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Chapter 2

Artificial Intelligence for Affective Computing:
An emotion recognition case study

Pablo Arnau-González1, Stamos Katsigiannis1,
Miguel Arevalillo-Herráez2, and Naeem Ramzan1

This chapter provides an introduction on the benefits of artificial intelligence tech-
niques for the field of affective computing, through a case study about emotion
recognition via brain (electroencephalography - EEG) signals. Readers are first pro-
vided with a general description of the field, followed by the main models of hu-
man affect, with special emphasis to Russell’s Circumplex model and the Pleasure-
Arousal-Dominance (PAD) model. Finally, an AI-based method for the detection
of affect elicited via multimedia stimuli is presented. The method combines both
connectivity-based and channel-based EEG features with a selection method that
considerably reduces the dimensionality of the data and allows for efficient clas-
sification. In particular, the Relative Energy (RE) and its logarithm in the spatial
domain, as well as the spectral power (SP) in the frequency domain are computed
for the four typically used EEG frequency bands (α , β , γ and θ ), and complemented
with the mutual information measured over all EEG channel pairs. The resulting
features are then reduced by using a hybrid method that combines supervised and
unsupervised feature selection. Detection results are compared to state-of-the-art
methods on the DEAP benchmarking dataset for emotion analysis, which is com-
posed of labelled EEG recordings from 32 individuals, acquired while watching 40
music videos. The acquired results demonstrate the potential of AI-based methods
for emotion recognition, an application that can significantly benefit the fields of
human-computer interaction (HCI) and of quality-of-experience (QoE).

2.1 Introduction

Human-Computer Interfaces have evolved enormously in recent years, with new
modalities for human-computer interaction (HCI) becoming available at increasingly
lower cost. The combination of these new HCI solutions with powerful Artificial
Intelligence (AI) algorithms is providing the means to add the smart tag to many
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solutions for everyday problems. Proof of this trend in the consumer market is the
proliferation of devices that work as or embed smart-assistants, e.g. Google Home,
Apple’s Siri, Amazon’s Alexa. Other examples of new HCI modalities are the recent
developments on Brain-Computer-Interfaces (BCI). BCIs cover a wide spectrum of
applications, spanning from medical purposes to educational uses, like for example
detecting focus levels [1]. Furthermore, it has been suggested that the study of brain
signals (electroencephalography - EEG) could lead to the detection of the emotional
state of individuals at any given moment [2]. The understanding and modelling of
the user affective state could lead to huge advances in the fields of HCI and quality of
experience (QoE), as already pointed out by Dr Rosalind Piccard [3]. Having com-
puters that are aware of the user’s emotional state, would enable these computers to
react to it, improving the user experience by providing more relevant content, in the
case of a smart assistant, or help in one way or the other in the case of an Intelligent
Tutoring System (ITS).

Regardless the application, it is clear that AI techniques, such as supervised
classification, are essential for detecting different emotions from the acquired brain
signals [2, 4, 5], while affect is key to improve the user experience in many different
areas. Efficient affect detection from brain signals is currently an open problem
with numerous research works being conducted every year. Apart from solutions
based on brain signals, there are also video-based affect detection approaches [6, 7].
However, weak emotions, i.e. emotions that are shown with very little intensity, are
difficult to capture from video sources [8]. Therefore, research is generally focused
in recognising emotions from sources that are affected even when the emotion is not
publicly shown, as is the case with brain signals. In this direction, AI techniques are
vital to create user-specific models for recognising emotions.

2.2 Models of human affect

In order to measure or detect an emotion or the affective state of an individual, the
literature proposes a number of human affect models. These models study emotion
following two different approaches, either focusing on the the emotion itself or on
characteristics of the emotion. These models can be categorised as either discrete or
continuous.

2.2.1 Discrete models of affect
Theorists have long discussed a small set of categories for describing emotional
states. In 1962, Tomkins suggested that there are eight basic emotions [9]. Plutchik
later proposed a different set of eight basic emotions: fear, anger, sorrow, joy, dis-
gust, surprise, acceptance, and anticipation [10]. More recently, Ortony, Clore, and
Collins collected a summary of lists of basic emotions [11].

2.2.1.1 Six Basic Emotions and FACS
Probably, the most prominent discrete model of emotions is the one proposed by Ek-
man. This model studies emotions via a discrete approach, suggesting that there is a
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Table 2.1 Facial Action Coding System

Emotion Activated AUs Facial muscles contraction
Happiness 6+12 Cheek Raiser + Lip Corner Puller
Sadness 1+4+15 Inner Brow Raiser + Brow Lowerer + Lip Corner Depressor
Surpise 1+2+5+26 Inner Brow Raiser + Outer Brow Raiser + Upper Lid Raiser + Jaw Drop
Fear 1+2+4+5+7+20+26 Inner Brow Raiser + Outer Brow Raiser + Brow Lowerer +

Upper Lid Raiser + Lid Tightener + Lip Stretcher + Jaw Drop
Anger 4+5+7+23 Brow Lowerer + Upper Lid Raiser + Lid Tightener + Lip Tightener
Disgust 9+15+16 Nose Wrinkler + Lip Corner Depressor + Lower Lip Corner Depressor
Contempt 12+14 Lip Corner Puller + Dimpler

reduced number of primary, or primitive, emotions, i.e. happiness, anger, fear, dis-
gust, surprise and sadness [12, 13], and that all the other emotional states are nothing
but combinations of these primary emotions. Ekman defines each of the basic emo-
tions as not a single affective state but a family of states [14], where each member
of the family shares certain characteristics. The justification of this affirmation is
sustained in his previous work [15], where 60 different expressions of anger were
specified. In that study, all the identified anger expressions shared a specific mus-
cular pattern that was different from the patterns specified in other families, such as
for disgust or happiness. Ekman also related the intensity of the emotion with the
strength of the muscular contractions [16]. Under these assumptions, a model for
mapping facial expression to emotions was proposed. The resulting Facial Action
Coding System (FACS) [17] maps facial expressions, defined by fundamental con-
tractions of facial muscles (Action Units, or AU). Table 2.1 provides a brief example
of a FACS containing seven examples of emotions.

2.2.1.2 Plutchick’s Wheel of emotion
Plutchick [10] proposed an alternative model of human affect. In his approach, emo-
tions are categorised in three different categories (primary, secondary, and tertiary).
The three categories are organised in a conical shape, turned upside down, where the
emotions are located close, according to their relation (see Figure 2.1). Similarly to
Ekman, Plutchik identified anger, disgust, sadness, surprise, fear, and joy, as primary
emotions, but he also added trust and anticipation.

2.2.2 Continuous (dimensional) models of affect
Continuous models treat emotional states as states characterised by continuous vari-
ables in an N-dimensional space. Most notable models are Russell’s Circumplex
Model of affect, the Pleasure Arousal Dominance (PAD) model, and the Lövheim
Cube of emotions.

2.2.2.1 Russell’s Circumplex Model of Affect
Prior to Russell’s proposal of a circumplex model of affect, other researchers had
already proposed a similar system. Schlosberg [18] proposed that emotions are or-
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Figure 2.1 Plutchick’s wheel of emotion, 2D projection. Source: Public domain
image.

ganised in a circular manner, meaning that emotions were better represented in a
bipolar space rather than in six mono-polar spaces, an assumption on which Russell
based his model of affect, along with previous studies about the affective structure
of the English language. Supporting the hypothesis of Schloberg that dimensions
of evaluation, activity, and potency are major components of the meaning of the
language [19], Russell’s model of affect proposed that emotion can be located in a
2-Dimensional space defined by two traits: Arousal, ranging from inactivity to ex-
citement, and Valence (positiveness), ranging from unpleasantness to pleasantness
(see Figure 2.2).

2.2.2.2 The Pleasure-Arousal-Dominance model (PAD)
The Pleasure-Arousal-Dominance (PAD) model consists of a revision of 1979’s Rus-
sell’s circumplex model, representing a more modern version of it, with a few changes
incorporated. Mehrabian and Russell [20] proposed that emotion can be located in
a 3-Dimensional space. The new space is defined by the previously defined dimen-
sions (Arousal, Valence) and includes a third dimension, Dominance, which defines
the control the emotion has over the individual, i.e low dominance values would ap-
ply to emotions such as calm or joy, while strong emotions, such as love or fury,
would have a high dominance value.
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Figure 2.2 Russell’s Circumplex model of Affect

2.2.2.3 Lövheim cube of emotion
A bio-chemistry-based model of affect was proposed by Lövheim [21] in 2011 that
maps emotional states to a 3-Dimensional space defined by the combinations of the
concentration levels of three mono-amines, i.e dopamine, noradrenaline, and sero-
tonin. As discussed by the author in [21], the three dimensions do not match exactly
with the ones described in Russell’s model, but there are some common patterns ob-
servable (see Figure 2.3). This model, apart from being one of the newest in emotion
theory, is very interesting since it explains emotion from a bio-chemical perspective.

2.3 Previous work on emotion recognition

One major difficulty in dealing with the evaluation of emotion recognition methods
is related to the non-existence of a common ground truth that would allow a fair com-
parison between different proposals. This has lead many authors to test and report
their results on proprietary datasets, limiting the impact of their proposals because
of the intrinsic difficulty associated with assessing their performance in relation to
other existing or newly developed methods. One major contribution in this direction
was the DEAP dataset [22], a multimodal dataset specifically created for the analysis
of human affective states. DEAP contains physiological recordings from 32 subjects
while watching 40 music videos, which were selected in order to elicit emotions
in each of the 4 quadrants of Russell’s Circumplex Model [23]. Recordings were
annotated with the associated emotional state via self-reporting, thus DEAP can be
used as a baseline for benchmarking. The creators of DEAP performed an initial
classification experiment for establishing a baseline performance [22]. They used
the Spectral Power of single EEG channels and the Spectral Power Asymmetry from
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Figure 2.3 Lövheim Cube of Emotion. Source: wikimedia.org. GNU Free
Documentation License.

14 pairs of electrodes, and selected the features according to a Fisher Discriminant
Analysis with a threshold set at 0.3.

Previous works on emotion recognition from EEG signals mostly focused on
channel-related features, e.g. [24]. As a first example, Liu et al. [25] proposed a sin-
gle fractal model based on their observation that higher levels of arousal were usually
related to higher values of the Fractal Dimension [26]; as much as valence levels re-
late to fractal dimension differences between concrete electrodes located in the right
and left hemisphere of the scalp. This initial work was validated with their own data
set, and later extended in [27] by using Higher Order Crossings [28] and features
from the General Higuchi Fractal Dimension Spectra in order to understand EEG
signals as multi-fractal signals. Other studies focused on a different type of features
that considers the connectivity between the EEG electrodes. For example, Chen et
al. [29] set a classification problem by extracting groups of such features and studied
the performance of each set. In particular, they analysed Pearson’s Correlation [30],
Phase Coherence [31], and Mutual Information, which led to the best results. Other
works, such as Gupta et al.’s [32], used graph-theoretic features to classify emotional
states through support vector machines and relevance vector machine classifiers.

2.4 Datasets for emotion recognition

Since EEG signals are very dependent on the individual, solutions proposed by dif-
ferent authors are potentially not generalisable for other individuals. For this reason,
different benchmarking datasets have been made publicly available over time for
providing a common ground for testing different proposals. Up to now, five major
datasets have been publicly released: DEAP [22], MAHNOB [33], DREAMER [34],
AMIGOS[35] and SEED [36].

These datasets have been created by recording EEG and other physiological
signals of different individuals, while being exposed to different emotional stimuli
in the form of video sequences. MAHNOB, DREAMER, SEED, and AMIGOS used
film excerpts, while DEAP used music videos. There is also difference in the EEG
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Table 2.2 Overview of the different available datasets

Dataset Subjects Video Video Video Recording Channel Sampling
No. content duration device No. frequency

DEAP 32 40
Music

60 s
Biosemi

32
512 Hz

videos Active II (downsampled
to 256 Hz)

MANHOB 27 20
Excerpts 34.9-117 s Biosemi

32
512 Hz

from movies (µ = 81 s) Active II (downsampled
to 256 Hz)

DREAMER 23 18
Excerpts

60 s
Emotiv

14 128 Hzfrom movies EPOC

AMIGOS 40
16 + 4 Excerpts 45s Emotiv

128 Hz(Two protocols) from movies Long videos EPOC 14

SEED 15 15
Excerpts

240 s
ESI

63
1000 Hz

from movies NeuroScan (downsampled
to 200 Hz)

signal acquisition devices. DEAP and MAHNOB used the Biosemi Active II system,
a non-medical-grade high performance EEG recording and monitoring device, SEED
used a similar EEG recording system, the ESI NeuroScan, while DREAMER and
AMIGOS used the Emotiv EPOC wireless EEG headset. A brief overview of these
datasets is provided in Table 2.2.

As can be observed from Table 2.2, DEAP, MAHNOB and SEED have been
recorded using high quality EEG-recording devices, while DREAMER and AMI-
GOS datasets have been recorded using consumer-grade devices, namely the Emotiv
EPOC. The experimental protocol applied for data acquisition was very similar for
all datasets. The participant would watch the stimuli in random order and rate the
felt emotion immediately after exposure to each stimulus. An exception to this pro-
tocol is found in the SEED dataset, where participants did not provide the subjective
ratings, rather the dataset is annotated with the emotions each video is supposed to
elicit and video sequences were presented in a specific sequence.

Since the main purpose of these datasets is to help researchers model human
emotions from EEG sources, the samples are annotated according to emotional mod-
els. Excluding SEED, the examined datasets contain recordings annotated according
to Russell’s model (see section 2.2.2.1 for more details) or a revised version of the
model, such as the PAD model (see section 2.2.2.2). Annotations were acquired
through self-reporting using a standard scale designed for the self-report of emo-
tions, i.e. the Self Assesment Manikin (SAM) scale [37]. SAM is composed by
three different sets of 5 manikins each, with the central one corresponding to the
neutral emotion and the extremes corresponding to the highest and lowest possible
value for each of the scales.
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2.5 Proposed methodology

Our proposal is based on using both connectivity features and energy features si-
multaneously. While energy features provide information about how the energy is
distributed across the EEG signal bands, connectivity features study the interactions
between different EEG channels and enrich the data provided by the former. The
combination of both types of features, along with the use of a feature reduction
scheme that allows the classification to be applied in a low-dimensional space, en-
dows the proposal with the ability to distinguish low and high levels of arousal and
valence more accurately than other state-of-the-art methods recently reported in the
emotion recognition literature.

2.5.1 Connectivity Features
According to Chen et al. [29], mutual information is a good indicator of the con-
nectivity between EEG channels. Mutual information measures how informative a
random variable is to another. Its calculation is based in entropy, which is calculated
as:

H(X) =−∑ pi · log pi (2.1)

where pi is the probability of the i-th element of time series X . This expression
allows to compute the mutual information between two signals X and Y as:

MI(X ;Y ) = H(X)−H(X |Y ) (2.2)

or alternatively as:

MI(X ,Y ) =−∑ pXY
i j · log

(
pXY

i j

pX
i pY

j

)
(2.3)

where pXY
i j is the joint probability of the i-th element of time series X and j-th ele-

ment of time series Y .
In this work, we have used mutual information as implemented by Moddemei-

jer [38], and for the replication of Chen’s experiment [29], we have used the same
toolbox [39]. In particular, we have applied the floor function on the original signals,
which rounds each value to the nearest integer that is lower or equal than it.

2.5.2 Energy Features
For each EEG signal X and frequency band f = { α (8-13 Hz), β (14-30 Hz), γ

(30-47 Hz), θ (4-7 Hz)}, the energy was extracted as:

E f (X) = ∑X2
i (2.4)

where Xi is the i-th element of signal X filtered in the frequency band f .
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The Relative Energy (RE) and the Logarithmic Relative Energy (LRE) for each
combination of channel and frequency band were then extracted using the following
formulas:

RE f (X) =
E f (X)

Eα(X)+Eβ (X)+Eγ(X)+Eθ (X)
(2.5)

LRE f (X) = log(RE f (X)) (2.6)

where f represents the frequency band (α,β ,γ,θ).

2.5.3 Dimensionality reduction
Once the Mutual Information and Energy Features were extracted from the EEG
signals, an ad-hoc feature reduction scheme was applied prior to classification. To
this end, a number of dimensions d is initially selected, and a one-way analysis of
variance (ANOVA) is performed in order to detect which features are significantly
different across the available classes and discard features with a p-value above a
threshold. This threshold was set to 0.01 in this work. When less than d features are
retained, this threshold is iteratively incremented by 0.01 until more than d features
have been selected. A Principal Component Analysis (PCA) was then applied to
further reduce the dimensionality of the remaining data to the established parameter
d, which is set by integrating it within the grid search process required to tune the
kernel-dependent SVM parameters, as explained in the following section.

2.6 Experimental results

Results obtained with the proposed method were compared to the ones obtained by
using the Koelstra et al. [22] and the Chen et al. [29] methods, both implemented
as indicated in their original publications. Koelstra et al. extracted the Spectral
Power features for the different bands (alpha, slow alpha, beta, gamma and theta)
and the asymmetry of 14 different pairs of those Spectral Power features, and then
applied the Fisher Discriminant Analysis to reject features with Ji ≤ 0.3, Ji being the
Fisher linear discriminant for the i-th feature, before using a Naive Bayes classifier.
Similarly, Chen et al. computed the mutual information between all pairs of EEG
channels, without applying any filter in the frequency domain. Then, they applied
the same feature selection method as in [22] to discard the less correlated features.

To provide a fair comparison, all competing methods were tested on the DEAP
dataset and evaluated under the same experimental setting, namely a leave-one-out
(LOO) cross validation scheme applied separately for each individual in the dataset.
This process yielded a total of 40 different trained models per user (one per video).
At each iteration of the cross validation procedure, one sample of an individual was
used for testing the model and the rest of the individual’s samples were used for
training. Performance metrics were then averaged across all iterations in order to
determine the classification performance for each individual. The class labels for
each sample were computed as in the Koelstra et al. and Chen et al. works, by
thresholding the original valence and arousal values to Low and High depending on
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Table 2.3 F1-scores and standard deviation across individuals obtained with each
method

Koelstra et al. [22] Chen et al. [29] Proposed
AROUSAL 0.5333 (0.1009) 0.4167 (0.0860) 0.5806 (0.1415)
VALENCE 0.6122 (0.1262) 0.6219 (0.1158) 0.6715 (0.1077)

whether the original value was less than 5 or equal or higher than 5 respectively.
Following this approach, the problem of predicting the valence and arousal values
was converted to two binary classification problems. The Support Vector Machine
(SVM) classifier with a Radial Basis Function kernel was selected in the proposed
work and was applied using the libSVM interface for Matlab R2014a [40]. For
estimating the SVM parameters, we used a grid-search for obtaining the best C and
γ . Furthermore, we also added to the grid the optimal number of dimensions d for the
dimensionality reduction as an additional parameter. Matlab R2014a was also used
for applying the compared methods by employing the available implementation of
Naive Bayes (fitNaiveBayes).

The conversion of the valence and arousal values to binary values resulted in the
dataset being considerably unbalanced, for both valence and arousal. This makes the
average classification accuracy a misleading measure of performance, given that a
classifier that is biased towards the largest class may yield higher values. Hence, we
have selected the average F1-score as the measure for evaluating the performance
of the competing methods. The final F1-score was calculated by averaging the F1-
scores obtained for each of the 32 individuals in the DEAP dataset. Table 2.3 presents
the average F1-scores and the standard deviations achieved for the proposed and the
examined methods.

As seen in Table 2.3, the proposed approach performed better than the Koelstra
et al. and the Chen et al. methods for both valence and arousal. Furthermore, average
F1-scores for valence are higher than for arousal for all methods, independently from
the features and classification method used. This indicates that the original EEG
recordings may be better suited to predict this variable.

For arousal, the proposed method reached an average F1-score of 0.5806, which
is considerably higher than the one achieved by the second best method, which is
Koelstra et al. It is noticeable that Chen et al. yielded an F1-score below 0.5, which
indicates that the method performs worse than by systematically choosing the domi-
nant class for each individual. Koelstra et al. performs only slightly higher than 0.5.

In terms of valence, all methods yield average F1-scores that are significantly
higher than 0.5. The proposed method yielded an average F1-score of 0.6715, which
is again significantly better than the next highest value, which is 0.6219 and corre-
sponds to Chen et al. In this case, Koelstra et al. scores only slightly below (0.6122).
With regard to the variance of the results across different subjects, there is not much
difference between the three approaches, and only a slight advantage is observed in
favour of the proposed method.

It is also worth mentioning that, apart from the lower F1-score compared to
valence, the prediction of arousal using the proposed approach exhibited the highest
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Table 2.4 p-values acquired using the one-tailed Wilcoxon’s signed rank test

Chen et al. [29] Koelstra et al. [22]

AROUSAL < 10−4 0.0280

VALENCE 0.0009 0.0073

variance across different subjects, out of all entries in Table 2.3. This indicates that
the performance for predicting the level of arousal differed considerably between
individuals, supporting the previous argument that the method performs worse at
predicting arousal compared to valence.

In order to test the statistical significance of the results acquired for the proposed
method, we computed the significance statistic p of two-sampled tests, comparing
our proposal to each of the competing methods. Due to the fact that none of the pair
of distributions followed were normal or homoscedastic, as they did not fit a nor-
mal distribution (p > 0.05 for Lilliefors test) or they did not have similar standard
deviations (p > 0.05 for Bartlett’s test), we used a non-parametric alternative to Stu-
dent’s t-Test, the one-tailed Wilcoxon’s signed-rank test to compute the significance
statistic p of the F1-scores. The p-values obtained using the Wilcoxon’s test are dis-
played in Table 2.4, showing that the improvements in performance in relation to the
compared methods were statistically significant and outperformed Chen et al.’s and
Koelstra et al.’s approach, with a significance level p < 0.05 in both cases.

To further demonstrate the difference in performance between the three exam-
ined methods, Figure 2.4 shows the boxplots for the distributions of F1-scores ob-
tained across the different individuals, for both valence and arousal. The horizontal
line within each box represents the median F1-score m, across all individuals. The
bottom and top edges of the box refer to the 25th and 75th percentiles, q1 and q3,
respectively. The whiskers represent the interval [m−1.57 (q3−q1)√

(n)
,m+1.57 (q3−q1)√

(n)
].

Any measurement outside this interval is considered as an outlier and is represented
by using a cross.

Results presented on Figure 2.4 are consistent with the data shown in Table 2.3.
Regarding arousal, the median F1-score for the proposed method appears signifi-
cantly higher than for the other methods, but the bigger box indicates a higher vari-
ance. For valence, the three methods present different variances, and the median
F1-score is again higher for the proposed approach, indicating a better overall per-
formance.

2.7 Conclusions and discussion

The performance of classification-based approaches for emotion recognition depends
on many different factors, such as feature extraction, feature selection, or the classi-
fier used. In emotion detection from EEG signals, it is common to have a small num-
ber of training samples with a relatively high dimensionality, making the problem
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a) Arousal b) Valence
Figure 2.4 F1-scores comparison

difficult to address. In this chapter, we have proposed a feature combination method
for emotion recognition from EEG signals that uses both connectivity and channel-
based features. In particular, the distribution of the energy between EEG frequency
bands and the connectivity between EEG electrodes have been combined under a
unified classification approach. To compensate the increase in the dimensionality
of the data, the proposed method employs a feature reduction method that selects
features according to their significance level as computed by a one-way ANOVA,
and them applies PCA on the remaining set. Finally, classification takes place in
a low dimensional space. Overall, the proposed method resulted in a considerable
increase in performance at predicting both the valence and arousal dimensions of an
emotional state, in terms of the average classification F1-score.

As a shared limitation with most other existing methods, the classification in-
stances are the entire EEG recordings. This limits the practical application of the
approaches within a real setting where actions need to be triggered in response to
an emotion. In these cases, the detection will suffer a delay that depends on the
length of the recording, which may or may not be acceptable in each particular case.
Windowed approaches have recently been attempted to solve this problem, e.g. [41].
This would allow a seamless integration with existing applications, including recom-
mendation systems and intelligent tutors, e.g. [42].

Another limitation of the presented work is related to the reconstruction of the
emotion by using two-dimensional mappings based on valence and arousal levels.
This is also a challenging problem. Firstly, because it requires a simultaneous correct
prediction of the two variables in order to locate the emotion in the right quadrant.
Secondly, because different emotions in the same quadrant need to be distinguished
by using quantifiable valence and arousal levels.

Finally, other works have already demonstrated the benefits of data fusion ap-
proaches for emotion recognition and used multimodal models to combine features
and/or scores from different sources of information, e.g. [22]. We believe that the
proposed feature reduction mechanism also has potential in such context.
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Overall, the acquired results demonstrate the potential of AI-based methods for
emotion recognition, an application that can significantly benefit the fields of human-
computer interaction and of quality-of-experience.

Acknowledgements

We would like to thank Philippe Geril for allowing us to repurpose part of the materi-
als previously presented in the 30th European Simulation and Modelling (ESM) con-
ference [43]. This chapter was partially supported by the Spanish Ministry of Econ-
omy and Competitiveness through projects TIN2014-59641-C2-1-P and PGC2018-
096463-B-I00.

References

[1] Huang J, Yu C, Wang Y, et al. FOCUS: enhancing children’s engagement
in reading by using contextual BCI training sessions. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM; 2014.
p. 1905–1908.
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