p , by (35), we may apply (29) with q = γw

δ
to get

Ex
∣∣( f γ

w(ξ1)− f γ
w(ξ0))1Ec

x

∣∣= O(‖x‖γw−δ p) = o(‖x‖γw−2), (40)

since δ > 2
p . If wγ < 0, then we use the fact that f γ

w is uniformly bounded to get

Ex
∣∣( f γ

w(ξ1)− f γ
w(ξ0))1Ec

x

∣∣≤CPx(Ec
x ) = O(‖x‖−δ p),

by the q = 0 case of (29). Thus (40) holds in this case too, since γw > 2− δ p by
choice of δ at (35). Then (30) follows from combining (38) and (40) with (33).

Next suppose that x ∈ SB. Truncating (34), we see that for all y ∈ Br/2(x),

hγ
w(x+ y) = hγ

w(x)+ γ〈Dhw(x),y〉hγ−1
w (x)+R(x,y), (41)

where now |R(x,y)| ≤C‖y‖2‖x‖γw−2. It follows from (41) and (Mp) that

Ex
[
( f γ

w(ξ1)− f γ
w(ξ0))1Ex

]
= γhγ−1

w (T x)Ex
[
〈Dhw(T x), ∆̃〉1Ex

]
+O(‖x‖γw−2).

By the q = 1 case of (29), since δ > 1
p−1 , we see that Ex[〈Dhw(T x), ∆̃〉1Ec

x ] =

o(‖x‖w−2), while the estimate (40) still applies, so that

Ex
[

f γ
w(ξ1)− f γ

w(ξ0)
]
= γhγ−1

w (T x)Ex〈Dhw(T x), ∆̃〉+O(‖x‖γw−2). (42)

From (33) we have

Dhw(T x) = w‖T x‖w−1
(

cos((1−w)θ(T x)+θ0)
sin((1−w)θ(T x)+θ0)

)
. (43)

First suppose that β± < 1. Then, by (13), for x ∈ S±B , x2 =±a±xβ±

1 +O(1) and

sinθ(T x) =± sa±

σ2
2

xβ±−1
1 +O(x2β±−2

1 )+O(x−1
1 ).

Since arcsinz = z+O(z3) as z→ 0, it follows that

θ(T x) =± sa±

σ2
2

xβ±−1
1 +O(x2β±−2

1 )+O(x−1
1 ).

Hence

cos((1−w)θ(T x)+θ0) = cosθ0∓ (1−w)
sa±

σ2
2

xβ±−1
1 sinθ0 +O(x2β±−2

1 )+O(x−1
1 );

sin((1−w)θ(T x)+θ0) = sinθ0± (1−w)
sa±

σ2
2

xβ±−1
1 cosθ0 +O(x2β±−2

1 )+O(x−1
1 ).
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Then (43) with (16) and (17) shows that

Ex〈Dhw(T x), ∆̃〉

= w‖T x‖w−1 µ±(x)cosθ0 cosα

sσ2

(
±A1 +(a±A2 +o(1))xβ±−1

1

)
, (44)

where, for |θ0|< π/2, A1 = σ2
2 tanα +ρ− s tanθ0, and

A2 = σ
2
2 β
±−ρβ

± tanα− (1−w)s tanθ0 tanα− (1−w)
sρ

σ2
2

tanθ0

+ sβ
± tanθ0 tanα− (1−w)

s2

σ2
2
.

Now take θ0 = θ1 as given by (23), so that s tanθ0 = σ2
2 tanα + ρ . Then A1 = 0,

eliminating the leading order term in (44). Moreover, with this choice of θ0 we get,
after some further cancellation and simplification, that

A2 =
σ2

2 (β
±− (1−w)βc)

cos2 α
,

with βc as given by (5). Thus with (44) and (42) we verify (31).
Finally suppose that β± > 1, and restrict to the case w ∈ (0,1/2). Let θ2 ∈

(−π/2,π/2) be as given by (24). Then if x = (0,x2), we have θ(T x) = θ2 − π

2
if x2 < 0 and θ(T x) = θ2 +

π

2 if x2 > 0 (see Figure 3). It follows from (13) that

θ(T x) = θ2±
π

2
+O(x1−β±

1 ), for x ∈ S±B ,

as ‖x‖→ ∞ (and x1→ ∞). Now (43) with (18) and (19) shows that

Ex〈Dhw(T x), ∆̃〉= w‖T x‖w−1 µ±(x)
sσ2

(
σ

2
2 cosα cos((1−w)θ(T x)+θ0)

−ρ sinα cos((1−w)θ(T x)+θ0)

+ ssinα sin((1−w)θ(T x)+θ0)+O(x1−β±

1 )
)
. (45)

Set φ := (1−w)π

2 . Choose θ0 = θ3− (1−w)θ2, where θ3 ∈ (−π,π) satisfies (25).
Then we have that, for x ∈ S±B ,

cos((1−w)θ(T x)+θ0) = cos(θ3±φ)+O(x1−β±

1 )

= cosφ cosθ3∓ sinφ sinθ3 +O(x1−β±

1 ). (46)

Similarly, for x ∈ S±B ,

sin((1−w)θ(T x)+θ0) = cosφ sinθ3± sinφ cosθ3 +O(x1−β±

1 ). (47)
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Using (46) and (47) in (45), we obtain

Ex〈Dhw(T x), ∆̃〉= w‖T x‖w−1 µ±(x)
sσ2

(A3 cosφ ∓A4 sinφ +o(1)) ,

where

A3 =
(
σ

2
2 cosα−ρ sinα

)
cosθ3 + ssinα sinθ3

= σ2d cos2
θ3 +σ2d sin2

θ3 = σ2d,

by (25), and, similarly,

A4 =
(
σ

2
2 cosα−ρ sinα

)
sinθ3− ssinα cosθ3 = 0.

Then with (42) we obtain (32). ut

In the case where β+,β− < 1 with β+ 6= β−, we will in some circumstances
need to modify the function f γ

w so that it can be made insensitive to the behaviour
near the boundary with the smaller of β+,β−. To this end, define for w,γ,ν ,λ ∈R,

Fγ,ν
w (x) := f γ

w(x)+λx2‖T x‖2ν . (48)

We state a result for the case β− < β+; an analogous result holds if β+ < β−.

Lemma 5. Suppose that (Mp), (D), (R), and (C) hold, with p > 2, α+ =−α− = α

for |α| < π/2, and 0 ≤ β− < β+ < 1. Let w,γ ∈ R be such that 2− p < γw < p.
Take θ0 = θ1 ∈ (−π/2,π/2) given by (23). Suppose that

γw+β
−−2 < 2ν < γw+β

+−2.

Then as ‖x‖→ ∞ with x ∈ SI ,

E[Fγ,ν
w (ξn+1)−Fγ,ν

w (ξn) | ξn = x]

=
1
2

γ(γ−1)(w2 +o(1))(hw(T x))γ−2‖T x‖2w−2. (49)

As ‖x‖→ ∞ with x ∈ S+B ,

E[Fγ,ν
w (ξn+1)−Fγ,ν

w (ξn) | ξn = x]

= γw‖T x‖w−1 (hw(T x))γ−1 a+µ+(x)σ2 cosθ1

scosα

(
β
+− (1−w)βc

)
xβ+−1

1

+o(‖x‖wγ+β+−2). (50)

As ‖x‖→ ∞ with x ∈ S−B ,

E[Fγ,ν
w (ξn+1)−Fγ,ν

w (ξn) | ξn = x] = λ‖T x‖2ν
(
µ
−(x)cosα +o(1)

)
. (51)
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Proof. Suppose that 0 ≤ β− < β+ < 1. As in the proof of Lemma 4, let Ex =
{‖∆‖ < ‖x‖δ}, where δ ∈ (0,1) satisfies (35). Set vν(x) := x2‖T x‖2ν . Then, us-
ing Taylor’s formula in one variable, for x,y ∈ R2 with y ∈ Br/2(x),

‖x+ y‖2ν = ‖x‖2ν

(
1+

2〈x,y〉+‖y‖2

‖x‖2

)ν

= ‖x‖2ν +2ν〈x,y〉‖x‖2ν−2 +R(x,y),

where |R(x,y)| ≤C‖y‖2‖x‖2ν−2. Thus, for x ∈ S with y ∈ Br/2(x) and x+ y ∈ S,

vν(x+ y)− vν(x) = (x2 + y2)‖T x+Ty‖2ν − x2‖T x‖2ν

= y2‖T x‖2ν +2νx2〈T x,Ty〉‖T x‖2ν−2 +2νy2〈T x,Ty〉‖T x‖2ν−2

+R(x,y), (52)

where now |R(x,y)| ≤ C‖y‖2‖x‖2ν+β+−2, using the fact that both |x2| and |y2| are
O(‖x‖β+

). Taking x = ξ0 and y = ∆ so Ty = ∆̃ , we obtain

Ex
[
(vν(ξ1)− vν(ξ0))1Ex

]
= ‖T x‖2ν Ex

[
∆21Ex

]
+2νx2‖T x‖2ν−2Ex

[
〈T x, ∆̃〉1Ex

]
+2ν‖T x‖2ν−2E

[
∆2〈T x, ∆̃〉1Ex

]
+E
[
R(x,∆)1Ex

]
. (53)

Suppose that x ∈ SI . Similarly to (37), we have Ex[〈T x, ∆̃〉1Ex ] = o(1), and, by sim-
ilar arguments using (29), E[∆21Ex ] = o(‖x‖−1), Ex |∆2〈T x, ∆̃〉1Ec

x | = o(‖x‖), and
Ex |R(x,∆)1Ex |= o(‖x‖2ν−1), since β+ < 1. Also, by (13),

Ex(∆2〈T x, ∆̃〉) = σ2Ex(∆̃2〈T x, ∆̃〉)
= σ2(T x)1Ex(∆̃1∆̃2)+σ2(T x)2Ex(∆̃

2
2 ).

Here, by (14), Ex(∆̃1∆̃2)= o(1) and Ex(∆̃
2
2 )=O(1), while σ2(T x)2 = x2 =O(‖x‖β+

).
Thus Ex(∆2〈T x, ∆̃〉) = o(‖x‖). Hence also

Ex
[
∆2〈T x, ∆̃〉1Ex

]
= o(‖x‖).

Thus from (53) we get that, for x ∈ SI ,

Ex
[
(vν(ξ1)− vν(ξ0))1Ex

]
= o(‖x‖2ν−1). (54)

On the other hand, since |vν(x+ y)− vν(x)| ≤C(‖x‖+‖y‖)2ν+β+
we get

Ex
[
|vν(ξ1)− vν(ξ0)|1Ec

x

]
≤CEx

[
‖∆‖(2ν+β+)/δ 1Ec

x

]
.

Here 2ν +β+ < 2ν +1 < γw < δ p, by choice of ν and (35), so we may apply (29)
with q = (2ν +β+)/δ to get

Ex
[
|vν(ξ1)− vν(ξ0)|1Ec

x

]
= O(‖x‖2ν+β+−δ p) = o(‖x‖2ν−1), (55)
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since δ p > 2, by (35). Combining (54), (55) and (30), we obtain (49), provided that
2ν−1 < γw−2, which is the case since 2ν < γw+β+−2 and β+ < 1.

Now suppose that x ∈ S±B . We truncate (52) to see that, for x ∈ S with y ∈ Br/2(x)
and x+ y ∈ S,

vν(x+ y)− vν(x) = y2‖T x‖2ν +R(x,y),

where now |R(x,y)| ≤ C‖y‖‖x‖2ν+β±−1, using the fact that for x ∈ S±B , |x2| =
O(‖x‖β±). It follows that, for x ∈ S±B ,

Ex
[
(vν(ξ1)− vν(ξ0))1Ex

]
= ‖T x‖2ν Ex

[
∆21Ex

]
+O(‖x‖2ν+β±−1).

By (29) and (35) we have that E[|∆2|1Ec
x ] = O(‖x‖−δ (p−1)) = o(‖x‖−1), while if

x ∈ S±B , then, by (10), Ex ∆2 =∓µ±(x)cosα +O(‖x‖β±−1). On the other hand, the
estimate (55) still applies, so we get, for x ∈ S±B ,

Ex[vν(ξ1)− vν(ξ0)] =∓‖T x‖2ν
µ
±(x)cosα +O(‖x‖2ν+β±−1). (56)

If we choose ν such that 2ν < γw+ β+ − 2, then we combine (56) and (31) to
get (50), since the term from (31) dominates. If we choose ν such that 2ν > γw+
β−−2, then the term from (56) dominates that from (31), and we get (51). ut

In the critically recurrent cases, where max(β+,β−) = βc ∈ (0,1) or β+,β−> 1,
in which no passage-time moments exist, the functions of polynomial growth based
on hw as defined at (21) are not sufficient to prove recurrence. Instead we need
functions which grow more slowly. For η ∈ R let

h(x) := h(r,θ) := logr+ηθ , and `(x) := logh(T x), (57)

where we understand logy to mean max(1, logy). The function h is again harmonic
(see below) and was used in the context of reflecting Brownian motion in a wedge
in [32]. Set

η0 := η0(Σ ,α) :=
σ2

2 tanα +ρ

s
, and η1 := η1(Σ ,α) :=

σ2
1 tanα−ρ

s
. (58)

Lemma 6. Suppose that (Mp), (D+), (R), and (C+) hold, with p > 2, ε > 0, α+ =
−α− = α for |α|< π/2, and β+,β− ≥ 0. For any η ∈ R, as ‖x‖→ ∞ with x ∈ SI ,

E[`(ξn+1)− `(ξn) | ξn = x] =− 1+η2 +o(1)
2‖T x‖2(log‖T x‖)2 . (59)

If 0≤ β± < 1, take η = η0 as defined at (58). Then, as ‖x‖→ ∞ with x ∈ S±B ,

E[`(ξn+1)− `(ξn) | ξn = x]

=
σ2

2 a±µ±(x)
s2 cosα

1
‖T x‖2 log‖T x‖

(
(β±−βc)x

β±

1 +O(‖x‖2β±−1)+O(1)
)
. (60)



24 Mikhail V. Menshikov, Aleksandar Mijatović, and Andrew R. Wade

If β± > 1, take η = η1 as defined at (58). Then as ‖x‖→ ∞ with x ∈ S±B ,

E[`(ξn+1)− `(ξn) | ξn = x]

=
µ±(x)

s2 cosα

x1

‖T x‖2 log‖T x‖

(
σ

2
1 sin2

α +σ
2
2 cos2

α− σ2
1

β±
−ρ sin2α +o(1)

)
. (61)

Proof. Given η ∈R, for r0 = r0(η) = exp(e+ |η |π), we have from (58) that both h
and logh are infinitely differentiable in the domain Rr0 := {x ∈ R2 : x1 > 0, r(x)>
r0}. Differentiating (58) and using (22) we obtain, for x ∈Rr0 ,

D1h(x) =
1
r
(cosθ −η sinθ) , and D2h(x) =

1
r
(sinθ +η cosθ) . (62)

We verify that h is harmonic in Rr0 , since

D2
1h(x) =

η sin2θ

r2 − cos2θ

r2 =−D2
2h(x).

Also, for any i, j,k, |DiD jDkh(x)|=O(r−3). Moreover, Di logh(x)= (h(x))−1Dih(x),

DiD j logh(x) =
DiD jh(x)

h(x)
−

(Dih(x))(D jh(x))
(h(x))2 ,

and |DiD jDk logh(x)| = O(r−3(logr)−1). Recall that Dh(x) is the vector function
whose components are Dih(x). Then Taylor’s formula (28) together with the har-
monic property of h shows that for x ∈R2r0 and y ∈ Br/2(x),

logh(x+ y) = logh(x)+
〈Dh(x),y〉

h(x)
+

(y2
1− y2

2)D
2
1h(x)

2h(x)
+

y1y2D1D2h(x)
h(x)

− 〈Dh(x),y〉2

2(h(x))2 +R(x,y), (63)

where |R(x,y)| ≤C‖y‖3‖x‖−3(log‖x‖)−1 for some constant C < ∞, all y ∈ Br/2(x),
and all ‖x‖ sufficiently large. As in the proof of Lemma 4, let Ex = {‖∆‖ < ‖x‖δ}
for δ ∈ ( 2

p ,1). Then applying the expansion in (63) to logh(T x+ ∆̃), conditioning
on ξ0 = x, and taking expectations, we obtain, for ‖x‖ sufficiently large,

Ex
[
(`(ξ1)− `(ξ0))1Ex

]
=

Ex
[
〈Dh(T x), ∆̃〉1Ex

]
h(T x)

+
D2

1h(T x)Ex
[
(∆̃ 2

1 − ∆̃ 2
2 )1Ex

]
2h(T x)

+
D1D2h(T x)Ex

[
∆̃1∆̃21Ex

]
h(T x)

−
Ex
[
〈Dh(T x), ∆̃〉21Ex

]
2(h(T x))2 +Ex

[
R(T x, ∆̃)1Ex

]
. (64)

Let p′ ∈ (2,3] be such that (1) holds. Then

Ex
∣∣R(T x, ∆̃)1Ex

∣∣≤C‖x‖−3+(3−p′)δ Ex(‖∆‖p′) = O(‖x‖−2−ε ′),
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for some ε ′ > 0.
Suppose that x∈ SI . By (15), Ex(∆̃1∆̃2)=O(‖x‖−ε) and, by (29), Ex |∆̃1∆̃21Ec

x | ≤
CE[‖∆‖21Ec

x ] = O(‖x‖−ε ′), for some ε ′ > 0. Thus Ex(∆̃1∆̃21Ex) = O(‖x‖−ε ′). A
similar argument gives the same bound for Ex[(∆̃

2
1 − ∆̃ 2

2 )1Ex ]. Also, from (15)
and (62), Ex(〈Dh(T x), ∆̃〉) = O(‖x‖−2−ε) and, by (29), Ex |〈Dh(T x), ∆̃〉1Ec

x | =
O(‖x‖−2−ε ′) for some ε ′ > 0. Hence Ex[〈Dh(T x), ∆̃〉1Ex ] = O(‖x‖−2−ε ′). Finally,
by (15) and (62),

Ex〈Dh(T x), ∆̃〉2 = Ex
(
(Dh(T x))>∆̃ ∆̃

>Dh(T x)
)

= (Dh(T x))>Dh(T x)+O(‖x‖−2−ε)

= (D1h(T x))2 +(D2h(T x))2 +O(‖x‖−2−ε),

while, by (29), Ex |〈Dh(T x), ∆̃〉21Ec
x | = O(‖x‖−2−ε ′). Putting all these estimates

into (64) gives

Ex
[
(`(ξ1)− `(ξ0))1Ex

]
=− (D1h(T x))2 +(D2h(T x))2

2(h(T x))2 +O(‖x‖−2−ε ′),

for some ε ′ > 0. On the other hand, for all ‖x‖ sufficiently large, |`(x+y)− `(x)| ≤
C log log‖x‖+C log log‖y‖. For any p > 2 and δ ∈ ( 2

p ,1), we may (and do) choose
q > 0 sufficiently small such that δ (p−q)> 2, and then, by (29),

Ex
[
(`(ξ1)− `(ξ0))1Ec

x

]
≤CEx

[
‖∆‖q1Ec

x

]
= O(‖x‖−δ (p−q)) = O(‖x‖−2−ε ′), (65)

for some ε ′ > 0. Thus we conclude that

Ex
[
`(ξ1)− `(ξ0)

]
=− (D1h(T x))2 +(D2h(T x))2

2(h(T x))2 +O(‖x‖−2−ε ′),

for some ε ′ > 0. Then (59) follows from (62).
Next suppose that x ∈ SB. Truncating (63), we have for x ∈R2r0 and y ∈ Br/2(x),

logh(x+ y) = logh(x)+
〈Dh(x),y〉

h(x)
+R(x,y),

where now |R(x,y)| ≤C‖y‖2‖x‖−2(log‖x‖)−1 for ‖x‖ sufficiently large. Hence

Ex
[
(`(ξ1)− `(ξ0))1Ex

]
=

Ex
[
〈Dh(T x), ∆̃〉1Ex

]
+O(‖x‖−2)

h(T x)
.

Then by (65) and the fact that Ex |〈Dh(T x), ∆̃〉1Ec
x |= O(‖x‖−2−ε ′) (as above),
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Ex
[
`(ξ1)− `(ξ0)

]
=

Ex
[
〈Dh(T x), ∆̃〉

]
+O(‖x‖−2)

h(T x)
. (66)

From (62) we have

Dh(x)=
1
‖x‖2

(
x1−ηx2
x2 +ηx1

)
, and hence Dh(T x)=

1
‖T x‖2

(
σ2
s x1− ρ

sσ2
x2− η

σ2
x2

1
σ2

x2 +
ησ2

s x1− ηρ

sσ2
x2

)
,

using (13). If β± < 1 and x ∈ S±B , we have from (16) and (17) that

Ex〈Dh(T x), ∆̃〉

=
µ±(x)

s2
1

‖T x‖2

{
a±
[(

sη(β±−1)−ρ(1+β
±)
)

sinα +
(
σ

2
2 β
±−σ

2
1
)

cosα

]
xβ±

1

±
[
σ

2
2 sinα +(ρ− sη)cosα

]
x1 +O(x2β±−1

1 )+O(1)
}
.

Taking η = η0 as given by (58), the ±x1 term vanishes; after simplification, we get

Ex〈Dh(T x), ∆̃〉= σ2
2 a±µ±(x)

‖T x‖2s2 cosα

((
β
±−βc

)
xβ±

1 +O(x2β±−1
1 )+O(1)

)
. (67)

Using (67) in (66) gives (60).
On the other hand, if β± > 1 and x ∈ S±B , we have from (18) and (19) that

Ex〈Dh(T x), ∆̃〉

=
µ±(x)

s2
1

‖T x‖2

{
1

β±

[(
sη(β±−1)−ρ(1+β

±)
)

sinα +
(
σ

2
2 β
±−σ

2
1
)

cosα

]
x1

±a±
[
σ

2
1 sinα− (ρ + sη)cosα

]
xβ±

1 +O(x2−β±

1 )+O(1)
}
.

Taking η = η1 as given by (58), the ±xβ±

1 term vanishes, and we get

Ex〈Dh(T x), ∆̃〉= µ±(x)
s2 cosα

x1

‖T x‖2

(
σ

2
1 sin2

α +σ
2
2 cos2

α− σ2
1

β±
−ρ sin2α +o(1)

)
,

as ‖x‖→ ∞ (and x1→ ∞). Then using the last display in (66) gives (61). ut

The function ` is not by itself enough to prove recurrence in the critical cases,
because the estimates in Lemma 6 do not guarantee that ` satisfies a supermartin-
gale condition for all parameter values of interest. To proceed, we modify the
function slightly to improve its properties near the boundary. In the case where
max(β+,β−) = βc ∈ (0,1), the following function will be used to prove recurrence,

gγ(x) := gγ(r,θ) := `(x)+
θ 2

(1+ r)γ
,
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where the parameter η in ` is chosen as η = η0 as given by (58).

Lemma 7. Suppose that (Mp), (D+), (R), and (C+) hold, with p > 2, ε > 0, α+ =
−α− = α for |α| < π/2, and β+,β− ∈ (0,1) with β+,β− ≤ βc. Let η = η0, and
suppose

0 < γ < min(β+,β−,1−β
+,1−β

−, p−2).

Then as ‖x‖→ ∞ with x ∈ SI ,

E[gγ(ξn+1)−gγ(ξn) | ξn = x] =− 1+η2 +o(1)
2‖T x‖2(log‖T x‖)2 . (68)

Moreover, as ‖x‖→ ∞ with x ∈ S±B ,

E[gγ(ξn+1)−gγ(ξn) | ξn = x]≤−2a±µ
±(x)(cosα +o(1))‖x‖β±−2−γ . (69)

Proof. Set uγ(x) := uγ(r,θ) := θ 2(1+ r)−γ , and note that, by (22), for x1 > 0,

D1uγ(x) =−
2θ sinθ

r(1+ r)γ
− γθ 2 cosθ

(1+ r)1+γ
, D2uγ(x) =

2θ cosθ

r(1+ r)γ
− γθ 2 sinθ

(1+ r)1+γ
,

and |DiD juγ(x)| = O(r−2−γ) for any i, j. So, by Taylor’s formula (28), for all y ∈
Br/2(x),

uγ(x+ y) = uγ(x)+ 〈Duγ(x),y〉+R(x,y),

where |R(x,y)| ≤C‖y‖2‖x‖−2−γ for all ‖x‖ sufficiently large. Once more define the
event Ex = {‖∆‖< ‖x‖δ}, where now δ ∈ ( 2+γ

p ,1). Then

Ex
[
(uγ(ξ1)−uγ(ξ0))1Ex

]
= Ex

[
〈Duγ(x),∆〉1Ex

]
+O(‖x‖−2−γ).

Moreover, Ex |〈Duγ(x),∆〉1Ec
x | ≤C‖x‖−1−γ Ex(‖∆‖1Ec

x )=O(‖x‖−2−γ), by (29) and
the fact that δ > 2

p > 1
p−1 . Also, since uγ is uniformly bounded,

Ex
[
|uγ(ξ1)−uγ(ξ0)|1Ec

x

]
≤CPx(Ec

x ) = O(‖x‖−pδ ),

by (29). Since pδ > 2+ γ , it follows that

Ex
[
uγ(ξ1)−uγ(ξ0)

]
= Ex〈Duγ(x),∆〉+O(‖x‖−2−γ). (70)

For x ∈ SI , it follows from (70) and (D+) that Ex[uγ(ξ1)− uγ(ξ0)] = O(‖x‖−2−γ),
and combining this with (59) we get (68).

Let β = max(β+,β−) < 1. For x ∈ S, |θ(x)| = O(rβ−1) as ‖x‖ → ∞, so (70)
gives

Ex[uγ(ξ1)−uγ(ξ0)] =
2θ cosθ Ex ∆2

‖x‖(1+‖x‖)γ
+O(‖x‖2β−3−γ)+O(‖x‖−2−γ).
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If x∈ S±B then θ =±a±(1+o(1))xβ±−1
1 and, by (10), Ex ∆2 =∓µ±(x)cosα +o(1),

so
Ex[uγ(ξ1)−uγ(ξ0)] =−2a±µ

±(x)(cosα +o(1))‖x‖β±−2−γ . (71)

For η = η0 and β+,β− ≤ βc, we have from (60) that

Ex[`(ξ1)− `(ξ0)]≤
1

‖T x‖2 log‖T x‖

(
O(‖x‖2β±−1)+O(1)

)
.

Combining this with (71), we obtain (69), provided that we choose γ such that β±−
2− γ > 2β±−3 and β±−2− γ >−2, that is, γ < 1−β± and γ < β±. ut

In the case where β+,β− > 1, we will use the function

wγ(x) := `(x)− x1

(1+‖x‖2)γ
,

where the parameter η in ` is now chosen as η = η1 as defined at (58). A similar
function was used in [6].

Lemma 8. Suppose that (Mp), (D+), (R), and (C+) hold, with p > 2, ε > 0, α+ =
−α− = α for |α|< π/2, and β+,β− > 1 Let η = η1, and suppose that

1
2
< γ < min

(
1− 1

2β+
,1− 1

2β−
,

p−1
2

)
.

Then as ‖x‖→ ∞ with x ∈ SI ,

E[wγ(ξn+1)−wγ(ξn) | ξn = x] =− 1+η2 +o(1)
2‖T x‖2(log‖T x‖)2 . (72)

Moreover, as ‖x‖→ ∞ with x ∈ S±B ,

E[wγ(ξn+1)−wγ(ξn) | ξn = x] =−µ±(x)cosα +o(1)
‖x‖2γ

. (73)

Proof. Let qγ(x) := x1(1+‖x‖2)−γ . Then

D1qγ(x) =
1

(1+‖x‖2)γ
− 2γx2

1
(1+‖x‖2)1+γ

, D2qγ(x) =−
2γx1x2

(1+‖x‖2)1+γ
,

and |DiD jqγ(x)| = O(‖x‖−1−2γ) for any i, j. Thus by Taylor’s formula, for y ∈
Br/2(x),

qγ(x+ y)−qγ(x) = 〈Dqγ(x),y〉+R(x,y),

where |R(x,y)| ≤ C‖y‖2‖x‖−1−2γ for ‖x‖ sufficiently large. Once more let Ex =

{‖∆‖< ‖x‖δ}, where now we take δ ∈ ( 1+2γ

p ,1). Then

Ex
[
(qγ(ξ1)−qγ(ξ0))1Ex

]
= Ex

[
〈Dqγ(x),∆〉1Ex

]
+O(‖x‖−1−2γ).
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Moreover, we get from (29) that Ex |〈Dqγ(x),∆〉1Ec
x | = O(‖x‖−2γ−δ (p−1)), where

δ (p−1)> 2γ > 1, and, since qγ is uniformly bounded for γ > 1/2,

Ex
[
(qγ(ξ1)−qγ(ξ0))1Ec

x

]
= O(‖x‖−pδ ),

where pδ > 1+2γ . Thus

Ex
[
qγ(ξ1)−qγ(ξ0)

]
= Ex〈Dqγ(x),∆〉+O(‖x‖−1−2γ). (74)

If x ∈ SI , then (D+) gives Ex〈Dqγ(x),∆〉= O(‖x‖−1−2γ) and with (59) we get (72),

since γ > 1/2. On the other hand, suppose that x∈ S±B and β± > 1. Then ‖x‖≥ cxβ±

1
for some c > 0, so x1 = O(‖x‖1/β±). So, by (74),

Ex[qγ(ξ1)−qγ(ξ0)] =
Ex ∆1

(1+‖x‖2)γ
+O

(
‖x‖

1
β±−1−2γ

)
.

Moreover, by (11), Ex ∆1 = µ±(x)cosα+o(1). Combined with (61), this yields (73),
provided that 2γ ≤ 2−(1/β±), again using the fact that x1 =O(‖x‖1/β±). This com-
pletes the proof. ut

4 Proofs of main results

We obtain our recurrence classification and quantification of passage-times via
Foster–Lyapunov criteria (cf. [15]). As we do not assume any irreducibility, the
most convenient form of the criteria are those for discrete-time adapted processes
presented in [26]. However, the recurrence criteria in [26, §3.5] are formulated for
processes on R+, and, strictly, do not apply directly here. Thus we present appro-
priate generalizations here, as they may also be useful elsewhere. The following
recurrence result is based on Theorem 3.5.8 of [26].

Lemma 9. Let X0,X1, . . . be a stochastic process on Rd adapted to a filtration
F0,F1, . . .. Let f : Rd→R+ be such that f (x)→∞ as ‖x‖→∞, and E f (X0)< ∞.
Suppose that there exist r0 ∈ R+ and C < ∞ for which, for all n ∈ Z+,

E[ f (Xn+1)− f (Xn) |Fn]≤ 0, on {‖Xn‖ ≥ r0};
E[ f (Xn+1)− f (Xn) |Fn]≤C, on {‖Xn‖< r0}.

Then if P(limsupn→∞ ‖Xn‖= ∞) = 1, we have that P(liminfn→∞ ‖Xn‖ ≤ r0) = 1.

Proof. By hypothesis, E f (Xn) < ∞ for all n. Fix n ∈ Z+ and let λn := min{m ≥
n : ‖Xm‖ ≤ r0} and, for some r > r0, set σn := min{m ≥ n : ‖Xm‖ ≥ r}. Since
limsupn→∞ ‖Xn‖ = ∞ a.s., we have that σn < ∞, a.s. Then f (Xm∧λn∧σn), m ≥ n,
is a non-negative supermartingale with limm→∞ f (Xm∧λn∧σn) = f (Xλn∧σn), a.s. By
Fatou’s lemma and the fact that f is non-negative,
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E f (Xn)≥ E f (Xλn∧σn)≥ P(σn < λn) inf
y:‖y‖≥r

f (y).

So

P
(

inf
m≥n
‖Xm‖ ≤ r0

)
≥ P(λn < ∞)≥ P(λn < σn)≥ 1− E f (Xn)

infy:‖y‖≥r f (y)
.

Since r > r0 was arbitrary, and infy:‖y‖≥r f (y)→ ∞ as r → ∞, it follows that, for
fixed n ∈ Z+, P(infm≥n ‖Xm‖ ≤ r0) = 1. Since this holds for all n ∈ Z+, the result
follows. ut

The corresponding transience result is based on Theorem 3.5.6 of [26].

Lemma 10. Let X0,X1, . . . be a stochastic process on Rd adapted to a filtration
F0,F1, . . .. Let f : Rd → R+ be such that supx f (x) < ∞, f (x)→ 0 as ‖x‖ → ∞,
and infx:‖x‖≤r f (x)> 0 for all r ∈ R+. Suppose that there exists r0 ∈ R+ for which,
for all n ∈ Z+,

E[ f (Xn+1)− f (Xn) |Fn]≤ 0, on {‖Xn‖ ≥ r0}.

Then if P(limsupn→∞ ‖Xn‖= ∞) = 1, we have that P(limn→∞ ‖Xn‖= ∞) = 1.

Proof. Since f is bounded, E f (Xn)<∞ for all n. Fix n∈Z+ and r1≥ r0. For r∈Z+

let σr := min{n ∈ Z+ : ‖Xn‖ ≥ r}. Since P(limsupn→∞ ‖Xn‖ = ∞) = 1, we have
σr < ∞, a.s. Let λr := min{n ≥ σr : ‖Xn‖ ≤ r1}. Then f (Xn∧λr), n ≥ σr, is a non-
negative supermartingale, which converges, on {λr < ∞}, to f (Xλr). By optional
stopping (e.g. Theorem 2.3.11 of [26]), a.s.,

sup
x:‖x‖≥r

f (x)≥ f (Xσr)≥ E[ f (Xλr) |Fσr ]≥ P(λr < ∞ |Fσr) inf
x:‖x‖≤r1

f (x).

So

P(λr < ∞)≤
supx:‖x‖≥r f (x)

infx:‖x‖≤r1 f (x)
,

which tends to 0 as r→ ∞, by our hypotheses on f . Thus,

P
(

liminf
n→∞

‖Xn‖ ≤ r1

)
= P

(
∩r∈Z+ {λr < ∞}

)
= lim

r→∞
P(λr < ∞) = 0.

Since r1 ≥ r0 was arbitrary, we get the result. ut

Now we can complete the proof of Theorem 3, which includes Theorem 1 as the
special case α = 0.

Proof (of Theorem 3). Let β =max(β+,β−), and recall the definition of βc from (5)
and that of s0 from (7). Suppose first that 0≤ β < 1∧βc. Then s0 > 0 and we may
(and do) choose w ∈ (0,2s0). Also, take γ ∈ (0,1); note 0 < γw < 1. Consider the
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function f γ
w with θ0 = θ1 given by (23). Then from (30), we see that there exist c > 0

and r0 < ∞ such that, for all x ∈ SI ,

E[ f γ
w(ξn+1)− f γ

w(ξn) | ξn = x]≤−c‖x‖γw−2, for all ‖x‖ ≥ r0. (75)

By choice of w, we have β − (1−w)βc < 0, so (31) shows that, for all x ∈ S±B ,

E[ f γ
w(ξn+1)− f γ

w(ξn) | ξn = x]≤−c‖x‖γw−2+β± ,

for some c > 0 and all ‖x‖ sufficiently large. In particular, this means that (75)
holds throughout S. On the other hand, it follows from (39) and (Mp) that there is a
constant C < ∞ such that

E[ f γ
w(ξn+1)− f γ

w(ξn) | ξn = x]≤C, for all ‖x‖ ≤ r0. (76)

Since w,γ > 0, we have that f γ
w(x)→ ∞ as ‖x‖ → ∞. Then by Lemma 9 with the

conditions (75) and (76) and assumption (N), we establish recurrence.
Next suppose that βc < β < 1. If β+ = β− = β , we use the function f γ

w, again
with θ0 = θ1 given by (23). We may (and do) choose γ ∈ (0,1) and w < 0 with
w > −2|s0| and γw > w > 2− p. By choice of w, we have β − (1−w)βc > 0. We
have from (30) and (31) that (75) holds in this case also, but now f γ

w(x)→ 0 as
‖x‖→ ∞, since γw < 0. Lemma 10 then gives transience when β+ = β−.

Suppose now that βc < β < 1 with β+ 6= β−. Without loss of generality, suppose
that β = β+ > β−. We now use the function Fγ,ν

w defined at (48), where, as above,
we take γ ∈ (0,1) and w ∈ (−2|s0|,0), and we choose the constants λ ,ν with λ <
0 and γw + β− − 2 < 2ν < γw + β+ − 2. Note that 2ν < γw− 1, so Fγ,ν

w (x) =
f γ
w(x)(1+o(1)). With θ0 = θ1 given by (23), and this choice of ν , Lemma 5 applies.

The choice of γ ensures that the right-hand side of (49) is eventually negative, and
the choice of w ensures the same for (50). Since λ < 0, the right-hand side of (51) is
also eventually negative. Combining these three estimates shows, for all x ∈ S with
‖x‖ large enough,

E[Fγ,ν
w (ξn+1)−Fγ,ν

w (ξn) | ξn = x]≤ 0.

Since Fγ,ν
w (x)→ 0 as ‖x‖→ ∞, Lemma 10 gives transience.

Of the cases where β+,β− < 1, it remains to consider the borderline case where
β = βc ∈ (0,1). Here Lemma 7 together with Lemma 9 proves recurrence. Finally,
if β+,β− > 1, we apply Lemma 8 together with Lemma 9 to obtain recurrence.
Note that both of these critical cases require (D+) and (C+). ut

Next we turn to moments of passage times: we prove Theorem 4, which includes
Theorem 2 as the special case α = 0. Here the criteria we apply are from [26, §2.7],
which are heavily based on those from [5].

Proof (of Theorem 4). Again let β = max(β+,β−). First we prove the existence of
moments part of (a)(i). Suppose that 0≤ β < 1∧βc, so s0 as defined at (7) satisfies
s0 > 0. We use the function f γ

w, with γ ∈ (0,1) and w ∈ (0,2s0) as in the first part
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of the proof of Theorem 3. We saw in that proof that for these choices of γ,w we
have that (75) holds for all x ∈ S. Rewriting this slightly, using the fact that f γ

w(x)
is bounded above and below by constants times ‖x‖γw for all ‖x‖ sufficiently large,
we get that there are constants c > 0 and r0 < ∞ for which

E[ f γ
w(ξn+1)− f γ

w(ξn) | ξn = x]≤−c( f γ
w(x))

1− 2
γw , for all x ∈ S with ‖x‖ ≥ r0. (77)

Then we may apply Corollary 2.7.3 of [26] to get Ex(τ
s
r )< ∞ for any r≥ r0 and any

s < γw/2. Taking γ < 1 and w < 2s0 arbitrarily close to their upper bounds, we get
Ex(τ

s
r )< ∞ for all s < s0.

Next suppose that 0≤ β ≤ βc. Let s> s0. First consider the case where β+ = β−.
Then we consider f γ

w with γ > 1, w > 2s0 (so w > 0), and 0 < wγ < 2. Then, since
β − (1−w)βc = βc−β +(w−2s0)βc > 0, we have from (30) and (31) that

E[ f γ
w(ξn+1)− f γ

w(ξn) | ξn = x]≥ 0, (78)

for all x ∈ S with ‖x‖ sufficiently large. Now set Yn := f 1/w
w (ξn), and note that Yn

is bounded above and below by constants times ‖ξn‖, and Y γw
n = f γ

w(ξn). Write
Fn = σ(ξ0,ξ1, . . . ,ξn). Then we have shown in (78) that

E[Y γw
n+1−Y γw

n |Fn]≥ 0, on {Yn > r1}, (79)

for some r1 sufficiently large. Also, from the γ = 1/w case of (30) and (31),

E[Yn+1−Yn |Fn]≥−
B
Yn

, on {Yn > r2}, (80)

for some B < ∞ and r2 sufficiently large. (The right-hand side of (31) is still eventu-
ally positive, while the right-hand-side of (30) will be eventually negative if γ < 1.)
Again let Ex = {‖∆‖< ‖x‖δ} for δ ∈ (0,1). Then from the γ = 1/w case of (41),∣∣∣ f 1/w

w (ξ1)− f 1/w
w (ξ0)

∣∣∣2 1Ex ≤C‖∆‖2,

while from the γ = 1/w case of (39) we have∣∣∣ f 1/w
w (ξ1)− f 1/w

w (ξ0)
∣∣∣2 1Ec

x ≤C‖∆‖2/δ .

Taking δ ∈ (2/p,1), it follows from (Mp) that for some C < ∞, a.s.,

E[(Yn+1−Yn)
2 |Fn]≤C. (81)

The three conditions (79)–(81) show that we may apply Theorem 2.7.4 of [26] to
get Ex(τ

s
r ) = ∞ for all s > γw/2, all r sufficiently large, and all x ∈ S with ‖x‖> r.

Hence, taking γ > 1 and w > 2s0 arbitrarily close to their lower bounds, we get
Ex(τ

s
r ) = ∞ for all s > s0 and appropriate r,x. This proves the non-existence of

moments part of (a)(i) in the case β+ = β−.
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Next suppose that 0 ≤ β+,β− ≤ βc with β+ 6= β−. Without loss of generality,
suppose that 0≤ β− < β+ = β ≤ βc. Then 0≤ s0 < 1/2. We consider the function
Fγ,ν

w given by (48) with θ0 = θ1 given by (23), λ > 0, w ∈ (2s0,1), and γ > 1 such
that γw < 1. Also, take ν for which γw+ β−− 2 < 2ν < γw+ β+− 2. Then by
choice of γ and w, we have that the right-hand sides of (49) and (50) are both even-
tually positive. Since λ > 0, the right-hand side of (51) is also eventually positive.
Thus

E[Fγ,ν
w (ξn+1)−Fγ,ν

w (ξn) | ξn = x]≥ 0,

for all x ∈ S with ‖x‖ sufficiently large. Take Yn := (Fγ,ν
w (ξn))

1/(γw). Then we have
shown that, for this Yn, the condition (79) holds. Moreover, since γw < 1 we have
from convexity that (80) also holds. Again let Ex = {‖∆‖ < ‖x‖δ}. From (41)
and (52),

|Fγ,ν
w (x+ y)−Fγ,ν

w (x)| ≤C‖y‖‖x‖γw−1,

for all y ∈ Br/2(x). Then, by another Taylor’s theorem calculation,∣∣∣(Fγ,ν
w (x+ y)

)1/(γw)−
(
Fγ,ν

w (x)
)1/(γw)

∣∣∣≤C‖y‖,

for all y ∈ Br/2(x). It follows that Ex[(Y1−Y0)
21Ex ] ≤ C. Moreover, by a similar

argument to (40), |Y1−Y0|2 ≤C‖∆‖2γw/δ on Ec
x , so taking δ ∈ (2/p,1) and using

the fact that γw < 1, we get Ex[(Y1−Y0)
21Ec

x ]≤C as well. Thus we also verify (81)
in this case. Then we may again apply Theorem 2.7.4 of [26] to get Ex(τ

s
r ) = ∞ for

all s > γw/2, and hence all s > s0. This completes the proof of (a)(i).
For part (a)(ii), suppose first that β+ = β− = β , and that βc ≤ β < 1. We apply

the function f γ
w with w > 0 and γ > 1. Then we have from (30) and (31) that (78)

holds. Repeating the argument below (78) shows that Ex(τ
s
r ) = ∞ for all s > γw/2,

and hence all s > 0. The case where β+ 6= β− is similar, using an appropriate Fγ,ν
w .

This proves (a)(ii).
It remains to consider the case where β+,β− > 1. Now we apply f γ

w with γ > 1
and w ∈ (0,1/2) small enough, noting Remark 4. In this case (30) with (32) and
Lemma 3 show that (78) holds, and repeating the argument below (78) shows that
Ex(τ

s
r ) = ∞ for all s > 0. This proves part (b). ut

5 Appendix: Properties of the threshold function

For a constant b 6= 0, consider the function

φ(α) = sin2
α +bsin2α.

Set α0 := 1
2 arctan(−2b), which has 0 < |α0|< π/4.

Lemma 11. There are two stationary points of φ in [−π

2 ,
π

2 ]. One of these is a local
minimum at α0, with
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φ(α0) =
1
2

(
1−
√

1+4b2
)
< 0.

The other is a local maximum, at α1 = α0 +
π

2 if b > 0, or at α1 = α0− π

2 if b < 0,
with

φ(α1) =
1
2

(
1+
√

1+4b2
)
> 1.

Proof. We compute φ ′(α) = sin2α +2bcos2α and φ ′′(α) = 2cos2α−4bsin2α .
Then φ ′(α) = 0 if and only if tan2α = −2b. Thus the stationary values of φ are
α0 + k π

2 , k ∈ Z. Exactly two of these values fall in [−π

2 ,
π

2 ], namely α0 and α1 as
defined in the statement of the lemma. Also

φ
′′(α0) = 2cos2α0−4bsin2α0 =

(
2+8b2)cos2α0 > 0,

so α0 is a local minimum. Similarly, if |δ |= π/2, then sin2δ = 0 and cos2δ =−1,
so

φ
′′(α0 +δ ) =−cos2α0 +4bsin2α0 =−φ

′′(α0),

and hence the stationary point at α1 is a local maximum. Finally, to evaluate the
values of φ at the stationary points, note that

cos2α0 =
1√

1+4b2
, and sin2α0 =

−2b√
1+4b2

,

and use the fact that 2sin2
α0 = 1− cos2α0 to get φ(α0), and that 2cos2 α0 =

cos2α0 +1 to get φ(α1) = cos2 α0−bsin2α0 = 1−φ(α0). ut

Proof (of Proposition 1). By Lemma 11 (and considering separately the case σ2
1 =

σ2
2 ) we see that the extrema of βc(Σ ,α) over α ∈ [−π

2 ,
π

2 ] are

σ2
1 +σ2

2

2σ2
2
± 1

2σ2
2

√(
σ2

2 −σ2
1

)2
+4ρ2,

as claimed at (6). It remains to show that the minimum is strictly positive, which is
a consequence of the fact that

σ
2
1 +σ

2
2 −
√(

σ2
1 +σ2

2

)2−4
(
σ2

1 σ2
2 −ρ2

)
> 0,

since ρ2 < σ2
1 σ2

2 (as Σ is positive definite). ut
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