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CHAPTER TEN

WITHIN-INDIVIDUAL VARIABILITY
OF ABILITY AND LEARNING TRAJECTORIES
IN COMPLEX PROBLEMS

DAMIAN P. BIRNEY, JENS F. BECKMANN
& NADIN BECKMANN

The historical perspective of intelligence is a decidedly between-
subjects affair. This is reflected in the dominance of factor analysis as both
a psychometric tool for validation and as the cornerstone of the theoretical
conceptualisation of intelligence as a hierarchically structured human
attribute (Thurston 1938, Horn and Cattell 1966, Carroll 1993, Stankov
2000b, Schneider and McGrew 2012, McGrew 2009). In spite of the
significant gains made over the last 120 years in our understanding of its
structure, it turns out that knowing what intelligence is and is not
correlated with—the psychometric approach to mapping the nomological
network (Borsboom, Mellenbergh, and van Heerden 2004, Sternberg
1990)—does not actually tell us much about the basis of intelligence. In
this chapter we have a simple objective: to reflect on insights gained in our
use of linear mixed-effects models and experimental manipulations to
investigate how a within-subject, process-oriented approach to human
intellect might better augment our understanding of its correlates.

In this chapter we first briefly remind ourselves of the foundations of
the psychometric approach underlying the Cattell-Horn-Carroll (CHC)
theory of intellectual abilities and how this framework continues to evolve
(Schneider and McGrew 2012, Schneider, Mayer, and Newman 2016). We
then aim to substantiate why the psychometric approach will always
provide a limited account of intelligence and what might be done to
redress this. One of the particularly interesting features of intelligence tests
is the role of complexity, and its corollary, that intelligence is needed to
meet the challenges of complexity in everyday problems. However, what
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is difficult, is not always complex, so it is important to be clear of the
distinction between difficulty and complexity, and we summarise our view
on this. Finally, we present three case studies as (1) the basis of an
argument for the importance of considering a process-oriented account of
the impact complexity manipulations have on performance, and (2) as an
example of how this might be achieved using repeated-measures designs
and linear-mixed effects regression. We conclude with a description of the
core components of psychometric complexity as a paradigm for ongoing
investigation.

A Hierarchical Perspective on Intelligence:
The Psychometric Approach

The CHC theory provides an extensively validated framework for
conceptualizing and measuring human intellectual abilities (Schneider and
McGrew 2012, McGrew 2009). Its foundation is Spearman’s (1904)
recognition of the theoretical importance of positive manifold—that all
cognitive tasks tend to be more or less positively correlated with each
other. Spearman suggested that this correlation reflected a general mental
energy, or ‘g’. Subsequent research (e.g., Horn and Cattell 1966, Stankov
2000b, Thurston 1938) into a diversity of cognitive tasks demonstrated
that performances on some types of tasks tended to be more highly
correlated with each other, than they were with performances on other
types of tasks. Careful analysis of these statistically ‘similar and different’
tasks gave insight into potentially common and distinct functions, in
addition to (or instead of) ‘g’ (Carroll 1993). The observed patterns of
convergent and divergent correlations were directly interpreted as the
manifestation of distinct, fundamental, latent cognitive abilities. Over
time, these abilities mapped out the nomological network of intellect into a
dynamic, three-stratum taxonomical hierarchy, known as the Cattell-
Horn—Carroll (CHC) theory of cognitive abilities (Schneider and McGrew
2012). At the third (top level) stratum is ‘g’. A small number of ‘broad
abilities’ define the second stratum, and a larger number of ‘narrow
abilities’ occupy the lowest level or first stratum. McGrew (2009)
considered the hierarchy “dynamic” not because the nature of the
functions change in degree or type, but because new narrow and broad
ability factors can be added to the taxonomy conditional on them meeting
this validation standard across multiple samples and contexts.
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An Argument for Process-Oriented Accounts

Notwithstanding the extraordinary success of CHC theory in
describing between-subject differences, it has long been recognised that
the individual-differences approach to the investigation of psychological
attributes generally, and intellectual abilities specifically as we have just
described, is incomplete without a consideration of process-oriented
accounts (van der Maas et al. 2017, Cronbach 1957, Deary 2001). Lohman
and Ippel (1993, p 41) citing Cronbach (1957), McNemar (1964),
Spearman (1927) and others, concluded that a major reason why the
individual differences approach to the study of intelligence

“...was unable to achieve one of its central goals: the identification of
mental processes that underlie intelligent functioning”, was because “... a
research program dominated by factor analysis of test intercorrelations was
incapable of producing an explanatory theory of human intelligence”.

They argued for a considered cognitive approach where tasks are
designed to detect theoretically specified, qualitative differences (see also,
Deary 2001). Lohman and Ippel (1993, p 42) were suggesting that the
general idea of test theory as applied statistics (i.e., psychometrics) not
only hampered the development of structural theories for the
measurement of processes, but actually precluded it. This was consistent
with their reading of the earlier recommendation Guttman (1971) had
proposed in his presidential address to the annual meeting of the
Psychometric Society. Here, Guttman contrasted the purpose of
observation in the psychometric testing tradition, which was (and
generally still is) to compare individuals, with his proposed, amended
purpose to assess the structure of relationships among observations. In
effect, Guttman was arguing that if one wishes to better understand the
processes of intelligence, one needs to take a distinctively within-subjects
perspective. It is precisely this agenda that we explore in this chapter.

There have been many theoretical and technical developments over the
last 25 years in particular that have made it easier to address the role of
within-subject variability, we will consider some shortly. Yet, the breadth
and impact of what psychometric tests of between-subject intellect predict
is truly impressive and hard to ignore (Gottfredson, 2018) — the
psychometric tradition has served us well. This ubiquity of prediction is in
no small way responsible for the status of intelligence testing at the very
top of the historical successes of the psychological testing movement of
the 20" century (Schmidt and Hunter 1998). We are certainly not
advocating for a discontinuation of the psychometric tradition. Yet
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psychometric tests do not sufficiently explain why or how a prediction
should hold in the first place. Again, this limitation is well known.
Borsboom, Mellenbergh, and van Heerden (2003) provide compelling
argumentation that within-subject level processing must be explicitly
incorporated in measurement models if we are to substantively link
between-subject models of intellect with what is happening at the level of
the individual. It is interesting to note that whereas it is generally well-
accepted to take a dynamic, situation-dependent perspective on other
individual differences attributes, like personality (Mischel and Shoda
1995, Minbashian, Wood, and Beckmann 2010, Wood et al. 2019), this is
generally not the case for intelligence. This is likely due to the belief that
intelligence tests assess maximal performance (Neisser et al. 1996), with
its ensuing assumption that measures of maximal intelligence and their use
imply “the existence of a stable or permanent capability” (Goff and
Ackerman 1992, p 538). To elaborate on why this is a limited perspective,
we reflect briefly on these aspects of the standard psychometric approach
to developing a test, because this stability is ostensibly antithetical to the
notion of within-subject variability.

The Stability Assumption of Intelligence

So why is intelligence commonly thought to be stable, and why might
this be a problem? First, to be clear, we are not concerned here with the
fact that normative population-based scaling reflects an appearance of
stability over time. Similarly, we are not overly concerned with the
arguments of Cattell (1987) and others (e.g., Ackerman 2017, McArdle et
al. 2002) who suggest that the apparent stability of intelligence is a
necessary outcome of aggregating across multiple abilities that have
different developmental trajectories. In terms of within-subjects variability,
it does not matter too much which level of aggregation one chooses, ‘g’,
broad or narrow. While aggregation may obscure differences, or at worst
preclude their consideration, because these effects are observed at the
between-subject level, a within-subject perspective of intelligence is
precluded either way (Borsboom, Mellenbergh, and van Heerden 2004,
Borsboom 2015).

We believe the more important reason why it has been challenging to
integrate an inherent within-individual mutability into the conceptualization of
intelligence, is because of the limitations in traditional test development
methods and the rigidness of tenets that have evolved to service the
principles of best-test design (e.g., Pedhazuer and Schmelkin 1991, Wright
and Stone 1979). To demonstrate, consider the notion of learning, which
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has at its core a within-subject conceptualization. It is generally accepted
across various domains of education and psychology, that knowledge and
expertise is acquired (at least in part) through the motivated (self-
regulated) investment of cognitive resources - that is, as a direct product of
learning (e.g., Ackerman 1996, Ericsson 2003, Ackerman and Beier 2005).
However, the facilitating cognitive abilities (e.g., Gf) underlying
knowledge acquisition have typically been assumed to be largely immune
(or resistant) to training/learning - that is, to exhibit stability. This in spite
of tasks, like the Raven’s Advanced Progressive Matrices (APM),
requiring induction of rules (i.e., learning) on earlier items to best support
the induction and application of different rules on later items as a central
explanatory process underlying solution (Carpenter, Just, and Shell 1990,
Bui and Birney 2014). Technically, a distinct capacity to learn, separate
from Gf, is not a threat to the stability assumption because this additional
capacity would slot in as a new factor in the CHC framework.

Why the Assumption of Stability is Restrictive

As we have alluded to, the stability assumption has historical and
somewhat pragmatic origins linked to test design principles. Consider an
intelligence test made up of, say, 36 items (like Set II of the APM).
Imagine now that there are individual differences in within-task learning
from item-to-item that exist and operate in ways that change the nature of
the ability being assessed across the test. In such cases, a non-random
source of variance will be added to the measurement. If one considers the
typical test-development process, this variance will be reflected in lower
reliability estimates because, rather than the test measuring one construct,
it will measure at least two reliable but imperfectly correlated ones: (1)
individual differences in the primary intellectual ability of interest, and (2)
individual differences in a secondary, within-task learning factor that
might modify in some way the primary ability being measured. If the
effect of the latter is strong, then the test will appear unreliable and
because reliability is typically considered to be the upper-bound of validity
(Pedhazuer and Schmelkin 1991), our confidence in the validity of the test
as a whole (as measuring what it purports to measure, Borsboom,
Mellenbergh, and van Heerden 2004) will be shaken. In response, the
common practice is to screen out items that demonstrate “instability”— that
is, to exclude items with lower item-total correlations (or factor loadings),
and keep or add items with higher item-total correlations (or factor
loadings). Over repeated test-development iterations, the end result is a
test that captures a narrowly defined and static component of intelligence.
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This is not a new problem. The limitations of traditional psychometrics
has long been recognized as overly restrictive in areas where assessment
of dynamic processes is of interest, for instance, Dynamic Testing (Guthke
and Beckmann 2000, Grigorenko and Sternberg 1998), complex-problem
solving (Beckmann, Birney, and Goode 2017, Dérner and Funke 2017),
and more recently cognitive flexibility (Beckmann, 2014). The point here
is that the psychometric principles of best-test design practice are
challenged by constructs that are by definition dynamic, fluid and
complexly determined by contextual and intra-personal factors. In other
words, rather than having stability and item internal consistency as their
assessment goal, the central focus is on within-subject variability, or as
Guthke and Beckmann (2000, p 22) put it, on “change and lack of
homogeneity”. The notion of constructs entailing abilities to manage
dynamic changes in complexity requires a consideration of what
complexity is, to which we now turn.

Complexity as the “Ingredient” of Intelligence

Jensen (1987) has argued that the most undisputed fact about ‘g’ is that
loadings of tasks on this factor are an increasing monotonic function of the
tasks’ complexity. This has also been observed and reported more broadly
by Gottfredson (1997), who noted that the factor analysis of job attributes
also produces a corresponding complexity-of-work factor. The basic tenet
here is that high g-loadings correspond with performances in tasks,
occupations and work that are more complex - broadly defined, complexity
is the “active ingredient” in tests of intellect (Gottfredson 2018, 1997,
Jensen 1987). Thus the view is that because ‘g’ entails a capacity to deal
with complexity, an independent indicator of complexity are correlations
with (or loadings on) measures of intelligence that increase with task
complexity but all else being equal, not with increases in difficulty
generated by other task features (Spilsbury, Stankov, and Roberts 1990,
Stankov 2000a, Birney and Bowman 2009). However, correlations do not
provide a clear conception of precisely what it is that makes a task
complex (Schweizer 1998). Without a clear theory of complexity,
researchers have often been left little option but to either adopt an eclectic
approach to defining the cognitive complexity of a task (cf Stankov
2000a), or resort to post-hoc interpretations (Gottfredson 1997). This is
appropriate if one’s goal is simply to develop tasks that are good-enough
measures of intelligence, however, a greater emphasis on process accounts
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is needed to understand why these tasks “work”. Decomposing complexity
seems a good place to start'.

Difficulty vs Complexity

In the discussion of cognitive abilities and understanding why
intelligence tests work, it is useful to make a finer distinction between
difficulty and complexity (Beckmann, Birney, and Goode 2017).
Difficulty is atheoretical, in that a rank-ordering of test items that are
solved by fewer and fewer people tells us little about what make items
difficult, just as correlations alone tell us little about complexity. Difficulty
is a statistical concept captured by indices such as the proportion of people
who answer an intelligence test item correctly. It is closely related to
traditional concepts of ability, in that ability is conversely a function of the
proportion of intelligence-test items a person answers correctly, and is thus
a “quantifiable level of a person’s success” (Beckmann, Birney, and
Goode 2017, pl). Complexity on the other hand, is “conceptualized as a
quality that is determined by the cognitive demands that the characteristics
of the task and the situation impose” (p1). In the next section we consider
an extension of this notion, as proposed by Birney and Bowman (2009)
and Birney et al. (2017), and consider the concept of psychometric
complexity to differentiate empirical difficulty effects from more process-
oriented accounts of task complexity.

We present three case studies that entail investigations of different
complexity manipulations that are either observed or designed with the
objective to broaden our understanding of within-subject accounts of
cognitive abilities. Case I tests for complexity (vs difficulty) in four
different tasks that have different within-task complexity manipulations.
Case II considers item-level responses to investigate evidence of
complexity in the correlates of the within-subject performance trajectories
of item-difficulty and item-order on the APM. Finally, Case III considers a
complex-problem solving (CPS) scenario requiring dynamic exploration
and decision making to progress an outcome toward some more or less
specific goal. Again we investigate evidence of complexity in the

! There are limits to the ubiquity of the complexity account. There are certainly
tasks that are neither difficult nor complex yet predictive of fluid intelligence. For
instance, performance on the well-known, simple perceptual inspection time tasks
(Deary 2001), or the finding squares task (Oberauer et al. 2003), appear to impose
minimal storage or processing load, yet are good predictor of Gf (Oberauer et al.
2008, Chuderski 2014).
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correlates of the within-subject trajectories across explicit, theoretically
specified task manipulations and learning opportunities.

Case I: A Within-Subjects Approach to Complexity

Birney and Bowman (2009) aimed to differentiate process-oriented,
theory-linked complexity factors from other factors that make solution
difficult but do not necessarily place higher demands on Gf. They
investigated Gf processes by experimentally manipulating cognitive
demands in four reasoning tasks (see Fig. 10-1). Two tasks came from the
work of Stankov’s individual differences research on the ingredients of
complexity in fluid intelligence by considering working memory place
keepers (WMP, Stankov 2000a, Stankov and Crawford 1993)—a) the
Letter Swaps task in which complexity was manipulated in terms of the
number of serial, mental permutations required of three letters; and b) the
Triplet Numbers task, where complexity manipulations entailed increasing
the nature of conjunctive and disjunctive statements in rule validation of
number size. The other two tasks were based on an explicit cognitive
theory of relational complexity (RC) (Halford, Wilson, and Phillips
1998)——c) the Latin Square task in which relational complexity was
manipulated in terms of the RC demand imposed by the requirement to
integrate elements of an incomplete 4x4 matrix, and independently, the
number of interim solutions to be held in mind (WMP) while doing so
(Birney, Halford, and Andrews 2006, Birney et al. 2012), and d) the
Sentence Comprehension task in which the degree of centre-
embeddedness (RC) was manipulated (Andrews, Birney, and Halford
2006). Two indicators of cognitive demand were considered. The first was
the difficulty effect—task solution was expected to become more difficult
as complexity increased. The second indicator was the complexity effect
described previously. That is, the expectation was that increases in
cognitive load would demand concomitantly increased investment of Gf
resources (Stankov 2000a). This would be evident in a statistically
significant monotonic increase in the strength of the association between
Gf and task complexity on performance. That is, as complexity increased,
the performance of low vs high Gf individuals would diverge. This
moderation of complexity on the relationship between task performance
and Gf we refer to as psychometric complexity. This is to make it clear that
the foundation of the distinction between difficulty and complexity is that
the latter is a testable theoretical statement, whereas the former is an
atheoretical, statistical observation.
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Replicating the methodology of Stankov and Crawford (1993),
repeated-measures analysis of covariance were conducted with Gf (as
measured by Raven’s APM) as the covariate. The difficulty effect was
evaluated by testing the main effects of the complexity level manipulation
on performance. The fest of complexity was the linear contrast of the
complexity level x Gf interaction effect, which, if statistically significant,
was interpreted to be indicative of a monotonic (linear) increasing
association with Gf across the ordered levels of complexity. A summary of
our reported results are presented in Table 10-1.

A. Latin Square B. Sentence Comprehension task

Rule: Each row and each
column must have one
instance of every element
type

“The artist that the waiter
warned the chef about
talked”

Who warned?

C. Letter Swaps Task D. Triplet Numbers Task

JKL If the second digit is the
Swap 1 with 3 largest AND the third digit
Swap 2 with 3 is the smallest, then press,
Swap 1 with 2 yes, otherwise press no

Q JKL Q KL
Q JLK Q ik
Q KJL Q LK)

Fig. 10-1. Example items from Birney and Bowman (2009)

Table 10-1. Summary of partial n? effect sizes from ANCOVA
reported in Birney and Bowman (2009)

Task APM! | Difficulty? Complexity?
Latin Square Task - RC 300 .68 .02
Latin Square Task - WMP ) 53 .09
Sentence comprehension test .26 35 .05
Letter Swaps Test 22 35 A2
Triplet Numbers Test 21 .38 .06

Notes: 1 = Between-subjects main-effect for APM; 2 = Main-effect for task-level
manipulation; 3 = linear contrast of APM x task-level interaction; a = in the LST,
RC and WMP (and their interaction) were included in the one analysis along with
APM, thus only one effect size is reported; bold: p < .05.
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As expected, Gf was a significant covariate of performance in all four
tasks (.21 < partial n? < .30; zero-order correlations range: .14 < r < .49).
Regardless of the complexity manipulation basis, all the tasks became
more difficult as demand was systematically increased (.35 < partial n? <
.88). However, it was not the case that all the manipulations conformed to
the psychometric complexity effect as predicted. The point of departure is
particularly illuminating because it occurred in the one task (the LST) in
which there were two, independent manipulations of cognitive load - the
level of relational integration (RC), and the number of interim-steps
(WMP) required to be kept in mind during solution (see Fig. 10-2). The RC
manipulation in the LST, controlling for number of steps and their
interaction, is a manipulation of relational integration load (zero-order
correlations range: .45 < r < .49). On the other hand, holding multiple
interim steps in mind (greater WMP load) was statistically more highly
correlated with Gf (mean r = .44) than problems that could be solved in one
step (mean r = .34). These results presented evidence of a psychometric
complexity effect for the WMP manipulation but not the RC manipulation.

Latin Square Task

1.00 - Q.\\‘ ......... \

5080 | N '\\ .........
g ., \\
S 060 1 RN ——Low Gf
> ) i
§ 0.40 ——High Gf
5
3
< 0.20 4
0.00

2D1S 2D2S 3D1S 3D2S 4D1S 4D2S
RC Level and Steps

Fig. 10-2. Psychometric complexity with Gf in a Latin Square task. Dashed lines
represent RC-manipulation difficulty effect (low- and high-Gf lines are parallel),
solid lines represent WMP-manipulation psychometric complexity effect (low- and
high-Gf lines diverge for each RC level). 2D1S = level 2 RC and 1 step; 2D2S =
level 2 RC and 2 step; 3D1S = level 3 RC and 1 step; 3D2S = level 3 RC and 2
step; 4D1S = level 4 RC and 1 step; 4D2S = level 4 RC and 2 step. Adapted from
Birney and Bowman (2009).
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In subsequent LST research, Bateman, Birney, and Loh (2017)
compared a standard WMP load condition with a “dynamic-completion”
condition. This latter condition allowed external recording of interim cell
solutions that would otherwise need to be held in WM, effectively
stripping away critical WMP demand while leaving RC load unchanged.
Analyses indicated that performance in the dynamic-completion condition
was significantly correlated with Gf, even after controlling for standard
performance. We see this as converging evidence for Birney and
Bowman’s (2009) conclusions that WMP manipulations were tapping
different aspects of Gf from those related to relational processing (i.e., the
RC manipulations). What is particularly interesting for our current
argumentation, is that Birney and Bowman were able to observe these
differential effects using tests of the psychometric complexity hypothesis.
That is, while both sets of task manipulations (RC and WMP) impacted
performance (performance was better on easier than harder task levels — a
difficulty effect); and while overall, RC- and WMP-level specific
performance scores were all significantly correlated with Gf (a validity
test), only WMP task manipulations moderated the Gf-performance
relationship (a psychometric complexity effect).

The LST example in Case I is a part way step toward a more complete
within-individual, process-oriented approach to intelligence. It is incomplete
because although it considers repeated measures across strong,
theoretically underpinned task manipulations, the design is still largely
that of the multivariate, psychometric approach. What this work does once
again demonstrate however (cf. Lohman and Ippel 1993), is that through
systematic task manipulations that represent theoretically specified aspects
of cognitive demand (a structural hypothesis, if you will), different
parameters from the same task may be isolated for each person. These
between-individual differences parameters, derived from within-individual
performance differences across task manipulations, can then be submitted
to psychometric complexity analyses to investigate and test theories
regarding the processes underlying intelligence.

In the next section we introduce an alternative approach based on
linear-mixed effects regression (LMER) analyses of within-individual
complexity and learning trajectories. We then describe Case II and III
which use these methods to derive the parameters needed to test for
psychometric complexity effects.
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Latent Growth Curve Models and Linear Mixed Effects
Regression

Latent growth curve models provide a statistically preferred alternative
to within-subjects ANOVA analyses (as used in Case 1) and allow more
flexibility to consider cognitive correlates in repeated-measures designs.
While latent growth curve analyses are typically framed as structural
equation models (SEM) (e.g., Schweizer 2006), LMER models, where
observations are clustered within individuals, have also been shown to
produce more or less equivalent tests (Raudenbush and Bryk 2002, Curran
2003, Hox 2010). Both approaches have the desirable property of
modelling growth-curve factors as latent endogenous variables. Whereas
SEM approaches provide full flexibility in modelling multiple latent
predictors (Curran 2003), LMER models seem to have some advantages in
terms of modeling item-linked features in a more straightforward way?.

In our use of these models, to be described in Case II and III, we are
interested in data representing repeated observations (at level 1) clustered
within individuals (at level 2). Level 1 data is associated at the level of the
item-response, and may include a) the individuals’ observed item-accuracy
and item-latency, b) item-level aggregates across individuals, such as
mean item-difficulty, and c¢) theoretical specifications like item-complexity
(e.g., RC or WMP manipulations) or other item-level “active” ingredient
factors. Level 1 data can also include, d) contextual factors associated with
the moment of observation, such as the characteristics of preceding items,
or item-related metacognitive ratings (e.g., perceived item difficulty, or
confidence in the accuracy of one’s response), and e¢) any number of
within-level interaction terms. Level 2 data is invariant over level 1 and
typically include individual differences factors and between-subject
experimental manipulations. The objective of including these variables is
to explain (i.e., decompose) variation in intercepts (means) and slopes
derived from level 1 variables. We now present two cases where we have
used this approach to investigate within-individual performance
trajectories in solving complex problems. These trajectories can be defined
as differences across the unit metrics of the level 1 variables. In the cases
presented we focus particularly on the unit metrics representing item-
complexity manipulations and item presentation order. Item-order
trajectories are of interest because they can be conceptualised as
experience (or learning) curves.

2LMER is also potentially more accessible to people outside of the factor-analysis
tradition.
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Case 1I: Learning and Ability Trajectories in APM

The aim of the study reported in Case II (Birney et al. 2017) was to
model cognitive and non-cognitive correlates of the within-individual
trajectories across items of a well-known intelligence test - the APM. We
defined two sets of trajectory hypotheses—one according to item-
“difficulty” manipulations (to test psychometric complexity) and the other
according to item-order (i.e., learning). We then investigated evidence for
psychometric complexity in cognitive and personality moderators. As our
focus was on repeated measures, it is relevant to reflect on what an
individual’s item-to-item experience of the APM might look like, and how
it fits with our notion of psychometric complexity. To begin, the 36 Set II
APM items were designed to progress in cognitive demand according to
Raven’s (1941) operationalization of intelligence as the capacity required
to perceive relations and educe correlates (Spearman 1927)°. Like most
psychometric tests, item-to-item accuracy accumulates to a total score. In
its use, this single score has been demonstrated to be a unidimensional,
relatively time-invariant (i.e., stable) indicator of a latent cognitive ability,
disconnected from the broader context from which it was collected. In
Birney et al. (2017), we argued that from the test-takers perspective, the
APM test is an idiosyncratic and very much contextualized experience
lasting approximately 40 minutes and likely to be coincident with various
dynamic processes that are (assumed to be) “filtered out” in the aggregated
total score. In our work, we have been interested in what is happening
during that 40 minutes.

Our general goal was to separate the role of learning from performing
within APM using multi-level modelling (MLM)*. First, controlling for
item-to-item experiences, we conceptualized psychometric complexity as a
statistical moderation of the inherent cognitive demand of items according
to difficulty trajectories. We used a Rasch calibration to quantify inherent
item difficulty, rather than accept the assumption that sequential item-
order in an “easy-to-hard” test administration reflects the actual difficulty
experienced by participants. Second, controlling for item-to-item difficulty
(i.e., the Rasch calibrations), we introduced an additional moderation
hypotheses—conceptualized as psychometric learning—as the statistical

3 APM items were ultimately ranked and presented according to the proportion of
the standardization sample who answered correctly (i.e., a statistical criteria),
rather than by any explicit theoretical hypothesis of the nature of the cognitive
resources demanded.

4 LMER is also commonly referred to as multi-level modelling. We will use this
term from here on because it tends to be more descriptive of our use.
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moderation of item-order trajectories and analogous to psychometric
complexity.

Psychometric complexity hypotheses are tested by the statistical
significance of the interaction (i.e., moderation) between cognitive ability
(i.e., Gf) and the experimental task manipulation indicator. To put this
another way, psychometric complexity hypothesises a substantive
association between Gf and task performance that changes in theoretically
meaningful ways depending on the specific level of the task manipulation.
Choice of Gf as the co-moderator was integral because we specifically
designed (or theoretically argued for) task manipulations that demand
investment of Gfto different degrees. However, the co-moderator need not
be a cognitive one. The psychometric complexity paradigm can be applied
to any attribute integral to task performance, as long as the demand on this
attribute can a) be systematically decomposed into an explicit structural
hypothesis, and b) be appropriately implemented and parametrised, ideally
via an experimental manipulation. LMER allows for partitioning of
performance variability into different sources across different levels of
observation. Therefore, psychometric complexity can be tested in non-
cognitive components of a cognitive task alongside the cognitive
components. In case II, we demonstrate such a decomposition to
investigate psychometric complexity effects in both cognitive and
personality attributes as co-moderators.

Building a Multi-Level Theory of APM Performance
Parameters of Complexity and Their Correlates

Following the nomenclature of Raudenbush, Bryk, and Congdon
(2011), an example of the MLM model that Birney et al. (2017) tested is
represented in Fig. 10-3 (which we illustrate here using neuroticism as the
moderator). Because the outcome is binary (0/1), the model used a logistic
link function. There are three parameters of interest at level 1. my; is the
random intercept (mean APM accuracy) for each individual 7; m; is the
random item-difficulty trajectory (slope) for individual i; and similarly, m;
is the fixed item-order trajectory (slope) for individual i. Because item-
order and item-difficulty are modelled simultaneously, the effect of each is
controlled-for by the other (as well as the other variables in the model).
There are three moderator-related level 2 parameters central to our main
research question. The extent that the moderator variable (in our example,
neuroticism) predicts between-individual differences in mean APM is
represented by Pos. The cross-level interaction between the difficulty
trajectory and the moderator variable is P2, and is a parameterisation of
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the level 2 psychometric complexity effect on neuroticism. Finally, B2 is
the parameterisation of the psychometric learning effect on neuroticism
because it represents the moderation of the item-order trajectory (changes
due to item-order can be conceptualised as learning effects). The basis of
the data analysed are the 36-items clustered within each of the N = 252
participants (~ 9000+ observations).

Level 1: A: Psychometric Complexity

Neuroticism
P(Yy=1]mm) =14 High ——

Low ----

Log[Ch / (1- Ll = ny 8
Ng = Mo + T4;.DIFFICULTY, + 1,,.ORDER; + ¢,

Level 2:
Toi = Boo *+ Bot.R + Bo2.G * BoaN + Bos NXG + ry;
Ty =Bio + B11.G + Bia N+ Bis NxG +1y,

Accuracy

Ty = Bao + B2r.G + BN + By NG o L , A ] . ;
-2 -1 0 1 2 3 4
APM Item Difficulty
Where, B: Psychometric Learning
DIFFICULTY = Rasch calibrated item difficulty ! Ne\:‘roticism
High ——

ORDER = item-order Low ----

R = reasoning ability (as a covariate)

G = Group (standard vs confidence)

Accuracy

N = Neuroticism

G here represents a dummy-coded between-subject
experimental manipulation designed as a catalyst for other
dynamic processes. Full details can be found in Birney et al.

(2017). 0 EC— 5 0 5 1 15
APM Item Order (centered)
Fig. 10-3. HLM model and representations of the statistically significant cross-

level interactions of (A) Item-difficulty x Neuroticism effect (B12) and (B) Item-
order x Neuroticism effect (B22). Adapted from Birney et al. (2017, Figure 2).

Findings: As to be expected, reasoning ability (measured
independently of APM) accounted for a substantial proportion of the
variability in the accuracy of item responses. What was somewhat
surprising was that reasoning ability did not moderate the item-difficulty
effect (when it was included as the moderator), nor did it differentially
predict learning across the task. That is, while those with higher reasoning
ability preformed significantly better on APM than those with lower
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reasoning ability, higher reasoning ability did not proffer any particular
advantage in dealing with increased APM item difficulty. This is similar to
the Latin Square relational complexity effect reported in Case I, in that
there was no psychometric complexity effect for LST RC manipulation
either. As for the LST, it may be the case that reasoning ability is not what
differentiates the additional source of difficulty in APM from item to item.
In the LST, Birney and Bowman (2009) suggested the source of cognitive
demand was not relational processing demand, but was instead the
capacity for controlled maintenance of information (Kane et al. 2001). In
related research, Schweizer and colleagues’ (Schweizer 2007, Ren et al.
2014, Ren et al. 2013) report that APM “item-position” effects can be
differentially explained by distinct executive functions. Item-position
effects are comparable to our item-order parameterisation but derived
using SEM approaches rather than LMER models.

As a further brief illustration of the additional information available
from MLM analyses, one of the interesting findings of Birney et al. (2017)
was that the trajectories of participants’ problem-solving were also
impacted by individual differences in neuroticism. As represented in Fig.
10-3 (right panel), the analyses suggested that higher (relative to lower)
levels of neuroticism proffered an advantage in dealing with increased
item difficulty (controlling for item-order), but simultaneously presented a
cost to learning as one progresses through the test (controlling for item-
difficulty). We suggested these findings were consistent with the dual
competing actions account of neuroticism, as simultaneously a propensity
for arousal that at medium levels facilitates performance (Szymura 2010,
Beckmann et al. 2013), and for anxiety (i.e., worry and test anxiety, e.g.,
Moutafi, Furnham, and Tsaousis 2006). Further moderation effects of
APM trajectories by non-cognitive variables are reported in Birney et al.
(2017). We will come back to discuss the implications of these types of
moderators in the discussion section. The core point for now is that even
in a highly studied, extensively validated task such as the APM, there are
substantial insights regarding underlying dynamic processes made more
accessible when within-subject analyses are considered that are not
available from between-subject total scores.

Case I1I: Learning and Ability Trajectories
in a Microworld

In the last case, we reflect on a dynamic complex-problem solving
(CPS) task where we manipulated complexity along different theoretical
dimensions, rather than observe it in action (as in Case II). Like complex-
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problem solving (CPS) tasks in general, the microworlds we used require
an active exploration of the problem space to make decisions and observe
their impact on outcome variables as the problem-solver aims to reach a
more or less specific goal (Wood, Beckmann, and Birney 2009, Dorner
and Funke 2017, Funke and Frensch 2007, Greiff et al. 2015). In addition
to a cognitive propensity to deal with complexity, CPS tasks require a
more dynamic synergy of skills not captured by traditional intelligence
tests (like APM), including self-regulation and creativity (Ddrner and
Funke 2017). In Birney et al. (2018), our core proposition was that if this
is the case, then we should see the impact of such conative variables in a
CPS microworld when it is framed as a learning task. Again, we took a
within-individual, repeated-measures perspective.

The Simulation: The microworld we used was modelled on business
stock management processes. The theoretical complexity of decisions was
manipulated along two independent dimensions intrinsic to this problem,
delays and outflow. Delays occurred with regard to hiring and firing
decisions (framed as being due to time needed to train new hires or due to
required notice periods when firing). Outflow of stock, over and above
sales (framed as being caused by waste, defects, etc.), was the other
variable manipulated. Delays have a knowable relational structure. A
greater delay between decisions and their impact generates a concomitant
increase in cognitive demand, which greater information processing
capacity was expected to mitigate. We therefore hypothesised a
psychometric complexity effect for delay and reasoning ability on
performance. Variable outflow (i.e., random around some fixed mean with
unknown lower and upper limits) compared to constant outflow, results in
less predictable deviations from a targeted stock level. Because of the
inherent uncertainty, variable outflow was expected to make the task
difficult to manage. However, for the same reasons (i.e., uncertainty),
reasoning ability was expected to be less effective in mitigating this type
of difficulty (although there may be some strategies that might help, given
sufficient motivation to attend to detail). In short, we expected reasoning
to show psychometric complexity on the delay manipulation, but not on the
outflow manipulation.

Eight different variants of the microworld were developed by an
incomplete crossing of four levels of delay and three levels of outflow. In
all cases, the goal was to reach and maintain a set net inventory level by
taking into consideration staffing delays and stock outflow over a period
of 30 simulated weeks via the management of the workforce (i.e., number
of staff). Each weekly hiring decision constituted a “trial” within the
microworld. A “run”, consisting of 30 trials, constituted the 30-week
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simulated period for a given microworld variant. That is, the multi-level
structure was such that multiple trials were nested within runs, and
multiple runs were nested within participants. Although this is a three-
level structure, the dependant variable was operationalised as the
cumulated trial penalty score at the end of a run, which reduced the
clustering to a 2-level model (runs and individuals, see Birney et al., 2018,
for details). We derived four performance metrics using an analogous
MLM approach as described in Case II. Fig. 10-4 represents this model
with verbal reasoning as the moderator.

Level 1:

Yy = g + i T+ 115.R + 715.0 + 114D + 7115.0xD + 5. A + €y

Level 2:

Toi = Boo + Por-VRT + 1 o
i = Bro \
T = Pao
i = Bao + Par.VRT + 1y o,
T4y = Bao * Bar-VRT + 1y
75 = Pso

i = Beo + Ber-VRT + 1

Penalty Score

-1000 S

Where,
T = Number of trials completed

R = reasoning ability (as a covariate)
-2000

O = Outflow (control vs random)

D = Delay (control vs delay) 30 40 Ate nfgt 60

A = Attempt number
VRT = Verbal Reasoning Test

Verbal Reasoning — low - - high

Fig. 10-4. Representation of MLM model applied to investigate within-individual
variability in microworld simulation (left) and observed psychometric learning
effects on verbal reasoning (right).

The relevant model parameters (as per Fig. 10-4) were a) overall mean
performance (infercept, moi), b) competency to successfully manage
uncertain outflow complexities (outflow slope, msi,), ¢) competency to
successfully manage systematic delay complexities (delay slope, ns;,), and
d) learning from experience (number of attempts slope, mg,), with each
conditional on the others. A graphical summary of the MLM analyses
combining SEM notation is presented in Fig. 10-5 (modified from, Birney
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et al. 2018, Figure 2). It represents the outcomes of the separate analyses
of each moderator of interest (with general reasoning as a covariate in each
case).

Analyses were conducted using R version 3.4.2 and Linear Mixed
Effects (LME) modelling was performed using the /me4 (Bates et al.
2017) and ImerTest (Kuznetsova, Brockhoff, and Christensen 2016)
packages. Across the 142 participating mid-level industry managers (i.e.,
level 2 units), 2116 level 1 observations were available for analysis.

Following the LMER parameter notation detailed in Fig. 10-4, as
expected, delays compared to no delays (B4o), and variable compared to
constant outflow (P30) were associated with significantly higher penalty
scores, on average. The effect of delay on penalty scores was significantly
more pronounced when outflow was variable (i.e., the within-level
interaction of delay and outflow, Bso, was statistically significant). Further,
performance improved (reduced penalty scores) with increasing number of
attempts (Beo). The cross-level interactions again represented tests of
psychometric complexity and learning. There was evidence for
psychometric complexity of both general reasoning (when included as the
moderator) and verbal reasoning on the delay effect (B41). While higher
general reasoning ability did not proffer any benefit with experience when
included as a moderator®, specific verbal reasoning ability did (Be;, even
after controlling for general reasoning ability as a covariate, ). This
moderation is graphed in the right panel of Fig. 10-4. Birney et al. (2017)
would refer to this as a psychometric learning effect. Within the context of
the broader purview afforded in writing this chapter, an alternative
proposition would be to consider moderation of learning effects to fall
under the general paradigm of psychometric complexity. To achieve this,
one would simply consider attempt number as a unitisation of the
complexity metric, and proceed to test this as before. We will return to this
notion and its implications in the conclusion.

Finally, as expected, in spite of outflow difficulty effects being
observed (B30), there was no corresponding psychometric complexity of
reasoning (narrow or broad) for the outflow manipulation (Bs;).

In terms of the conative variables, controlling for reasoning ability, the
analyses of the personality, motivation, and the emotional regulation
variables indicated that they were, by and large, unable to account for any
further variation in any of the performance metrics. Interestingly, the few

5 Using Fig. 10-4 as a reference, the relevant LMER model would replace VRT
with general reasoning ability as a moderator. In this separate model, the test of
Be1, the term representing the moderation of attempt-number (experience) on
performance by general reasoning, was not significant.
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cases of incremental prediction and psychometric complexity effects of
conative variables we did observe were for mindset variables on the
outflow manipulation. Performance goal orientation was associated with
an unexpected psychometric complexity effect, such that participants with
higher performance goal orientations performed better (relative to those
with lower performance goal orientations) on the easier constant outflow
conditions than the more difficult variable outflow conditions®. That is, it
appeared higher reported performance goals were associated with
pronounced performance improvements on aspects of the microworld
where capability could be demonstrated and failure avoided. This is
theoretically consistent with the extant literature on the distinction
between performance- and learning-goal mindsets (VandeWalle 1997,
Heslin, Latham, and VandeWalle 2005, Dweck 2000).

The use of a microworld served multiple purposes, but primarily it was
chosen to provide a sufficiently dynamic but necessarily structured
framework for the investigation of engaged learning and performance
under experimentally controlled complexity conditions. Within this
context, our findings for domain-general and domain-specific reasoning
abilities were largely as expected. General reasoning is important,
although the specific nature of the simulation may determine the extent to
which investment of domain-specific abilities is beneficial over and above
this. Delays, as we define them, fit well with conceptual definitions of
working-memory demand (Unsworth and Engle 2007, Birney and
Bowman 2009). It seems reasonable to presume that microworld
manipulations could be flexibly skewed to target other cognitive abilities.
This would allow us to investigate their specific roles in dynamic problem
solving also. CPS research tends to address the cognitive aspect of the
CPS challenge quite well (Greiff et al. 2015). The broader challenge
remains how to incorporate and investigate non-cognitive facets within a
complex, dynamic decision making frame (Dorner and Funke 2017). This
is particularly true for conative dispositions that have repeatedly been
demonstrated to be important to reasoning and learning (Birney et al.
2017, Stankov 1999, Stankov and Lee 2017, Bandura 1997, Zimmerman
2002, Giiss, Burger, and Dorner 2017), and where strong claims of
incremental prediction for factors such as grit have been made (Duckworth
et al. 2007).

% This is actually in the reverse direction to the moderation effects we have so far
considered, however this does not change its designation as a psychometric
complexity effect given it is theoretically coherent (though needs replication).
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Fig. 10-5. A graphical representation of the Case III MLM model that shows its
analogous SEM form. The center represents the LME regression variables. The

trial and the delay>outflow interaction term have been omitted because these were

not carried through to level 2 (see, Birney et al. 2018, for details).
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Why the MLM Approach? A brief note

The MLM approach in Case II and III is distinctly advantageous
(Gelman, Hill, and Yajima 2012) compared to the OLS regression/within-
subjects ANOVA used in Case I (Brunner and Austin 2009). MLM uses a
partial pooling process (often referred to as “shrinkage”) that has been
shown in simulation studies to shift estimates of the regression coefficients
and their associated standard errors toward known mean coefficients (i.e.,
in simulated population data). This processes has the desirable effect of
shrinking coefficients that are estimated with small accuracy more so than
those estimated with higher accuracy (Hox 2010), thus intervals for
comparisons are more likely to include zero and statistical tests are
appropriately more conservative in terms of type | errors (Gelman, Hill,
and Yajima 2012). MLM models are comparable to the fixed-links SEM
models of similar intelligence data discussed by Schweizer and his
colleagues (Schweizer et al. 2015, Ren et al. 2012, Wang et al. 2013).
Both approaches are consistent with the general class of latent growth-
curve models. Curran (2003) and others have demonstrated that MLM
analyses are equivalent to latent-growth curve SEM, where the intercepts,
slopes and cross-level parameters that come from MLM (when these are
allowed to vary as random-effects) are equivalent to the latent-growth
variables in SEM (Muthen 1997).

The SEM approach is a suitable and flexible way to analyse the type of
data generated by our research, particularly if one were interested in an
analysis that included multiple latent-variable moderators at level 2
(because LME regression models are constrained to have a single level 1
dependent variable). However, we argue for staying with the MLM
approach for pragmatic reasons. At the time of Curran’s writing, it was
inordinately clumsy to implement MLM models in the available SEM
software. While there have been great improvement since (e.g., MPLUS
has been developed to better handle multi-level long data), in our view the
LMER approach more intuitively allows for multiple level 1 attributes to
be incorporated into the modelling.

Desiderata: Psychometric Complexity as an Investigative
Paradigm

The term psychometric complexity has emerged from our analyses of
the cognitive abilities literature, including earlier between-individual
theories regarding the ingredients of complexity in intelligence (Stankov
and Crawford 1993, Gottfredson 2018). In the work summarised here, we
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have demonstrated psychometric complexity has value in relation to non-
cognitive attributes as well — for instance, in Case II for neuroticism and
Case III for performance-goal orientation. Because psychometric
complexity is linked to structural hypotheses regarding within-individual
processes, tests of psychometric complexity have the potential to provide
insights into the underlying structure of task performance over and above
between-subject investigations.

We hope other researchers might find value in our overall approach to
psychometric complexity. Accordingly, in this final section we provide an
elaborated specification of the core concepts. First, it seems important that
complexity not be confused with complicatedness. Tasks differ in
“complicatedness” when, for instance, they a) require different
behavioural responses, b) demand different sensitivities to triggers for
action, ¢) prime different motivations and inclinations to act, and d)
require different sets of abilities and competencies. Complicated tasks can
be difficult for any number of reasons, and as we have argued here and
elsewhere (Beckmann, Birney, and Goode 2017, Birney, Beckmann, and
Seah 2016), difficulty is an atheoretical, statistical concept. On the other
hand, complexity is psychologically substantive. It is linked to a single,
specific psychological attribute, like Gf, but is a fask quality rather than an
aspect of the person. Manipulations along the continuum of task
complexity are manipulations of requisite demand on the psychological
attribute. In a multidimensional task, we would expect each dimension to
have its own continuum of complexity contributing to the overall
difficulty experienced by the problem-solver. While other random and
unknown systematic factors may also contribute to difficulty, regardless of
their number, difficulty has only one continuum—the operationalised task
performance continuum. Only in a truly pure, unidimensional task will the
complexity continuum coincide with the difficulty continuum. Of course,
such tasks do not exist.

Complexity is relative by definition, in that one task has certain
complexity relative to another, and one variant of a task (a manipulation)
has certain complexity relative to another variant of the same task. To
investigate the nature of intelligence, systematic manipulations based on
structural hypotheses regarding differential demand on intelligence must
be made (Lohman and Ippel 1993). These manipulations are “complexity”
manipulations. Therefore, we define psychometric complexity as the
extent to which within-individual differences in task performance across
complexity manipulations differ as a function of between-individual
differences in that attribute.
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Concluding Comments

The core contribution we aimed to make in this chapter was in regard
to progressing a broader understanding of between-individual differences
(level 2) in within-individual variability (level 1) in complex problem
solving. By investigating level 2 correlates, our work is certainly still
grounded in the between-subject tradition. However, our focus is on the
individual’s localised performance trajectories across repeated occasions
under different experimental conditions (Lohman and Ippel 1993). We
have demonstrated that within-individual, process-oriented facets of
performance can be identified and studied in novel ways using linear
mixed-effects growth-models. Our work and the work of others using
related methods (Schweizer 2007, Ren et al. 2014, Ren et al. 2013),
suggests that the psychometric complexity paradigm may allow us to
better quantify and incorporate more nuanced effects into theory
development, and move us one step closer to producing an explanatory
theory of human intelligence (Lohman and Ippel 1993).
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