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Abstract. The classical Mersenne problem has been a stimulat-
ing challenge to number theorists and computer scientists for many
years. After briefly reviewing some of the natural settings in which
this problem appears as a special case, we introduce an analogue
of the Mersenne problem in higher rank, in both a classical and
an elliptic setting. Numerical evidence is presented for both cases,
and some of the difficulties involved in developing even a heuristic
understanding of the problem are discussed.

1. Introduction

The Mersenne problem asks if Mn = 2n − 1 is prime for infinitely
many values of n. Three and a half centuries after Mersenne’s death
this problem remains inaccessible. In addition to their position in num-
ber theory, Mersenne primes have arisen in diverse areas of mathemat-
ics, including group theory [11], ergodic theory [26] and string the-
ory [12]. Their properties have also led some fine minds astray [2].
Wagstaff [25] modified some considerations by Gillies [13] to produce
a heuristic argument of the following shape about the distribution of
Mersenne primes: If various congruences satisfied by the Mersenne
numbers behave like independent probabilistic events, then the num-
ber of Mersenne primes less than X should be about

eγ

log 2
log logX = (2.5695 . . . ) log logX.

Moreover, if n1, . . . , nr are the primes for which Mnj is prime, then the
argument predicts that

log logMnj

j
−→ log 2

eγ
.(1)

There is little hope that this heuristic argument could ever be tight-
ened up to become a proof, but it is certainly suggestive. For example,
plotting log logMnj against j gives an extremely close agreement with
the prediction – though it is hard to attach statistical significance to a
finite sample of an infinite problem. The 39 known Mersenne primes
behave very much in accordance with (1) – see the Prime Pages [3]
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for the details. The reason so few Mersenne primes are known is that
the rapid growth rate in the sequence (2n − 1) means that huge num-
bers must be tested for primality, and although the special shape of
Mersenne numbers permits very rapid prime testing, even finding the
first 39 has taken thousands of computers many years, running a dis-
tributed program.

2. Other settings of the Mersenne problem

One approach to the Mersenne problem is to try to see it in different
contexts; several of these will be described below. A remarkable feature
of the second and third of these is that for some special cases it is pos-
sible to prove the appearance of infinitely many primes. Our purpose
here is to expand on the fourth and fifth of these, and to describe heuris-
tic and computational evidence for the expected behaviour. There are
sharp generalisations or modifications of the Mersenne problem to other
specific questions (for example, see [1], [19]); we are primarily interested
in naturally arising families of problems which may shed some light on
the Mersenne problem.

2.1. Lehmer–Pierce sequences. Fix a monic polynomial f(x) =
xd + ad−1x

d−1 + · · ·+ a0 ∈ Z[x], with factorization over C

f(x) = (x− α1) . . . (x− αd).(2)

Following Pierce and Lehmer, associate a sequence of integers to f by
defining

∆n(f) =
d∏
i=1

|αni − 1| for n ≥ 1.(3)

For the polynomial f(x) = x− 2 these are the Mersenne numbers. In
any case, the resulting sequence is again a divisibility sequence, and
an analogue of the heuristic arguments of Wagstaff may be applied to
it (once generic divisibility is taken care of: ∆n(f) is always divisible
by ∆1(f); if f is a reciprocal polynomial then ∆n(f)/∆1(f) is always
a square when n is odd). The rate of growth of the sequence is deter-
mined by the Mahler measure of the polynomial f , and by choosing
polynomials with small Mahler measure the growth rate of ∆n(f) can
be reduced dramatically. Lehmer [16] studied these sequences with the
view of using them to produce large primes in novel ways. Recently,
his approach was revisited using modern computing methods, together
with the heuristic argument of Wagstaff. The upshot of this work is de-
scribed in [6], where sequences have been found with many hundreds of
primes, and a reasonable agreement with the heuristic model is found.
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2.2. Primes from dynamical systems. The Lehmer–Pierce sequences
all arise from algebraic dynamical systems in the following sense. Call
a sequence (un)n≥1 algebraically realisable if there is a compact group
endomorphism T : X → X with the property that

un = |Pern(T )| = |{x ∈ X | T n(x) = x}|.

Such a sequence must be a divisibility sequence in addition to being
realisable (a general combinatorial notion expressing the property of
being the periodic points for some map – see [20] for the details). The
converse is not true, and only a partial characterization of algebraically
realisable sequences is known.

Any divisibility sequence must satisfy u1|un for all n, but it seems
reasonable to ask whether the quotient might be prime infinitely often.
The Lehmer–Pierce sequences are a natural family of algebraically real-
izable sequences that are conjectured to be prime infinitely often (once
this kind of generic divisibility is taken account of). It turns out that
many other natural families of group automorphisms have a similar
property: Example 2.1 shows that the even Bernoulli denominators
have this property. Studying primality from this point of view gives a
conjectural explanation for the infinitude of both Mersenne and Sophie-
German primes within the same context. Example 2.2 gives some hope
that such sequences might indeed be prime infinitely often.

Example 2.1. Let Bn be defined by

t

et − 1
=
∞∑
n=0

Bnt
n/n!

Then the sequence bn = denominator(B2n) is algebraically realisable.
To see this, define Xp = Fp = Z/pZ. For p = 2 define Tp to be the

identity. For p > 2, let gp denote an element of (multiplicative) order
(p − 1)/2. Define Tp : Xp → Xp to be the endomorphism Tp(x) = gpx
mod p. Plainly |Pern(Tp)| = p if and only if p − 1|2n; for all other n,
|Pern(Tp)| = 1. The Clausen–von Staudt Theorem ([14], [15]) states
that

B2n +
∑ 1

p
∈ Z,

where the sum ranges over the primes p for which p − 1|2n. Thus
|Pern(Tp)| = max{1, |B2n|p}. Now define

X =
∏
p

Xp and T =
∏
p

Tp.

This shows the algebraic realisability of the Bernoulli denominators.
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Notice that a prime value of bn/b1 can only occur if n is a Sophie-
Germain prime. There are believed to be infinitely many Sophie-
Germain primes but no proof is available – see [21].

The next example is a group endomorphism with a very similar shape
to that of Example 2.1, but constructed so as to be certain that the
periodic point sequence will be prime infinitely often. This example
was inspired by a remark of Gerry McLaren.

Example 2.2. There is a group endomorphism T : X → X such that
|Pern(T )| takes on infinitely many distinct prime values. To see this,
construct a set S of prime numbers recursively as follows. Firstly, 2 ∈ S
and a prime p ∈ S if and only if p−1 is divisible by a prime q = qp which
does not divide p′ − 1 for all p′ ∈ S with p′ < p. Clearly S is infinite –
otherwise all sufficiently large primes could be written as 1 + pe11 . . . perr
for some fixed set of primes {p1, . . . , pr}, where e1, . . . , er lie in N. The
number of such primes less than or equal to X is O((logX)r), which
contradicts the Prime Number Theorem.

For each prime p ∈ S, let hp denote an element of multiplicative
order q = qp in Xp = Fp, and define an endomorphism Tp : Xp → Xp

by Tp(x) = hpx. Then define an endomorphism T on X by

X =
∏
p∈S

Xp and T =
∏
p∈S

Tp.

Clearly |Perqp(T )| = p for all p, showing that the sequence (|Pern(T )|)
takes on infinitely many distinct prime values.

2.3. Mersenne problem in A-fields. Let k be an A-field (that is,
an algebraic number field or a finite extension of a rational function
field Fq(t) of positive characteristic) with set of places P(k) (see [28]
for a discussion of places). Fix ξ ∈ k\{0}, not a unit root. Then the
generalized Mersenne problem asks if there is a constant B(ξ) with the
property that the set

Pn = {ν ∈ P(k) | |ξn − 1|ν 6= 1}
has no more than B(ξ) elements for infinitely many n. For k = Q

and ξ = 2, this is a weak form of the classical Mersenne problem
(in that it only asks for infinitely many numbers 2n − 1 to have a
uniformly bounded number of prime factors). This problem has arisen
in ergodic theory [26], [27] and has the following remarkable feature:
There are many cases for which it is certainly true, though the proofs
are not trivial. Specifically, a consequence of Heath–Brown’s work on
the Artin conjecture is that |Pn| = 2 infinitely often for many of the
positive characteristic cases (see [27] for the details).
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3. A Higher-rank Mersenne problem

The dynamical systems alluded to above have very natural higher-
rank analogues, namely the Zd-actions generated by d commuting auto-
morphisms of a compact abelian group X (see [18], [22] for a discussion
of these dynamical systems). For these the periodic point behaviour
is very complicated (some of these problems are described in [17] in a
different context), and we simply extract one simple question from the
simplest example available. Does the set

{3m2n − 1 | m,n ≥ 0}
contain infinitely many primes? Can anything be said – even heuristi-
cally – about the quantity

N−(X) = |{(m,n) | 3m2n − 1 is prime and m,n ≤ X}|?(4)

This problem will be discussed in this section, along with the same
question for the quantity N+(X) associated to 3m2n+1, which is quite
different in that it certainly does not come from a pair of commuting
group automorphisms.

3.1. Heuristics. The heuristic argument below takes the form of a
family of successive refinements of the same basic idea. Let N−(X) be
defined by (4). In the discussion below, we will essentially ignore the
cases n = 0 (for which 3m2n − 1 is always even) and m = 0 (the
Mersenne case) since they together contribute so few primes. The
discussion leads to a prediction that

N−(X)

X
→ C− as X →∞,(5)

where C− is a constant. The section ends with a graph to illustrate
the accuracy of the prediction. We will also exhibit a graph for primes
of the form 3m2n + 1.

The Prime Number Theorem implies that the probability a large
random integer K is prime is approximately 1

logK
. This suggests that

N−(X) is approximately

N1(X) =
∑

1≤m,n<X

1

n log 2 +m log 3
(6)

which is given asymptotically by the double integral∫ X

1

∫ X

1

1

x log 2 + y log 3
dx dy,

so
N1(X) = DX +O(logX),
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where

D =
log 6 log log 6− log 2 log log 2− log 3 log log 3

log 2 log 3
= 1.57 . . . .

3.2. Obvious congruences. For m,n ≥ 1, 3m2n − 1 is coprime with
6. The usual Euler factor correction suggests that we should therefore
increase our estimate for N−(X) by a factor of 2

2−1
· 3

3−1
= 3. This

gives a refined heuristic: Having taken account of the Prime Number
Theorem and the primes 2 and 3, we expect N−(X) to be approximated
by N2(X), where

N2(X)

X
∼ 4.71 . . .

3.3. Less obvious congruences. It is tempting to continue exactly
as above. Consider the prime q = 5 and the congruence

3m2n − 1 ≡ 0 mod 5.

The solutions are all the pairs (m,n) which reduce mod 4 to lie in the
set {(1, 1), (2, 2), (3, 3), (4, 4)}. Thus asymptotically 3

4
of the numbers

of the form 3m2n − 1 are not divisible by 5; on the other hand 4
5

of
all numbers are not divisible by 5. This suggests that the heuristic
estimate taking account of the prime 5 as well should be 5

4
· 3

4
·N2(X),

leading to the estimate

N3(X)

X
∼ 4.416 . . . .

It is at this point that the first substantial difficulty is encountered.
The proportion of numbers of the form 3m2n− 1 that are not divisible
by 5 or 7 cannot be found by emulating this calculation mod 4 and 6
separately – we have to search in residue classes mod 12 = lcm(4, 6).

3.4. Taking account of primes less than L. The calculation to find
the correcting factor for primes q, 3 < q < L, goes as follows. Let PL
denote the least common multiple of q − 1 as q runs over the primes
between 3 and L. For each residue pair (j, k) in (Z/PLZ)2, and for each
such prime q, reduce (j, k) mod q and decide whether

3j2k − 1 ≡ 0 mod q.

Delete those residue pairs that satisfy this congruence for some q; call
the remaining set QL. Then the heuristic argument suggests that we
should correct by this factor and the usual Euler factor to give

NL(X) =
|QL|
P 2
L

·
∏

3<q<L

q

q − 1
·N2(X).



A HIGHER-RANK MERSENNE PROBLEM 7

This has two distinct pieces: the second factor is readily estimated
using Merten’s Theorem [14, Th. 429] which says that

1

logL

∏
2≤q<L

q

q − 1
→ eγ, as L→∞.

The other factor presents computational and theoretical problems: Com-
putationally, PL grows very rapidly in L, and the exact calculation of
|QL| requires manipulating set-memberships which is slow. However,
approximations can be made easily by simple counting arguments. It is
possible that results on the higher-rank Artin problem (conditional on
GRH) would give more precise information, but we have not pursued
this as QL already arises inside a heuristic argument.

3.5. A comparison of heuristic and experimental evidence. As
described above, calculating exact values for |QL| involves searching
over a set of size P 2

L (for primes up to L = 29, a calculation over a
set of size 554402 is involved). Bearing in mind the sometimes deli-
cate balance between computation time and accuracy of results we fix
L and estimate |QL|/P 2

L by counting the number of pairs (m,n) with
m,n < X and gcd(2m3n − 1,

∏
p<L p) > 1, then divide by X2. Experi-

ments suggest that for given L this converges rapidly in X, and a good
approximation is found even when X is of the order of L. For L = 1000
the calculation suggests the further refined heuristic

NL(X)

X
∼ 4.043 . . .

The experimental evidence strongly supports a conjecture of the form
(5), which suggests that

logL · |QL|
P 2
L

converges as L → ∞. Figure 1 shows a graph of the number N−(X)
of primes of the form 3m2n − 1 with m,n < X against X for values
of X ≤ 1000. The gradient of this graph is approximately C− =
3.7, as compared with our most refined heuristic suggestion of C− =
4.043 . . . . However, the conjectured linearity is strongly supported by
this numerical data.

Much of what we have said for primes of the form 3m2n − 1 can be
replicated for primes of the form 3m2n+1. That is to say, the heuristic
argument above can be applied in this case also, taking into account
the possible difference in the value of |QL|/P 2

L. Let N+(X) denote the
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Figure 1. Graph of N−(X) against X for X ≤ 1000

200 400 600 800 1000
X

1000

2000

3000

4000

No.of primes

Figure 2. Graph of N+(X) against X for X ≤ 1000

number of primes of the form 3m2n + 1 with m,n ≤ X. We expect

N+(X)

X
→ C+, as X →∞.

Figure 2 shows a graph of N+(X) against X for X ≤ 1000.
The graph predicts the value of C+ to be about 4.3. Comparing this

with a refined heuristic calculated in an identical fashion to that above,
we obtain

N+
L (X)

X
∼ 4.258 . . .
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with C+ = 4.258. This heuristic constant is extremely close to the
experimental value, though no meaning can attach to this coincidence
in light of the N− case.

4. Elliptic analogues

There is a dialogue between on the one hand dynamical systems
and arithmetical sequences built from the circle (of which the Lehmer–
Pierce sequences are the simplest example) and on the other, objects
associated to elliptic curves, summarised in Table 1 (the objects on the
classical side are described in [10], and on the elliptic side in [8] and
[9]).

classical case elliptic case
polynomial f ∈ Z[x] point P on curve E over Q

Mahler measure m(f) canonical height hE(P )
Lehmer problem Lang’s height conjecture

toral automorphism Tf sequence of maps
(|Pern(Tf )|) (Lehmer–Pierce) elliptic divisibility sequence

Table 1. Classical objects and their elliptic counterparts

Let E denote an elliptic curve defined over the rationals (the text [24]
covers all the properties of elliptic curves we use), given by a Weierstrass
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6(7)

with coefficients a1, . . . , a6 ∈ Z. The assumption that the curve is
an elliptic curve amounts to assuming it is non-singular, that is, the
discriminant does not vanish.

How might we expect to use the arithmetic of E to produce primes?
Suppose E has a non-torsion rational point Q ∈ E(Q). The multiples
nQ for n ∈ N define a sequence of integers as follows: The x-coordinates
of these points all have the shape x(nQ) = tn/s

2
n for integers sn, tn.

These fascinating sequences were studied in [23]. We could ask whether
they are likely to contain many primes - actually, it is sufficient to
study sn. The Chudnovskys did some experimental research in the
80’s (see [4] and [5]) and produced some quite large prime values of
sn. Their results have been revisited recently (see [7]) in work that
suggests the sequence sn will only contain finitely many primes. Indeed,
the sequences in [4] do not produce any additional primes when tested
over a much larger range.
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It seems very likely that working with translations P + nQ for fixed
rational points P and Q would produce similar results. Our heuristic
argument depends heavily upon the growth rate of the sequence, and
this would not be substantially different for nQ or P + nQ.

Suppose now that E(Q) has rank > 1, and choose independent non-
torsion points P and Q. Let s(m,n) ∈ Z be defined by

x(mP + nQ) = t(m,n)/s(m,n)2.(8)

In his PhD thesis the second author gives a heuristic argument, accom-
panied by much data, to suggest that s(m,n) should take on prime val-
ues infinitely often. Indeed, the number of prime values with |m|, |n| <
X should be asymptotically c logX, where c is a constant depend-
ing upon the finer arithmetic of E. The elliptic regulator (see below)
appears in an apparently explicable fashion although the constant is
also affected by the finer divisibility properties in a way that is hard
to fathom. The sequences s(m,n) provide large primes which can be
described unambiguously in a very economical fashion, since s(m,n)
grows as the exponential of a positive-definite quadratic form in the
variables m and n.

4.1. Heuristics in the elliptic case. Let RX = {(m,n) | |m|, |n| ≤
X}. Then the first attempt at a heuristic estimate is that the sum∑

RX

1/ log s(m,n)(9)

is the expected number of prime values of s(m,n) with (m,n) ∈ RX .
Now log s(m,n) is asymptotically equivalent to a positive definite qua-
dratic form S(m,n), and the asymptotics of the sum∑

RX

1/S(m,n)

are well known: This sum is asymptotically (2π/r) logX, where r de-
notes the determinant of S (r is the elliptic regulator of P and Q). This
asymptotic arises from comparing the sum with a suitable integral.

As before, this estimate needs refinement. If q denotes any prime
then the sequence reduced mod q is periodic in both variables, with
period dividing |E(Fq)|. If follows that we can assign a (rational)
probability to s(m,n) not being divisible by q. Doing this for the
primes q < L gives approximately cLX

2 elements (m,n) in RX for
which s(m,n) is not divisible by primes less than L. Letting L → ∞,
we expect approximately e logX primes, where e depends on E but
not X. It is computationally extremely difficult to calculate the exact
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Figure 3. Graph of NE(X) against logX for X ≤ 100;
curve y2 + y = x3 − 199x+ 1092

probabilities for various L, but as before approximations via counting
arguments are not too difficult to obtain.

4.2. Numerical data. Figures 3 and 4 show graphs for NE(X), the
number of primes s(m,n) with |m|, |n| ≤ X against logX for two rank-
2 elliptic curve E with small regulator.

The curve in Figure 3 is

y2 + y = x3 − 199x+ 1092,

with independent rational points P = (−13, 38) and Q = (−6, 45) on
the curve, whose regulator is .0360 . . .

The curve in Figure 4 is

y2 + y = x3 − 28x+ 52,

with independent rational points P = (−4, 10) and Q = (−2, 10) on
the curve, whose regulator is .0813 . . .

The numerical data is not incompatible with the heuristic suggestion
of a linear relationship betweenNE(X) and logX, but strongly suggests
there are more phenomena here to understand.

5. Conclusion

The classical Mersenne problem appears as a special case in many
different settings. In some of these there are other cases in which prime
appearance is understood. Two higher-rank analogues of the Mersenne
problem are explored.
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Figure 4. Graph of NE(X) against logX for X ≤ 150;
curve y2 + y = x3 − 28x+ 52

The first is a direct extension to two variables, and compelling nu-
merical data is available concerning prime appearance.

The second occurs in an elliptic curve setting. The work of [7] sug-
gests there are only finitely many primes in an elliptic divisibility se-
quence (and possibly a uniform bound on the number of primes for any
elliptic divisibility sequence on curves defined over the rationals). A
better elliptic analogue of the Mersenne problem therefore seems to be
the study of the higher-rank sequences associated to elliptic curves of
higher rank.
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