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Abstract While recent growth in modern machine learning techniques has led to
remarkable strides in computer vision applications, one of the most significant
challenges facing learning-based vision systems is the scarcity of large, high-fidelity
datasets required for training large-scalemodels. This has necessitated the creation of
transfer learning and domain adaptation as a highly-active area of research, wherein
the objective is to adapt a model trained on one set of data from a specific domain to
perform well on previously-unseen data from a different domain. In this chapter, we
use monocular depth estimation as a means of demonstrating a new perspective on
domain adaptation. Most monocular depth estimation approaches either rely on large
quantities of ground truth depth data, which is extremely expensive and difficult to
obtain, or alternatively predict disparity as an intermediary step using a secondary
supervisory signal leading to blurring and other artefacts. Training a depth estimation
model using pixel-perfect synthetic depth images can resolve most of these issues
but introduces the problem of domain shift from synthetic to real-world data. Here,
we take advantage of recent advances in image style transfer and its connection with
domain adaptation to predict depth from a single colour image based on training over
a large corpus of synthetic data obtained from a virtual environment. Experimental
results point to the impressive capabilities of style transfer used as a means of
adapting the model to unseen data from a different domain.
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1 Introduction

Recent advances in modern machine learning techniques have resulted in a signifi-
cant growth in various computer vision applications readily deployed in real-world
scenarios. However, the bias occasionally present within the datasets used to train
these machine learning models can lead to notable issues. Such learning-based mod-
els often approximate functions capable of performing classification and prediction
based tasks by capturing the underlying data distribution from which their train-
ing data is sampled. However, even small variations between the distributions of the
training and the test data can negatively affect the performance of the approach. Such
concerns have led to the creation of the field of transfer learning and domain adap-
tation [40], with a large community of researchers actively addressing the problem
of data domain shift.

In this chapter, our primary focus is on the use of image style transfer as a domain
adaptation technique. We utilise one of the fastest-growing and most challenging
areas of research, namely monocular depth estimation, within computer vision as a
means to demonstrate the efficacy of the domain adaptation via image style transfer.

As 3D imagery has become more prevalent within computer vision, accurate and
efficient depth estimation is now of paramount importance within many vision-based
systems. While plausible depth estimation has been possible for many years using
conventional strategies such as stereo correspondence [47], structure from motion
[14, 10], depth from shading and light diffusion [52, 58, 1] and alike, such techniques
often suffer from a myriad of issues such as intensive computational and calibration
requirements, depth inhomogeneity and missing depth information, often resulting
in the need for a post-processing stage to create more accurate and complete scene
depth [4, 8, 3, 5, 35, 43, 6, 2]. Learning-based monocular depth estimation can offer
a way to circumvent such issues as a novel alternative to many of these outdated
approaches [6, 31, 34, 16, 21, 64, 19, 59].

Supervised learning-based monocular depth estimation approaches take advan-
tage of off-line training on ground truth depth data to make depth prediction possible
[31, 34, 16, 17, 67]. However, since ground truth depth is often scant and expensive
to acquire in the real world, the practical use of many such approaches is heavily
constrained.

There are, however, other monocular depth estimation approaches that do not
require direct ground truth depth, but instead utilise a secondary supervisory signal
during training which indirectly results in producing the desired depth [21, 64, 19,
59, 12]. Training data for these approaches is abundant and easily obtainable but
they suffer from undesirable artefacts, such as blurring and incoherent content, due
to the nature of their secondary supervision. However, an often overlooked fact is
that the same technology that facilitates training large-scale deep neural networks
can also assist in acquiring synthetic data for these neural networks [39, 49]. Nearly
photo-realistic graphically rendered environments primarily used for gaming can
be used to capture homogeneous synthetic depth images which are then utilised in
training a depth estimating model.
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While the use of such synthetic data is not novel and can resolve the issue of data
scarcity [2, 32, 18, 49], the variations between synthetic and real-world images can
lead to notable issues during deployment since any model trained on synthetic data
cannot be expected to perform equally well when tested on naturally-sensed real-
world images. Here, we intend to demonstrate the possibility of using style transfer
as a domain adaptation technique. In this vein, in Sections 2 and 3, we briefly outline
the relevant areas of domain adaptation, image style transfer and their underlying
connections and subsequently move on to practically demonstrating the applicability
of style transfer in domain adaptation in the context of monocular depth estimation
trained on synthetic imagery.

2 Domain Adaptation via Manximum Mean Discrepancy

The main objective of domain adaptation is to transfer a model that has encapsulated
the underlying distribution of a set of labelled data from the source domain so that it
can perform well on previously-unseen unlabelled data from the target domain [40].

Within the current literature, this is often accomplished byminimising the distance
between the source and target distributions. One of the most commonmetrics used to
measure the distance between the two distributions is Maximum Mean Discrepancy
(MMD), which is the difference between probability measures based on embedding
probabilities in a reproducing kernel Hilbert space [23, 53].

Assume there exist two sample sets X = {x1, ..., xn} and Y = {y1, ..., ym} with
xi and yi independently and identically distributed from p and q respectively. As
described in [23], in the two-sample testing problem, MMD can be used as a test
statistic by drawing samples from distributions p and q and fitting a smooth function,
which is large on points drawn from p and small on point drawn from q [23]. MMD
is the difference between the mean function values on the two samples. This means
when the samples are from different distributions, the MMD will be large and when
the distributions are equal (p = q), the population MMD vanishes. More formally,
the squared MMD is as follows [33]:
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where φ(.) denotes the feature mapping function from X to R. To reformulate Eqn. 1
in the form of kernel, the function k(x, y) = 〈φ(x), φ(y)〉H in a reproducing kernel
Hilbert space H can be applied to the equation [33]:
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where k(., .) is the kernel function defining amapping to a higher dimensional feature
space. In Section 3, we provide a brief overview of the advances made in modern
neural-based style transfer and its connections with domain adaptation viaMaximum
Mean Discrepancy.

3 Image Style Transfer

Image style transfer via convolutional neural networks first emerged as an effective
stylization technique via the work in [20] and various improved and novel approaches
capable of transferring the style of one image onto another [29, 54, 11] have been
proposed ever since.

Conventionally, the style of an image is represented as a set of Gram matrices
[48] that describe the correlations between low-level convolutional features extracted
from the image, while the raw values of high-level semantic features often constitute
the content of an image. These style and content representations are often extracted
from a pre-trained loss network and are subsequently utilised to quantify style and
content losses with respect to the target style and content images. More formally, the
content loss for a specific layer l of the loss network can be defined as:

Lcontent =

Nl∑
i=1

Ml∑
j=1
| | f li j(x) − f li j(c)| |

2 (3)

where c and x respectively denote the content and the output stylized images, f
represents the loss network [51], f l(x) is the set of feature maps extracted from layer
l after x is passed through f , Nl is the number of feature maps in layer l and Ml

denotes the size (height × width) of the feature map. Similarly the style loss for a
specific layer l of the loss network can be expressed as:
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1
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where s and x respectively represent the style and the output stylized images, and
G[ f li j(x)] denotes the Gram matrix of the feature maps extracted from layer l after x
is passed through f . The overall loss function can subsequently be defined as:

L = λcLcontent (x, c) + λsLstyle(x, s) (5)
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where λc and λs are coefficients determining the relative weights of the style and
content loss components in the overall objective. In the original work in [20], this
objective was minimised directly by gradient descent within the image space, and
although the results of [20] are impressive, its process is very computationally
intensive, leading to the emergence of alternative approaches that use neural networks
to approximate the global minimum of the objective in a single forward pass. Such
approaches [29, 54, 11] utilise neural networks trained to restyle an input image
while preserving its content.

Style transfer can be considered as a distribution alignment process from the
content image to the style image [33, 28]. In other words, transferring the style of
one image (from the source domain) to another image (from the target domain)
is essentially the same as minimising the distance between the source and target
distributions. To demonstrate this connection between style transfer and domain
adaptation (throughMMD), the style loss in Eqn. 4 can be reformulated by expanding
the Grammatrices and applying the second order degree polynomial k(x, y) = (xT y)
as follows [33]:
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where s and x respectively denote the style and the output stylized images, f l
k
(x)

denotes the kth column of f l(x) and F l(x) is the set of features extracted from x
in which each sample is a column of f l(x). Consequently, by minimising the style
loss (reducing the distance between the style of the target image and desired stylized
image), we are in effect reducing the distance between their distributions.

Here, we take advantage of this direct connection between domain adaptation and
style transfer to performmonocular depth estimation by adapting our data distribution
(i.e. real-world images) to our depth estimationmodel trained on data from a different
distribution (i.e. synthetic images). However, while style transfer by matching Gram
matrices is theoretically equivalent to minimising the MMD with the second order
polynomial kernel and leads to domain adaptation, we forego the use of conventional
style transfer and opt for an adversarially trained style transfer approach [66]. Other
than the fact that the adversarially trained style transfer approach originally proposed
in [66] is capable of superior performance and more pronounced changes in the style
of the output image, the main reason for the choice of this approach is that [66] can
transfer the style between two sets of unaligned images from different domains, while
more conventional neural style transfer techniques such as [29] can only accept one
specific image to be used as the style image. Within domain adaptation, this is not
very desirable, especially since not one but tens of thousands of images representing
the same style exist within the target domain. Experiments empirically justifying this
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choice are included in Section 5.2. In the next section, the approach to monocular
depth estimation via style transfer [7] is outlined in greater depth.

4 Monocular Depth Estimation via Style Transfer

Our style transfer based monocular depth estimation approach consists of two stages,
relying on two completely separate models trained at the same time to carry out the
operations of each stage. The first stage includes directly training a depth estimation
model using synthetic data captured from a graphically rendered environment pri-
marily designed for gaming applications [39] (Section 4.1). However, as the eventual
objective of the overall model involves estimating depth from real-world images, we
attempt to reduce the domain discrepancy between the synthetic data distribution
and the real-world data distribution using a model trained to transfer the style of
synthetic images to real-world images in the second stage of the overall approach
(Section 4.2).

4.1 Stage 1: Depth Estimation Model

Here, we consider monocular depth estimation as an image-to-image mapping prob-
lem, with the RGB image used as the input to our mapping function, and scene depth
produced as its output. Usingmodern convolutional neural networks, image-to-image
translation and prediction problems have become significantly more tractable and
can yield remarkably high-quality results. An overly simplistic solution to a transla-
tion problem such as depth estimation would be employing a network that attempts
to minimise a reconstruction loss (Euclidean distance) between the pixel values of
the output and the ground truth. However, since monocular depth estimation is an
inherently multi-modal problem (a problem that has several global solutions instead
of a unique global optimum since several plausible depth values can correspond with
a single RGB view), any model trained to predict depth based on a sole reconstruc-
tion loss tends to generate values that are the average of all the possible modes in the
predictions. This averaging can lead to blurring effects in the outputs.

As a result, many such prediction-based approaches [2, 66, 7, 42, 61, 60, 27, 63]
and other generativemodels [15, 55]make use of adversarial training [22] to alleviate
the blurry output problem since the use of an adversarial loss generally forces the
model to select a single mode from the distribution instead of averaging all possible
modes and generate more realistic results without blurring.

A Generative Adversarial Network (GAN) [22] is capable of producing semanti-
cally sound samples by creating a competition between a generator, which attempts
to capture the underlying data distribution, and a discriminator, which judges the
output of the generator and penalises unrealistic images and artefacts. Both networks
are trained simultaneously to achieve an equilibrium [22]. Whilst most generative
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models generate images from a latent noise vector as the input to the generator, the
model presented here is solely conditioned on an input image (RGB).

More formally, the generative model learns a mapping from the input image, x
(RGB view), to the output image, y (scene depth), G : x → y. The generator, G,
attempts to produce fake samples, G(x) = ỹ, which cannot be distinguished from
real ground truth samples, y, by the discriminator, D, which is adversarially trained
to detect the fake samples produced by the generator.

Many other approaches following a similar framework incorporate a randomnoise
vector z or drop-outs into the generator training to prevent deterministic mapping
and induce stochasticity [27, 42, 37, 57]. However, since deterministic mapping is
not of concern in a problem such as depth estimation, no random noise or drop-out is
required. Empirical experiments demonstrate no significant difference in the output
distribution could be achieved even if stochasticity is encouraged within the model
using these strategies.

4.1.1 Loss Function

The objective of the monocular depth estimation model is achieved via minimising
a loss function consisting of two components. The first is a simple reconstruction
loss, which forces the generator to capture the structural and contextual content of
the scene and output depth images which are as close as possible to the ground truth
depth information. To accomplish this, we use the L1 loss:

Lrec = | |G(x) − y | |1 (7)

While the use of a reconstruction loss can help the network to internally model the
structure and content of the scene, it can also lead to the generator optimising towards
averaging all possible output depth values rather than selecting one, which can lead to
blurring effects within the output depth image. Consequently, the second component
of the overall loss function, an adversarial loss, is introduced to incentivise the
generator to create shaper and higher quality depth images:

Ladv = min
G

max
D

E
x,y∼Pd (x,y)

[log D(x, y)] + E
x∼Pd (x)

[log(1 − D(x,G(x)))] (8)

where Pd denotes the data distribution defined by ỹ = G(x) and x is the input to
the generator and y the ground truth. Subsequently, the overall loss function is as
follows:

L = λLrec + (1 − λ)Ladv (9)

with λ being the weighting coefficient selected empirically.
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4.1.2 Implementation Details

In order to obtain the synthetic data required to train the depth estimation model,
corresponding colour and disparity images are captured using a camera view placed
in front of a virtual car as it automatically drives around a graphically-rendered
virtual environment, with images captured every 60 frames with randomly varying
height, field of view, weather and lighting conditions at different times of day. From
the overall dataset of 80,000 corresponding pairs of colour and disparity images
captured in this manner, 70,000 are used for training and 10,000 are set aside
for testing. The depth estimation model trained using the synthetic dataset generates
disparity imageswhich can be converted to depth using the known camera parameters
and scaled to the depth range of the KITTI image frame [38].

An important aspect of any depth estimation problem is that the overall structure
and the high frequency information present within the RGB view of the scene (input)
and the depth image (output) are aligned as they ultimately represent the exact same
scene. As a result, much information (e.g. structure, geometry, object boundaries and
alike) is shared between the input and output. Consequently, we utilise the capabilities
of skip connections within the architecture of the generator [42, 57, 45, 25, 9] to
accurately preserve high-frequency scene content. The generator, therefore, can
take advantage of the opportunity to directly pass geometric information between
corresponding layers in the encoder and the decoder without having to go through
every single layer in between and possibly losing precious details in the down-
sampling and up-sampling processes.

The generator consists of an architecture similar to that of [45] with the exception
that skip connections exist between every pair of corresponding layers in the encoder
and decoder. As for the discriminator, the basic architecture used in [44] is deployed.
Both the generator and discriminator utilise convolution-BatchNorm-ReLu modules
[26] with the discriminator using leaky ReLUs (slope = 0.2).

All technical implementation is performed using PyTorch [41], with Adam [30]
providing the optimisation (β1 = 0.5, β2 = 0.999, α = 0.0002). The weighting
coefficient in the overall loss function in Eqn. 9 was empirically chosen to be
λ = 0.99.

4.2 Stage 2: Style Transfer as Domain Adaptation

The monocular depth estimation model presented in Section 4.1 can perform very
well on unseen images from the test set of synthetic data captured from the virtual
environment. However, since the model is only trained on synthetic images and
the synthetic and real-world images are from different domains, directly estimating
depth from RGB images captured in the real-world remains challenging, which is
why domain adaptation via style transfer is an important component of the overall
approach.
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Fig. 1: Outline of the approach to monocular depth estimation via domain adaptation using [66].
Domain A (real-world RGB) is transformed into B (synthetic RGB) and then to C (pixel-perfect
depth). A, B and C represent ground truth images, A’, B’ and C’ are the generated images and A”
and B” denote images cyclically regenerated via [66].

The objective of the style transfer component of the approach, therefore, is to learn
a mapping function D : X → Y from the source domain X (real-world images) to
the target domain Y (synthetic images) in a way that the distributions D(X) and Y
are identical. When images from X are mapped into Y , their corresponding depth
information can be inferred using the monocular depth estimation model presented
in Section 4.1 that is specifically trained on images from Y .

Within the existing literature, there have been various successful attempts at
transforming images from one domain to another [66, 36, 46, 50]. Here, the proposed
approach relies on the idea of image style transfer using generative adversarial
networks, as proposed in [66], to reduce the discrepancy between the source domain
(real-world data) and the target domain (synthetic data on which the depth estimation
model in Section 4.2 trained). This approach uses adversarial training [22] and cycle-
consistency [21, 56, 65, 62] to translate between two sets of unaligned images from
different domains.

More formally, the objective is to map images between the two domains X and
Y with the respective distributions of x ∼ Pd(x) and y ∼ Pd(y). The mapping
functions are approximated using two separate generators, GXtoY and GYtoX and
two discriminators DX (discriminating between x ∈ X and GYtoX (y)) and DY

(discriminating between y ∈ Y and GXtoY (x)). The loss contains two components:
an adversarial loss [22] and a cycle consistency loss [66]. The general pipeline of the
approach (along with the depth estimation model 4.1) is seen in Figure 1, with three
generators GAtoB, GBtoA and GBtoC , and three discriminators DA, DB and DC .

4.2.1 Loss Function

Since there are two generators to constrain the content of the images, there are two
mapping functions. The use of an adversarial loss guarantees the style of one domain
is transferred to the other. The loss for GXtoY with DY is represented as follows:
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Method Training Data Error Metrics (lower, better) Accuracy Metrics (higher, better)

Abs. Rel. Sq. Rel. RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253

Eigen et al. Coarse K 0.214 1.605 6.563 0.292 0.673 0.884 0.957
Eigen et al. Fine K 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Liu et al. K 0.202 1.614 6.523 0.275 0.678 0.895 0.965
Zhou et al. K 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Zhou et al. K+CS 0.198 1.836 6.565 0.275 0.718 0.901 0.960
Godard et al. K 0.148 1.344 5.927 0.247 0.803 0.922 0.964
Godard et al. K+CS 0.124 1.076 5.311 0.219 0.847 0.942 0.973

DST Approach K+S* 0.110 0.929 4.726 0.194 0.923 0.967 0.984

Table 1: Comparing the results of depth estimation via style transfer (DST) against other approaches
over the KITTI dataset using the data split in [17]. For the training data, K represents KITTI [38],
CS Cityscapes [13] and S* the synthetic data captured from a virtual environment.

Ladv−XtoY = min
GXtoY

max
DY

E
y∼Pd (y)

[log DY (y)]+ E
x∼Pd (x)

[log(1−DY (GXtoY (x)))] (10)

where Pd is the data distribution, X the source domain with samples x and Y the
target domain with samples y. Similarly, for GYtoX and DX , the adversarial loss is
as follows:

Ladv−YtoX = min
GYtoX

max
DX

E
x∼Pd (x)

[log DX (x)]+ E
y∼Pd (y)

[log(1−DX (GYtoX (y)))] (11)

To constrain the adversarial loss of the generators to force the model to produce
contextually coherent images rather than random semantically meaningless content
from the target domain, a cycle-consistency loss is added that encourages the model
to become capable of bringing an image x that is translated into the target domain
Y using GXtoY back into the source domain X using GYtoX . In essence, after a full
cycle: GYtoX (GXtoY (x)) = x and vice versa. Consequently, the cycle-consistency
loss is as follows:

Lcyc = | |GYtoX (GXtoY (x)) − x | |1 + | |GXtoY (GYtoX (y)) − y | |1 (12)

Subsequently, the joint loss function is as follows:

L = Ladv−XtoY + Ladv−YtoX + λLcyc (13)

with λ being the weighting coefficient selected empirically.

4.2.2 Implementation Details

The architecture of the generators is similar to that of the network proposed in
[29] with two convolutional layers followed by nine residual blocks [24] and two
up-convolutions that bring the image back to its original input size. As for the
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Fig. 2: Qualitative comparison of the results of contemporary state-of-the-art approaches of depth
and ego-motion from video (DEV) [64], estimation based on left/right consistency (LRC) [21] and
depth via style transfer (DST) over the KITTI split.

discriminators, the same architecture is used as was in Section 4.1. Moreover, the
discriminators are updated based on the last 50 generator outputs and not just the
last generated image [66, 50].

All technical implementation is performed using PyTorch [41], with Adam [30]
providing the optimisation (β1 = 0.5, β2 = 0.999, α = 0.0001). The weighting
coefficient in the overall loss function in Eqn. 13 was empirically chosen to be
λ = 10.

5 Experimental Results

In order to demonstrate the efficacy of style transfer used as domain adaptation
technique for the task of monocular depth estimation, in this section, the depth
estimation approach is evaluated using ablation studies and both qualitative and
quantitative comparisons with state-of-the-art monocular depth estimation methods.
The KITTI dataset [38] and locally-captured data are used for evaluations.

5.1 Comparisons against Contemporary Approaches

To evaluate the performance of the monocular depth estimation approach in Section
4 and demonstrate the capability of style transfer used as domain adaptation, 697
images from the data split suggested in [17] are used as the test set. As demonstrated
in Table 1, the monocular depth estimation model trained on synthetic data and
adapted using style transfer (DST) performs better than contemporary monocular
depth estimation approaches directly trained on real-world images [34, 21, 64, 17]
with lower error and higher accuracy. Some of the comparators [21, 64] use a
combination of different datasets for training and fine-tuning to boost performance,
while the approach presented here only relies on synthetic data for training.
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Fig. 3: Demonstrating the importance of the different components of the loss function in the depth
estimation model (Section 4.1).

The data split of 200 images in KITTI [38] is also used to provide better qualitative
evaluation, since the ground truth disparity images within this split are of consid-
erably higher quality and provide CAD models as replacements for moving cars.
As seen in Figure 2, compared to other approaches [21, 64] trained on similar data
domains, monocular depth estimation via style transfer leads to sharper and more
crisp outputs in which object boundaries and thin structures are better preserved.

5.2 Ablation Studies

Ablation studies are integral in demonstrating the necessity of the components
of the approach. The monocular depth estimation model presented in Section 4.1
utilises a combination of reconstruction and adversarial losses (Eqn. 9). In order to
test the importance of each loss component, the model is separately trained using
the reconstruction loss only and the adversarial loss only. Figure 3 demonstrates
the effects of removing parts of the training objective. The model based only on
the reconstruction loss produces contextually sound but blurry results, while the
adversarial loss generates sharp outputs that contain artefacts. When the approach is
trained using the full overall loss function, it creates more accurate results without
unwanted effects. Further numerical and qualitative evidence of the efficacy of a
combination of a reconstruction and adversarial loss can be found in [27].

Another important aspect of the ablation studies involves demonstrating the ne-
cessity of domain adaptation (Section 4.2) within the overall pipeline. As indicated
in Table 2, due to the differences in the domains of the synthetic and natural data, the
depth estimation model directly applied to real-world data does not produce numer-
ically desirable results, which points to the importance of domain adaptation to the
approach. Similarly, Figure 4 qualitatively demonstrates that when no style transfer
is used in the approach, the generated depth outputs contain significant inaccuracies
and undesirable artefacts.

While the connection between domain adaptation by minimising the Maximum
Mean Discrepancy with the second order polynomial kernel and neural style transfer
by matching Gram matrices is briefly outlined in Sections 2 and 3, the approach
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Fig. 4: Exemplar results demonstrating the importance of style transfer. Examples include results
of depth estimation with style transfer via cycle-consistent adversarial training [66], conventional
style transfer approach of [29] and without any style transfer.

presented here does not use conventional neural style transfer and instead requires
an adversarial discriminator [66] to carry out style transfer for domain adaptation.

To demonstrate that a discriminator can reasonably performdomain adaptation via
style transfer, experiments are carried out with the style transfer approach proposed
in [29], which improves on the pioneering style transfer work of [20] by training a
generator that can transfer a specific style (that of our synthetic domain in this work)
onto a set of images of a specific domain (real-world images) by minimising content
and style losses (Eqns. 3 and 4). An overview of the entire pipeline using [29] (along
with the monocular depth estimation model in Section 4.1) is seen in Figure 5.

Whilst [66] is capable of transferring the style between two large sets of unaligned
images from different domains, the neural style transfer approach in [29] requires
one specific image to be used as the target style image. In this work, the target domain
consists of tens of thousands of images representing the same style. Consequently,
a number of synthetic images that contain a variety of objects, textures and colours
that represent their domain are collected and a single image that holds the desired
style is created by pooling features from the images.

To evaluate the performance of the approach regarding the effects of domain
adaptation via style transfer, the data split of 200 images in the KITTI dataset [38]
is used. Experiments are carried out with both style transfer techniques in [66] and
[29], in addition to using real-world images as direct inputs to the depth estimation
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Fig. 5: Outline of the approach to monocular depth estimation via domain adaptation using [29].
Images from domain A (real-world) are transformed into B (synthetic) and then to C (pixel-perfect
depth). A, B and C denote ground truth images and A’, B’ and C’ represent generated images.

model without any domain adaptation. As seen in the results presented in Table 2,
using direct real-world inputs without any domain adaptation via style transfer results
in significant anomalies in the output while translating images into synthetic space
using [66] before depth estimation leads to notably improved results. The qualitative
results provided in Figure 4 also point to the same conclusion.

5.3 Generalisation

The use of domain adaptation via style transfer can make the model more robust
and less susceptible to domain shift in the presence of unseen data. Considering
that the images used in the training procedure of the monocular depth estimation
model (Section 4.1) are captured from a synthetic environment [39] and the data
used to train the style transfer component of the approach (Section 4.2) are from the
KITTI dataset [38], we evaluate the generalisation capabilities of the approach using
additional data captured locally in an urban environment. As clearly seen in Figure

Method Training Data Error Metrics (lower, better) Accuracy Metrics (higher, better)

Abs. Rel. Sq. Rel. RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253

w/o domain adaptation K+S* 0.498 6.533 9.382 0.609 0.712 0.823 0.883
w/ the approach in [29] K+S* 0.154 1.338 6.470 0.296 0.874 0.962 0.981
w/ the approach in [66] K+S* 0.101 1.048 5.308 0.184 0.903 0.988 0.992

Table 2: Ablation study over the KITTI dataset using the KITTI split. The approach is trained using,
KITTI (K) and synthetic data (S*). The approach provides the best results when it includes domain
adaptation via style transfer using the technique in [66].
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Fig. 6: Qualitative results of the proposed approach on urban driving scenes captured locally without
further training.

6, the approach is easily capable of generating sharp, coherent and visually plausible
depth without any training on the unseen images from the new data domain.

6 Limitations

The monocular depth estimation approach discussed in this chapter is capable of
generating high quality and accurate depth with minimal anomalies by taking advan-
tage of domain adaptation via image style transfer. However, the very component of
the approach that enables it to generate highly accurate pixel-perfect depth, namely
style transfer, can also bring forth certain shortcomings within the overall pipeline.
The most significant issue is that of adapting to sudden lighting changes and sat-
uration during style transfer. The two domains of images used here (synthetic and
real-world images) significantly vary in intensity differences between lit areas and
shadows, as is very common in images captured using different cameras in differ-
ent environments. As a result, image regions containing shadows can be wrongly
construed as elevated surfaces or foreground objects post style transfer, leading to
inaccurate depth estimation of said regions. Examples in Figure 7 demonstrate how
such issues can arise.

Moreover, despite the fact that holes (missing regions) are generally considered
undesirable in depth images [4, 8, 3, 35, 43], certain areas within the scene depth
should remain without depth values (e.g. very distant objects and sky). However, a
supervised monocular depth estimation approach such as the one discussed in this
chapter is incapable of distinguishing the sky from other extremely saturated objects
within the scene even with style transfer, which can lead to creation of small holes
where they do not belong.

Additionally, while the approach in [66] has been demonstrated to be very power-
ful in mapping between two sets of unaligned images with similar content, it can be
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Fig. 7: Examples of failures, mainly due to light saturation and shadows.

very susceptible to wrongly synthesising meaningless content. This can especially
happen if certain content (scene objects, geometry, structure and alike) is commonly
found in images from one domain but not the other. Under these circumstances,
the adversarial discriminator in [66] tends to encourage the generator to synthesise
content in the latter domain to compensate for the discrepancies induced by the
differences in overall scene content. Since in domain adaptation via style transfer,
the objective is to transform the style of the images and not their content, this issue
can lead to significant issues in terms of unwanted artefacts and anomalies within
the output.

7 Conclusion

In this chapter, we have primarily focused on demonstrating the viability of image
style transfer as a domain adaptation technique in computer vision applications. The
aim of a domain adaptation approach is to adapt a model trained on one set of data
from a specific domain to perform well on previously-unseen data from a different
domain. In this vein, we have selected the problem of monocular depth estimation
for our experiments since large quantities of ground truth depth data required for
training a directly supervised monocular depth estimation approach is extremely
expensive and difficult to obtain, leading to a greater need for domain adaptation.

Taking advantage of pixel-perfect synthetic depth data captured from a graph-
ically rendered urban environment designed for gaming applications, an effective
depth estimation model can be trained in a directly supervised manner. However,
such a model cannot be expected to perform well on previously-unseen real-world
images as the data distributions to which images from these two domains (synthetic
images and real-world images) belong are vastly different. Since modern advances in
neural style transfer can theoretically be linked to minimising the Maximum Mean
Discrepancy between two distributions with the second order polynomial kernel,
we make use of a adversarially trained cycle-consistent approach capable of trans-
ferring styles between two unaligned sets of images to adapt our real-world data
to fit into the distribution approximated by the generator in our depth estimation
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model. Despite certain isolated issues, experimental evaluations and comparisons
against contemporary monocular depth estimation approaches demonstrate that style
transfer is indeed a highly effective method of domain adaptation.
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