
R. Land, J.H.F. Meyer & J. Smith (Eds.), Threshold Concepts within the Disciplines, 91–103. 
© 2008 Sense Publishers. All rights reserved. 

MICHAEL THOMAS FLANAGAN & JAN SMITH 

 
7. FROM PLAYING TO UNDERSTANDING 

The Transformative Potential of Discourse Versus Syntax in 
 Learning to Program 

INTRODUCTION: THE GAMES STUDENTS NEED TO PLAY 

First year electronic engineering students are no exception to their contemporaries 
in their addiction to computer games.  However, their mastery of these lucrative 
products of object-oriented programming (OOP) does not readily translate into an 
understanding of OOP when presented as a formal first year course. One of the 
fascinations of teaching programming is that, whilst many students learn to 
program without apparent difficulty, a significant proportion finds the activity 
extremely troublesome. This observation may be compounded for students of 
electronic engineering, where threshold concepts (Meyer and Land, 2003, 2005) 
may be ‘nested’ in the curriculum. Such potential thresholds may lie in the 
concepts of OOP, in the exemplifiers dictated by electronic engineering syllabi or 
in the linguistics of a computer language itself. Implications for teaching and 
curriculum redesign vary significantly across this spectrum. In this context, 
students’ problems appear to arise from two sources: firstly, the form of the 
programming language which, to paraphrase Andersen (1990), parasitises English 
but cannot be read as English, an overwhelming threshold conception, or secondly, 
more localised threshold concepts inherent in OOP itself, such as abstract classes 
and interfaces.  Consequently we have adopted a three-fold schema to discuss these 
potentially troublesome concepts (Figure 1).  
 The focus in this chapter is on our third stream: students who find that the 
language itself is a threshold, and cannot make sense of the game’s rule book. 
These are our operationally challenged students (Smith, 2006). This stream will be 
discussed in the context of a linguistic challenge.  The more localised thresholds 
associated with the first two streams will be discussed elsewhere. 

CONCEPTUAL AND OPERATIONAL CHALLENGES 

An analysis of both common mistakes and of the examination questions 
successfully completed by conceptually and operationally challenged students 
suggests the problem is deeper than a simple failure to appreciate the role of the 
individual components of the algorithm, e.g. data structures, data manipulation 
instructions, conditional expressions, control structures, etc.  The language itself 
appears troublesome, and what they face is a translation problem. The students are 
highly qualified and many in the conceptually and operationally challenged 



MICHAEL THOMAS FLANAGAN & JAN SMITH 

92 

streams are among our most successful students in other courses.  The motivation 
of the bulk of such students appears strong, as indicated by their high attendance 
rate and continuing determined efforts to complete each programming exercise 
over two years.   
 

 

Figure 1: Threefold schema of computer language learning problems 

  In hypothesising that this situation is a language problem we have looked at our 
chosen language, Java. In common with most computer languages, it is based on a 
context-free grammar and, in its formal specification (Gosling et al., 2004), its 
authors describe its lexical and syntactical structures in such terms. This facilitates 
its specification, its implementation and, more generally, the discussion and 
resolution of such problems as undecidability.  It has also been said that the 
common base of context-free grammars ‘has also been critical in making it readily 
possible for people to learn such languages’ (Wolfram, 2002).  However, close 
observation of the common mistakes of the operationally challenged stream 

No Prior Experience of 
Programming

Surmount the local 
thresholds 

Fail to surmount the 
local thresholds

Can now program very 
effectively: 

locally challenged, 
transformed 

Cannot program effectively,  
if at all: 

conceptually challenged, 
confused 

Cannot grasp their 
complex 

interactions, i.e. 
cannot come to 
terms with the 

underlying game 

The language itself is the threshold, 
i.e. cannot even make sense of the 

game’s rule book never mind 
interpret a particular rule 

Cannot program 
at all: 

operationally 
challenged, 

bemused 

transformation 
follows 

Meet 'local thresholds' 
e.g. Interfaces 



FROM PLAYING TO UNDERSTANDING 

93 

suggests that we may more fruitfully borrow from a different tradition in semiotics 
and linguistics in attempting to analyse the problem.  In coding such components 
as conditional expressions, iterative loops and variable declarations, student errors 
bear a resemblance to linguistic problems in natural languages as discussed in 
terms of the semiotic concept of the markedness of oppositional pairs (true/false, 
public/private) and of synonym definition (if/whether) (Chandler, 2002; Tobin, 
1990; Battistella, 1996).   

THE THEORY OF MARKEDNESS 

every single constituent of any linguistic system is built on an opposition of 
two logical contradictories: the presence of an attribute (“markedness”) in 
contraposition to its absence (“unmarkedness”) (Jakobson, cited in Chandler, 
2002, p. 110)  

 Markedness is now regarded as linguistically central (Trask, 1999).   Table 1 
summarises the differences between the marked and unmarked forms in such 
natural language relationships. The marked signifier is generally the more complex 
and the one most likely to present problems in learning. 
 
                    Table 1.  The marking relationship (after  Stross, 2005)  

 

 The dominance of the unmarked over the marked is often expressed as the 
number of occurrences of the unmarked form as a percentage of all occurrences of 
both within a significant example of the language (Chandler, 2002, pp. 110-115).  
Our corpora for comparison are the world wide web and Flanagan’s Java library 
(see Table 2).  
    The true/false pair is only weakly asymmetric in Java and the students neither 
perceive the concept of a Boolean pair as difficult nor do they actually find it so.  
However when we come to the keywords public and private, public is highly 
dominant and although operationally challenged students have few problems with 
public, they certainly find the marked sign, private, problematic. They do not, 

Unmarked Marked 
Greater frequency of use within 
language  (dominant form) 

Lesser frequency of use 
 

May not be overtly marked Will be overtly marked 
The implied in an implicational 
relationship 

The implier in an implicational  
relationship     

Less complex morphologically More complex 
Appears in neutralized context Does not appear in neutralized 

context 
Early child acquisition   Late acquisition, more difficult 
Usually first added and last lost in 
language change  

Last added and first lost 



MICHAEL THOMAS FLANAGAN & JAN SMITH 

94 

however, self-identify this as a problem.  In Java, public signifies that the 
following variable has no restrictions on its access, i.e. no special methods have to 
be written to assign a value to it or to obtain its value - the neutral form.  The 
keyword, private, signifies that the following variable does require such methods to 
be incorporated into the class in which the private variables are declared.   The 
public/private problem becomes much more troublesome for operationally 
challenged students when extended to include the even more asymmetric 
public/protected pair.  Protected is a keyword signifying that such special methods 
are needed as for the private keyword, unless the variable it referred to benefits 
from object-oriented concept of inheritance, i.e. an even more cognitively complex 
signifier.    

Table 2. A comparison of dominance within markedness between English and Java.  The 
percentage figure is the dominance of the unmarked form as a percentage of both forms 

Sign 
pairs in 
English 
 

Occurrence  
on www  
June 2006  

Sign pairs 
in Java 
 

Occurrence 
in Java 
library 
 

Student 
perceived 
level of 
difficulty 

Observed 
student 
level of 
difficulty 

true /  
false 

1.2 billion / 
0.4 billion 
[75 %] 

true /  
false 
 

1082 /  
918 
[54 %] 

low low 

public / 
private 

5.2 billion /   
1.9 billion 
[73 %] 

public /  
private 

2959 /  
756 
[80%] 

moderate high 

public / 
protected 

5.2 billion /   
0.6 billion 
[90 %] 

public / 
protected 

2959 /  
223 
[93%] 

moderate very high 

  absent 
implied 
signifier /  
static 

~4000 / 
1000 
[~80 %] 

low very high 

  float/ 
Float 

283 /  
24 
[91 %] 

moderate very high 

  double/ 
Double 

4163 / 
365  
[92%] 

moderate high 

 
 Computer languages that do not have a need for a private signifier do not have a 
designated public one reinforcing the semiotic analogy that we are adopting as this 
resonates with Derrida’s oppositional logic of binarism in which neither term 
makes sense without the other (Derrida, 1976). 
 Difficulties with these issues stand out in operationally challenged students’ 
exercises and exams.  Variables, on their first use, must not only be preceded by a 
keyword signifying its accessibility but must be preceded by a keyword indicating 
its type, i.e. integer, floating point number, alphabetic character. To locally 



FROM PLAYING TO UNDERSTANDING 

95 

challenged students, such declarations are logical if somewhat annoying, but to 
conceptually and operationally challenged students who we suspect are looking at 
Java as they would look at English, or mathematics at best, such declarations are 
problematic.  They would not declare each word as noun, verb, adjective or 
whatever, on first using it in an essay and they would not declare numbers as 
integer or floating point in a mathematical calculation.   
 Thimbleby’s (1999) Critique of Java suggests that:  

there are two quite different sorts of serious problems facing the Java 
programmer, barriers, which are explicit limitations to desired 
expressiveness, and traps, which are unknown and unexpected problems. 
Typically, a barrier reveals itself as a compile time error, or in the 
programmer being unable to find any way to conveniently express 
themselves. A trap, however, is much more dangerous: typically, a program 
fails for an unknown reason, and the reason is not visible in the program 
itself.  

 He exemplifies barriers with the rules dictating where statements importing 
packages (pre-existing collections of Java classes) must occur.  Thimbleby 
discusses this in terms ‘of the design choice having a negative effect on the 
explanation of Java (and, by implication, on the learnability of the language)’.  In 
our experience this does translate, in operationally challenged students’ programs, 
to the incorrect placing of this statement: they place it where first needed rather 
than at a prior position dictated by the Java rules.  Thimbleby’s barriers tend to 
match the mistakes made by our operationally challenged students, his traps tend to 
match locally challenged student errors.  
 The next simple oppositional pair in Table 2 ‘absent implied signifier’/static, is 
highly asymmetric, causes immense problems for operationally challenged students 
but again elicits few comments in questionnaires.  The key word static precedes a 
method that is general, e.g. a mathematical function such as sine.  Its opposite, the 
absent implied keyword, indicates an ‘instance’ method, that is a method that can 
only be associated with an instance of a specific software object, e.g. the method 
that opens a window (the instance of an object) in a computer’s browser.  In object 
oriented programming, it makes sense that the unmarked signifier is the one most 
naturally associated with an object, so natural as to not even warrant a keyword.  
However, the natural unmarked English opposite of static, at least for engineers, is 
not ‘instance’, ‘per-object’ or ‘non-static’, all terms used to denote the absent 
signifier in program documentation and textbooks, it is the word dynamic (70% 
dominant).  This is reflected in the incorrect discussion answers of most 
operationally challenged and many conceptually challenged students where 
dynamic is commonly and explicitly offered as the opposite to static and implicitly, 
if somewhat incoherently, in their attempts at programming. 
  Keyword and variable names may start with or without an initial capitalised 
letter but the two forms are not interchangeable. The keyword float (91% 
dominant) signifies that the following variable is a simple floating point number 
which is referred to as a primitive data type. The word Float signifies the following 



MICHAEL THOMAS FLANAGAN & JAN SMITH 

96 

variable is an instance of an object that contains a floating point number but 
possesses other properties as well. The float/Float pair exemplifies the alien 
difference between a natural language and a symbolic language and the interactive 
complexity of the latter.  In English the failure to capitalise the initial letter of a 
proper noun may raise an eyebrow but have few other consequences.  In Java, 
failure to recognise the difference between a float variable and a Float variable can 
be very serious.  It could, for instance, lead to the drawing of fallacious conclusions 
in equality testing. If we test whether two identical primitive data types are equal 
the response will be yes (true).  However if we test whether two Float objects with 
identical properties, i.e. containing the same floating point number, are equal, the 
answer is no (false).  The equality check, in the case of objects, checks that their 
identities – in effect, their locations within the computer memory – are the same, 
but does not seek to identify their contents. 

THE PROBLEM OF PROGRAM CONTROL AND SYNONYMOUS OPERATIONS 

The conceptually and operationally challenged students also commonly find 
problems with two sets of pair statements that may appear as synonyms but cannot 
always be treated as such. These are the if and switch statements and the for and 
while statements.  What, for the locally challenged students, represent problem-free 
and useful statements allowing control over the flow of their programs become, for 
conceptually and especially operationally challenged students, statements that, 
though not initially perceived as problematic, typically result in blocks of coding 
which start as one form, e.g. an if statement, but drift through nonsense code to end 
as the other half of the pair, e.g. a switch statement. The resonance here is with the 
work of Tobin (1990) in which he discusses the lexical and grammatical problem 
of the difference between if and whether in English.  He believes that the highly 
asymmetric choice of the use of if or whether is not arbitrary but motivated by a 
subtle semantic distinction which revolves around the way in which they are 
perceived within continuous or discontinuous space. The marked member, 
whether, presents possibilities that occupy a continuous abstract internal space 
whereas the unmarked member, if, offers no such semantic integrality. The 
unmarked form offers possibilities perceived as general and the marked form offers 
the cognitively more difficult process of perceiving the possibilities as part of an 
integral set.   
 Table 3 compares these English and Java pairs showing similar dominance in 
analogous Java ‘synonyms’ and we note that alongside existing if/switch problems, 
our operationally challenged students show a similar habit in conflating the coding 
of the for and while statements. 
 The above markedness analysis strengthens the proposition that some students 
are reading code as they would natural language.   In attempting to gain insight into 
this misreading it is worth pursuing the ‘semiotic analogy’ a little further.  The 
markedness analysis suggests that students are interpreting computer syntax as a 
sequence of triadic Peircean signs whereas the earlier, and from the point of view 
of natural language, less adequate Saussurian dyadic signs would be more 



FROM PLAYING TO UNDERSTANDING 

97 

appropriate. Umberto Eco’s conception of the closed and open text presents an 
interesting point at which a reader of an English text and a reader of programming 
code may be contrasted.   Eco’s “model readers” on reading an “open text” make 
up their own mind at many key points in the text, reassessing previous moves from 
this vantage point (Eco, 1979; Cobley & Jansz, 1997).  His “average readers” on 
reading a “closed text” are offered occasions on which they can make up their own 
mind but the range of possible interpretations is limited and ruled by a quite rigid 
logic.  Sadly, for those students who appear to be emulating Eco’s “average reader” 
a computer program, to extend Eco, is a ‘totally closed text’ in which the many 
opportunities at each point in the narrative are not present, the rules are absolute 
and all-embracing.  “ 

Table 3. A comparison of dominance within markedness between two English conditional 
conjunctions and two pairs of Java program flow control statements 

Sign pair 
in 
English 
 

Occurrence  
on www  
June 2006  
 

Sign pair  
in Java 
 

Occurrence 
in  Java 
library 
 

Student 
perceived 
level of 
difficulty 

Observed 
student 
level of 
difficulty 

if /  
whether 

7.1 billion / 
0.9 billion 
[89 %] 

if else /  
switch 

884 /  
64 
[93 %] 

moderate 
 

high 

  for /  
while 

1714 /   
194 
[90 %] 

moderate high 

 
 The frustration that arises when students unwittingly read program code as 
natural language commonly leads to requests along the lines of: ‘can we have some 
notes, like some other courses, which we can learn the subject by rote’. In other 
words, the students want us to facilitate their mimicry. On being refused, the 
request changes to one for some kind of template that would convert rote learning 
‘mimicry’ into ‘programming’.  It is a measure of their real frustration and brings 
to mind Andersen’s (1990) comment on comparing computer and natural 
languages whilst discussing the human-computer interface: 

Complete descriptions of natural semiotic systems rarely exist, and in any 
event their expressions cannot generate the object signs through a causal 
chain, although folklore has often dreamed of that kind of sign: they are 
called spells. 

 Some operationally challenged students, when really dispirited, would like a 
‘spell’ but would settle for mimicry as second best. 
 In this chapter we have exemplified the usefulness of a markedness analysis in 
defining those aspects of programming, that when taken in their totality, present 
the operationally challenged student with an overwhelming threshold conception 
which may equate to what Perkins (2006, p. 42) terms ‘an underlying episteme’: 



MICHAEL THOMAS FLANAGAN & JAN SMITH 

98 

As used here, epistemes are manners of justifying, explaining, solving 
problems, conducting enquiries, and designing and validating various kinds 
of products or outcomes.  

 Frustrated and unable to access this fundamental episteme, the operationally 
challenged students then, in trying to solve their programming errors, compound 
their troubles by further mis-identifying their source.  

METAPHORS AND MISTAKES 

Dijkstra (1989) recognised the problem of the overall complexity of programming 
as a barrier to learning but sadly expressed it in terms of a rejection of metaphor 
and imagination that most now, we believe, would see as unhelpful (Travers, 
1996).  However, in this, he did raise the problem of the use of language with an 
instructive example: 

We could, for instance, begin with cleaning up our language by no longer 
calling a bug a bug but by calling it an error. It is much more honest because 
it squarely puts the blame where it belongs, viz. with the programmer who 
made the error. 

 Our students have major problems interpreting error messages but we do not 
believe that this is simply a problem of an inappropriate metaphor.  It may be a 
small component of the problem − we all prefer to think that the other 
person/machine is at fault.  However changing bug to error will not significantly 
alter the relationship between the student and the computer.  Students do not need 
anthropomorphic prompts to believe errors lie with a faulty machine but their 
response to error messages does bring firmly into consideration the student-
computer interface. The response to error messages, especially that of the 
conceptually and operationally challenged students, is initially not to blame the 
machine but often one of perplexity, even paralysis. They will stare 
uncomprehendingly at what to experienced programmers is a clear well 
documented error message or set of messages.  This response is one of total failure 
of signification.  A typical error message is shown in Figure 2 with added 
explanatory boxes (the student would see the message without the boxes). 
 Maybe the failure of signification is a combination of, to non-experts in Java, 
unfamiliar signs (exception instead of error, symbol to signify the name of a 
variable, method, or class, the use of the object oriented dot convention instead of a 
standard English phrase with spaces between words, thread - concept met but not 
developed in most introductory engineering courses), a juxtaposition of signs, 
some present coincidently (the computer name, both the operating window line 
number and the Java code line number) and, possibly, an overall visual appearance 
that suggests an abstract iconic sign when none exists.   
 Student response once the ‘paralysis barrier’ is surmounted is even more 
instructive.  The multiplicity of errors that are often generated reinforces their 
transference of the origin of their errors to the machine - “I cannot possibly have 



FROM PLAYING TO UNDERSTANDING 

99 

made so many mistakes”. This highlights a difference between a native language 
and a computer program and occasionally can lead to a transformation in the 
students’ understanding of programming.  Make a mistake in speaking such as 
using a wrong tense, the incorrect sentence will sound odd but the sense of the 
conversation will probably not suffer greatly.  A corresponding error in Java, e.g. 
an incorrect variable declaration, may not only prevent compilation but generate a 
cascade of error messages as the subsequent code may no longer be interpretable 
by the compiler even though it contains no syntactic errors.  Students are advised 
that they should always correct the error indicated in the first occurring message 
and then recompile the program - with luck the remaining error messages will 
evaporate.  The operationally challenged students, by and large, do not do so - time 
and time again they obsessively work through the complete error message list.  
However, a few students have commented that the ‘error message evaporation’ 
sparked an appreciation of the interactive complexity of a program and that 
consequently such exercises of first constructing a flow chart directing them 
through this complexity were no longer seen as unnecessary. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.  Typical Java error message 

 
 More recently Christian Holmboe (2002, 2005) has also concluded that teaching 
object-oriented design should be treated as a linguistic exercise. He starts with the 
early Wittgenstein and his language game.  This is a fruitful area for those 
interested in object-oriented design as there are many analogies between the formal 
definitions of object-oriented design (OMG, 2001) and the postulates on objects 
within the Tractatus (Wittgenstein, 1921). Holmboe importantly contrasts the 
specification and learning of object orientation with the ‘early Wittgenstein’ and 

4 helsinki % java Example 1 
 
 
 
Exception in thread "main"java.lang.ArrayIndexOutOfBoundsException: 5 
        at Example1.main(Example1.java:19) 
 
 
 
5 helsinki% 

Terminal window 
line number 

Error at run time 

'Thread' even if 
multi-threading not 
implemented 

Descrription of 
the error 

Java source line 
number on which 
the error may occur Program class name Class name 

repeated 

Method in which the error occurs 
Name of the 
computer % Prompt - 'you can start typing here'  



MICHAEL THOMAS FLANAGAN & JAN SMITH 

100 

the ‘late Wittgenstein’ stressing Wittgenstein’s realisation that language and 
meaning were constructed in social practices rather than from logical reasoning.  
His conclusion that ‘the logically perfect language of class diagrams are not as 
close to natural thinking as may have been intended’ is highly relevant to teaching 
languages such as Java.  His statement that ‘it can be shown that students of data 
modelling struggle with the pragmatics of their prior linguistic experience when 
trying to fit their experiential world into categories and classes’ gels well with the 
conclusions we are drawing, at least for our operationally challenged students. 
However, we believe them not to be peculiar to object-oriented languages, but to 
be generally true of high level languages as revealed by a more basic semiotic 
analysis, although object-oriented design does greatly compound the problems.   

THE SEMIOTICS OF PROGRAMMING AS A THRESHOLD 

Transformative Aspects 

In contrast to the locally challenged and conceptually challenged streams, whose 
localised thresholds arise out of the compounding of specific OOP troublesome 
concepts, e.g. interfaces, with identified troublesome concepts in the applied 
physics underpinning the computing exercises, e.g. complex numbers or electric 
fields, for the operationally challenged students the language itself is the 
overwhelming threshold. Those that do cross this threshold, though they may still 
have to meet the more localised thresholds, in coming to terms with the interactive 
complexity of programming languages undergo a transformation that facilitates an 
understanding not only of the local structures, such as the control statements 
discussed above, but can now grasp many of the structures that underpin computer 
languages at a deeper level, e.g. methods, object-oriented classes.  

Integrative Aspects 

The transformative aspect that leads on to an ability to grasp the underpinning 
structures such as methods and classes facilitates the integration of such concepts 
into more all embracing key procedures such as the instantiation (creation in 
software) of an object. 

Discursive Aspects 

Electronic engineering students at UCL are expected to attain a high level of 
programming knowledge and skills. However computer science is not their 
discipline and consequently they do not benefit, as do computer science students, 
from being in an environment that facilitates their embracing of the ethos of the  
curriculum, a possible factor in the differing ways computer science and non-
computer science students negotiate the liminal space of this overwhelming 
threshold. Nonetheless, there are common features and we have, as have some 
computer science departments (Hanks, 2006), moved from requiring students to 



FROM PLAYING TO UNDERSTANDING 

101 

work singly to work as pairs or threesomes. We have additionally moved to a more 
project based approach. We have repeatedly seen students who having grasped a 
local threshold concept themselves enthusiastically and volubly attempt to lift their 
partners over the same threshold.  

Bounded Aspects  

The identification of the bounded nature of the more localised compounded 
thresholds does present some problems but this is not true of the overwhelming 
linguistic threshold.  The notion of boundedness may best be illustrated by the use 
of specialist terminology that acquires a meaning in one subject that clashes with 
everyday usage. One such as example, commonly perplexing our students, relating 
to computing, is the term ‘deprecate’. Whilst common usage imbues this word with 
negative connotations, in computing it simply means to let an aspect of 
programming gently wither away, e.g. the retention of an outdated method by its 
replacement for many revisions and updates of a programming language. The 
concept of deprecation, then, is bounded by its context of use.  This example 
reinforces our semiotic approach and further examples could be drawn from 
several of the markedness examples discussed above. 

Reconstitutive Aspects 

The locally challenged students generally identify the localised compounded 
thresholds that they meet irrespective of whether they surmount such thresholds.  
The operationally challenged students do not even correctly identify their 
troublesome concepts as outlined in Tables 2 and 3 until they surmount the 
overwhelming threshold.  Then, both they and their class facilitators can recognise 
the transformation demonstrating a shift in learner subjectivity. Our experience of 
observing such a transformation is that it is irreversible and the troublesome, 
incoherent and alien aspects (Perkins, 2006) have been discussed in the 
markedness examples presented above. 

IMPLICATIONS FOR TEACHING PROGRAMMING IN ENGINEERING CONTEXTS 

Our analysis of operationally challenged students suggests that we should 
introduce the language game formally to such students. Indeed Holmboe has begun 
to introduce the language game to his object-oriented design students including 
readings from Wittgenstein but he is addressing a more mature and main stream 
computing class.  However we believe that a gentler introduction would work with 
engineering students and evidence of the validity of such an approach may be 
gained from a second year course which includes an introduction to fuzzy logic 
controllers. Fuzzy logic would, at first sight, appear a likely candidate as a 
threshold concept for engineering students. It aims to turn imprecise – fuzzy – 
statements into the formalism of set theory and program code. This is such a 
strange progression for engineering students that the formalism of the method is 



MICHAEL THOMAS FLANAGAN & JAN SMITH 

102 

preceded by a discussion of language as we use in it everyday life and how we 
might reduce it to a set of rules that may then be implemented digitally.  This 
precipitates a very interesting discussion and fuzzy logic not only causes very few 
problems in the course but is the most popular topic as judged by the statistics of 
the optional questions answered in the examinations.    
 The direction of much of the discussion that informs the teaching of 
programming in computer science – such as which language to teach first, whether 
a knowledge of computer architecture is an essential prerequisite, etc. – is relevant 
to our concerns, but we believe the linguistic and ‘nested’ nature of troublesome 
concepts for engineering students cuts across these dichotomies. Consequently, 
further research into the tipping points of our three streams is required to enable the 
design of exercises addressing threshold concepts and these may differ quite 
significantly for the three streams. The above analysis has been matched by 
analyses of the other two streams leading to a clear appreciation of the nature of the 
compounded local thresholds but we have yet to achieve a meaningful synthesis 
across this spectrum.  We have, as yet, a poor grasp of how the semiotic problems 
impact on the incorporation of grasped local thresholds into the overall threshold 
conception.  Work is in progress on this synthesis. 

REFERENCES 

Andersen, P. B. (1990). A theory of computer semiotics, semiotic approaches to construction and 
assessment of computer systems. Cambridge: Cambridge University Press. 

Battistella, E. L. (1996). The logic of markedness. Oxford: Oxford University Press. 
Chandler, D. (2002). Semiotics: The basics. Abingdon: Routledge. 
Cobley, P. & Jansz, L. (1997). Introduction to semiotics. Royston, UK: Icon Books. 
Derrida, J. (1976). Of grammatolgy (transl. G. C. Spivak). Baltimore, MD: John Hopkins University 

Press. 
Dijkstra, E. W. (1989). On the cruelty of really teaching computing science. CACM, 32(12), 1398- 

1404. 
Eco, U. (1979). The role of the reader: Explorations in the semiotics of texts. Advances in Semiotics. 

Indiana University Press. 
Flanagan, M. T., Michael Thomas Flanagan’s Java scientific library. Retrieved on 10 June 2006 from 

the World Wide Web: http://www.ee.ucl.ac.uk/~mflanaga/java 
Gosling J., Joy B., Steele G., & Bracha G. (2004). The Java™ language specification, third edition, 

Boston: Addison-Wesley. On-line version: http://java.sun.com/docs/books/jls/download/langspec-
3.0.pdf  

Hanks, B. (2006). Student attitudes toward pair programming. In Proceedings of the 11th annual 
SIGCSE Conference on Innovation and Technology in Computer Science Education, Bologna, 2006. 

Holmboe, C. (2002). Revitalising old thoughts: Class diagrams in light of the early Wittgenstein.  In J. 
Kuljis, L. Baldwin, & R. Scoble (Eds.), Proc. PPIG 14, 14th Workshop of the Psychology of 
Programming Interest Group, Brunel University, June 2002, pp. 196-203. 

Holmboe, C. (2005). The linguistics of object-oriented design: Implications for teaching, Annual Joint 
Conference Integrating Technology into Computer Science Education, in Proceedings of the 10th 
Annual SIGCSE Conference on Innovation and Technology in Computer Science Education, 
Caparica, Portugal, pp. 188-192.    

Meyer, J. H. F. & Land, R. (2003). Threshold concepts and troublesome knowledge: linkages to ways of 
thinking and practising within the disciplines. In Rust, C. (Ed.), Proceedings of the 2002 10th 



FROM PLAYING TO UNDERSTANDING 

103 

International Symposium on Improving Student Learning Theory and Practice − 10 years on (pp. 
412-424). Oxford: Oxford Centre for Staff and Learning Development. 

Meyer, J. H. F. & Land, R. (2005). Threshold concepts and troublesome knowledge (2): 
Epistemological considerations and a conceptual framework for teaching and learning. Higher 
Education, 49(3), 373-388. 

OMG. (2001). Unified modelling language specification v1.4. Needham, MA: OMG 
ObjectManagement Group. [OMG web page: http://www.omg.org/] 

Perkins, D. (2006). Constructivism and troublesome knowledge. In Meyer, J. H. F. & Land, R. (Eds.), 
Overcoming barriers to student understanding: Threshold concepts and troublesome knowledge. 
London and New York: Routledge 

Smith, J. (2006). Lost in translation: staff and students negotiating liminal spaces. SEDA Spring 
Conference 2006: Advancing Evidence-Informed Practice in HE Learning, Teaching and 
Educational Development, 8-9 June 2006. 

Stross, B. (2005). Introduction to graduate linguistic anthropology course. Retrieved on 10 June 2006 
from the World Wide Web: http://www.utexas.edu/courses/stross/ant392n_files/marking.htm 

Thimbleby, H. W. (1999).  A critique of Java. Softw., Pract. Exper. 29(5), 457-478.  
 On-line version: Thimbleby, H. W. (1998). A critique of Java, Retrieved on 10 June 2006 from the 

World Wide Web: http://www.uclic.ucl.ac.uk/harold/srf/javaspae.html. 
Tobin, Y. (1990). Semiotics and linguistics. London and New York: Longman. 
Trask, R. L. (1999). Key concepts in language and linguistics. London: Routledge. 
Travers, M. D. (1996). Programming with agents: New metaphors for thinking about computation. PhD 

Thesis, Massachusetts Institute of Technology. On-line version: http://alumni.media.mit.edu/~mt/ 
diss/index.html. 

Wittgenstein, L. (1921). Tractatus logico-philosophicus (transl. C. K. Ogden). London: Routledge.  
Wolfram, S. (2002). A new kind of science. Wolfram Media. 

AFFILIATIONS 

Michael Thomas Flanagan 
Department of Electronic & Electrical Engineering 
University College London 
 
Jan Smith 
Centre for Academic Practice & Learning Enhancement 
University of Strathclyde 
 
 
 




