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Abstract. We examine the effect of bounding the diameter for well-
studied variants of the COLOURING problem. A colouring is acyclic, star,
or injective if any two colour classes induce a forest, star forest or dis-
joint union of vertices and edges, respectively. The corresponding deci-
sion problems are AcycLIC COLOURING, STAR COLOURING and INJEC-
TIVE COLOURING. The last problem is also known as L(1,1)-LABELLING
and we also consider the framework of L(a,b)-LABELLING. We prove a
number of (almost-)complete complexity classifications, in particular, for
AcycLIC 3-COLOURING, STAR 3-COLOURING and L(1,2)-LABELLING.

1 Introduction

A natural way of increasing our understanding of NP-complete graph problems
is to restrict the input. The diameter of a graph G is the maximum distance
between any two vertices of G. We look at graph classes of bounded diameter,
that is, with diameter at most d for some constant d. Such a graph class is closed
under vertex deletion (hereditary) only if d = 1. Many graph problems stay NP-
complete even if d = 2. The reason usually is that from a general instance we can
obtain an instance of diameter 2 by adding a dominating vertex. For example,
in this way, CLIQUE, INDEPENDENT SET and COLOURING all stay NP-complete
for graphs of diameter 2. The latter problem is to decide if for a graph G and
integer k, there is a mapping ¢ : V(G) — {1,...,k} with ¢(u) # ¢(v) for each
wv € E(G). If k is fized, i.e., not part of the input, we write k-COLOURING.

Let d > 2 and k > 3. It is readily seen that k-COLOURING for graphs of
diameter at most d is NP-complete for every (d,k) ¢ {(2,3),(3,3)}. Mertzios
and Spirakis [18] gave a highly non-trivial NP-hardness proof for the case (3, 3).
The case (2, 3) is a notorious open problem, see, for example, [2,8,16-19].

The ith colour class in a graph G = (V,E) with a colouring ¢ is the set
Vi ={u € V| ¢(u) = i}. For i # j, let G;; be the (bipartite) subgraph of
G induced by V; UV;. If every G ; is a forest, then c is an acyclic colouring. If
every Gy ; is Py-free, i.e., a disjoint union of stars, then c is a star colouring. If
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every G; ; is Ps-free, i.e., a disjoint union of vertices and edges, then c is an in-
jective colouring. The three decision problems are ACcycLIC COLOURING, STAR
CoLOURING and INJECTIVE COLOURING, respectively; for the last problem it is
sometimes allowed for adjacent vertices to be coloured alike (see, e.g., [12-14])
but we do mot permit this: as can be observed from the aforementioned defini-
tions, all colourings considered in this paper are proper. If k is fixed we write
AcycLic k-COLOURING, STAR k-COLOURING and INJECTIVE k-COLOURING.
Injective colourings are also known as distance-2 colourings and as L(1,1)-
labelings. Namely, a colouring of a graph G is injective if the neighbours of
every vertex of G are coloured differently, i.e., also vertices of distance 2 from
each other must be coloured differently. The distance constrained labelling prob-
lem L(aq,...,a,)-LABELLING is to decide if a graph G has an L(az, ..., ap)-(k-
)abelling, i.e., a mapping ¢ : V(G) — {1,...,k} for some k > 1, such that
for every two vertices u and v and every integer 1 < ¢ < p: if G contains
a path of length i between u and v, then |c(u) — ¢(v)| > a;; see also [9] (if
ay > az > ... > ap, the condition is equivalent to “if v and v are of distance i7).
The above problems are NP-complete, even for very restricted graph classes,
see the survey [9] and very recent papers, such as [4, 5,15, 20]. We consider graph
classes of bounded diameter. In contrast to many other problems, bounding
the diameter does help for colouring variants. For instance, the problem NEAR
BIPARTITENESS is to determine if a graph has a 3-colouring such that (only) two
colour classes induce a forest. This problem, on graphs of diameter at most d, is
polynomial-time solvable if d < 2 [21] and NP-complete if d > 3 [6]. Or consider
the L(aq,...,a,)-LABELLING problem. The degree of every vertex of a graph G
with an L(ay, ..., ap)-k-labelling is at most k. Hence, |V(G)| < 1+k+...+ k%,
where d is the diameter of G, and we can make the following observation.

Proposition 1. Let ai,...,ap,d > 1. Then, for every k > 1, L(a1,...,ap)-k-
LABELLING is constant-time solvable for graphs of diameter at most d.

This led us to the question: How much does bounding the diameter help for
obtaining polynomial-time algorithms for well-known graph colouring variants?

Our Results. By using a very recent NP-completeness result on AcycLic 3-
COLOURING for graphs of diameter at most 4 [7] we obtain the following two
almost-complete dichotomies; note that the case where k£ < 2 is trivial.

Theorem 1. Letd > 1 and k > 3. Then AcycLIC k-COLOURING on graphs of
diameter at most d is

— polynomial-time solvable if d < 2, k = 3 and NP-complete if d > 4, k = 3.
— polynomial-time solvable if d =1, k > 4 and NP-complete if d > 2, k > 4.

Theorem 2. Let d > 1 and k > 3. Then STAR k-COLOURING on graphs of
diameter at most d is

— polynomial-time solvable if d < 3, k = 3 and NP-complete if d > 8, k = 3.
— polynomial-time solvable if d =1, k > 4 and NP-complete if d > 2, k > 4.
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Finally, we consider L(a,b)-LABELLING for the most studied values of (a,b),
namely when 1 < a < b < 2. We now assume that k is part of the input, due
to Proposition 1. Every two non-adjacent vertices in a graph G of diameter 2
have a common neighbour. Hence, an (1,1)-labelling of G colours each vertex
uniquely, and L(1,1)-LABELLING, on graph of diameter d < 2, is trivial. The
problem is NP-complete if d = 3, as it is NP-complete for the subclass of split
graphs [3]. Griggs and Yeh [11] proved that L(2,1)-LABELLING is NP-complete
for graphs of diameter 2 via a relation with HAMILTONIAN PATH. We also connect
the remaining case (a,b) = (1,2) to HAMILTONIAN PATH in order to prove NP-
completeness in Section 4. To summarize, we obtained the following dichotomy:

Theorem 3. Let a,b € {1,2} and d > 1. Then L(a,b)-LABELLING on graphs of
diameter at most d is

— polynomial-time solvable if a =b and d < 2, or d = 1.
— NP-complete if either a =b and d >3, ora #b and d > 2.

Future Work. It would be interesting to close the gaps in Theorems 1 and 2,
but this seems challenging. The NP-hardness construction of Mertzios and Spi-
rakis [18] for 3-COLOURING of graphs of diameter 3 does lead to NP-hardness
for NEAR BIPARTITENESS for graphs of diameter 3 [6]. However, it cannot be
used for ACYCLIC 3-COLOURING and STAR 3-COLOURING.

2 The Proof of Theorem 1

We show the following result (proof omitted) and also recall a very recent result.

Lemma 1. AcycLic 3-COLOURING is polynomial-time solvable for graphs of
diameter at most 2.

Lemma 2 ([7]). AcycLic 3-COLOURING is NP-complete on triangle-free 2-
degenerate graphs of diameter at most 4.

The Proof of Theorem 1. The first statement follows from Lemmas 1 and 2.
For the second statement, the case d = 1 is trivial, and for the case d > 2,
k > 4 we reduce from Acycric 3-COLOURING: to an instance G of ACYCLIC
k-COLOURING, we add a clique of k — 3 vertices, which we make adjacent to
every vertex of G.

3 The Proof of Theorem 2

A list assignment of a graph G is a function L that gives each vertex u € V(G) a
list of admissible colours L(u) C {1,2,...}. A colouring c respects L if ¢(u) € L(u)
for every u € V. If |L(u)| < 2 for each u € V, then L is a 2-list assignment. The
2-LisT COLOURING problem is the corresponding decision problem.
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Theorem 4 ([10]). The 2-L1sT COLOURING problem is solvable in time O(n+
m) on graphs with n vertices and m edges.

We will use Theorem 4 in the proof of Lemma 6, which is the main result of
the section. In order to do this, we must first be able to modify an instance of
STAR 3-COLOURING into an equivalent instance of 3-COLOURING. We can do
this as follows. Let G = (V, E) be a graph. We construct a supergraph G, of G
as follows. For each edge e = uv of G we add a vertex z,, that we make adjacent
to both u and v. We also add an edge between two vertices z,, and z,/, if and
only if u,v,u',v" are four distinct vertices such that G has at least one edge
with one end-vertex in {u,v} and the other one in {u’,v’'}. We say that G, is
the edge-extension of G. Observe that we constructed G in O(m?) time. It is
readily seen that G has a star 3-colouring if and only if G has a 3-colouring.

Now suppose G has a 2-list assignment L. We extend L to a list assignment L
of G,. We first set Ly(u) = L(u) for every u € V(G). Initially, we set Ly(ze) =
{1,2,3} for each edge e € E(G). We now adjust a list Lg(z.) as follows. Let
e =wuv. If L(u) = L(v) or L(u) has size 1, then we set Ls(zy,) = {1,2,3}\ L(u).
If L(v) has size 1, then we set Lg(zyy) = {1,2,3} \ L(v). If 2z, is adjacent to a
vertex zy, with |L'(zy,)| = 1, then we set L (240 ) = {1, 2,3}\ L (24v). We apply
the rules exhaustively. We call the resulting list assignment Lg of G the edge-
extension of L. We say that an edge uv of G is unsuitable if |L(u)| = |L(v)| = 2
but L(u) # L(v), whereas uv is list-reducing if |L(u)| = |L(v)| = 1 and L(u) #
L(v). Note that in G, we may have |Ls(z.)] = 3 if e is unsuitable, whereas
|Ls(ze)| = 1 if e is list-reducing. We say that an end-vertex u of an unsuitable
edge e is a fizer for e if u is adjacent to an end-vertex of a list-reducing edge u'v’
(note that {u,v} N {uw',v'} = 0). We make the following observation.

Lemma 3. Let G be a graph on m edges with a 2-list assignment L. Then we can
construct in O(m?) time the edge-extension G4 of G and the edge-extension L
of L. Moreover, G has a star 3-colouring that respects L if and only if G5 has
a 3-colouring that respects Ls. Furthermore, L is a 2-list assignment of Gy if
every unsuitable edge uv of G has a fixer.

Let dg(u) be the degree of a vertex u in G. We omit the proofs of two lemmas.

Lemma 4. Let G be a graph of diameter at most 3. If G has a star 3-colouring,
then

1. for every 4-cycle vovivavsvy of G, dg(vg) = dg(va) = 2 or dg(vi) =
dg(vs) =2, and
2. there is no 5-cycle in G.

Lemma 5. Let G be a graph of diameter at most 3 that has two vertices u and
v with at least three common neighbours. Let w € N(u) N N(v). Then G has a
star 3-colouring if and only if G — w has a star 3-colouring. Moreover, G — w
has diameter at most 3 as well.

Two non-adjacent vertices in a graph G that have the same neighbourhood are
false twins of G. We are now ready to give our algorithm.
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Lemma 6. STAR 3-COLOURING is polynomial-time solvable for graphs of di-
ameter at most 3.

Proof. Let G be a graph of diameter 3. We may assume without loss of generality
that G is connected. We first determine in O(nm?) time all 4-cycles and all 5-
cycles in G. If G has a 4-cycle with two adjacent vertices of degree at least 3
in G or if G has a 5-cycle, then G is not star 3-colourable by Lemma 4. We
continue by assuming that G satisfies the two properties of Lemma 4. We reduce
G by applying Lemma 5 exhaustively. Let G’ be the resulting graph, which has
diameter at most 3 (by Lemma 5). We can determine in O(n) time all vertices
of degree 2 in G. For each vertex of degree 2 we can compute in O(n) time all
its false twins. Hence, we found G’ in O(n?) time. As we only removed vertices,
G’ also satisfies the two properties of Lemma 4.

If G’ has maximum degree at most 4, then |V (G’)| < 53, as G’ has diameter
at most 3. We check in constant time if [V (G’)| < 53 and if so, whether G’ has
a star 3-colouring. Otherwise, we found a vertex v of degree at least 5 in G'.

Let N; be the set of vertices of distance i from v. Then, Ny = N(v) and as
G’ has diameter at most 3, V(G’') = {v} U N3 UNyU N3. We assume without loss
of generality that if G’ has a star 3-colouring ¢, then ¢(v) = 1. We will examine
the following situations: ¢ gives each vertex in Nj colour 3; or ¢ gives at least
one vertex of N1 colour 2 and at least three vertices of N; colour 3. As v has
degree at least 5, at least one of colours 2, 3 must occur three times on N (v),
and we may assume without loss of generality that this colour is 3. Hence, G’
has a star 3-colouring if and only if one of these two cases holds.

N e
N f o %

N @ {3}
{v} {1y

Fig. 1. The pair (G',L’) in Case 1.

Case 1. Check if G’ has a star 3-colouring that gives every vertex of Ny colour 3.

As |Ny| > 5, such a star 3-colouring ¢ must assign each vertex of Ny colour 2.
This means that every vertex of N3 gets colour 1 or 3. Hence, we obtained,
in O(n) time, a 2-list assignment L’ of G’. We construct the pair (G, L’,). By
Lemma 3 this take O(m?) time. As every list either has size 1 or is equal to
{1,3}, we find that the edge-extension L’ of L’ is a 2-list assignment of G’,. By
Lemma 3, it remains to solve 2-LisT-COLOURING on (G%, L}). We can do this
in O(m?) time using Theorem 4 as the size of G’, is O(m?). Hence, the total
running time for dealing with Case 1 is O(m?). See also Figure 1.
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Case 2. Check if G’ has a star 3-colouring that gives at least one vertex of Nj
colour 2 and at least three vertices of Ny colour 3.

We set L'(v) = {1}. This gives us the property: P0O. Ny = {v} and L'(v) = {1}.

We now select four arbitrary vertices of N(v). We consider all possible colourings
of these four vertices with colours 2 and 3, where we assume without loss of
generality that colour 3 is used on these four vertices at least as many times as
colour 2. For the case where colour 2 is not used we consider each of the O(n)
options of colouring another vertex from N (v) with colour 2. For the cases where
colour 3 is used exactly twice, we consider each of the O(n) options of colouring
another vertex from N(v) with colour 3. Hence, the total number of options is
O(n), and in each option we have a neighbour z of v with colour 2 and a set
W = {wy,ws, w3} of three distinct neighbours of v with colour 3. That is, we
set L'(z) = {2} and L'(w;) = {3} for 1 <14 < 3.

For each set {x} UW we do as follows. We first check if W is indepen-
dent; otherwise we discard the option. If W is independent, then initially we set
L'(u) = {1,2,3} for each u ¢ {z,v} UW. We now show that we can reduce the
list of every such vertex u by at least 1. As an implicit step, we will discard the
instance (G’, L’) if one of the lists has become empty. In doing this we will use
the following Propagation Rule:

Whenever a vertex has only one colour in its list, we remove that colour from
the list of each of its neighbours.

By the Propagation Rule, we obtain the following property, in which we updated
the set W:

P1. N; can be partitioned into sets W, X, Y with [W| > 3, |X| > 1 and |Y]| > 0,
such that no vertex of Y is adjacent to any vertex of X UW, and moreover,
X is an independent set with x € X and W is an independent set with
{wy,we, w3} C W, such that
— every vertex w € W has list L' (w) = {3},
— every vertex x € X has list L'(z) = {2}, and
— every vertex y € Y has list L'(y) = {2, 3}.

Note that by the Propagation Rule, we removed colour 3 from the list of every
neighbour of a vertex of W in Ny. We now also remove colour 1 from the list of
every neighbour of a vertex of W in Ny; the reason for this is that if a neighbour
y of, say, wy is coloured 1, then the vertices y, w1, v, ws form a bichromatic P;.
Hence, any neighbour of every vertex in W in Ny has list {2}.

Now consider a vertex z € No that still has a list of size 3. Then z is not
adjacent to any vertex in N7 with a singleton list (as otherwise we applied the
Propagation Rule), but by definition z still has a neighbour 2’ in N;. This means
that 2’ € Y and thus 2’ has list {2,3}. Hence, z cannot be coloured 1: if 2’ gets
colour 2, the vertices x, v, 2/, z will form a bichromatic Py, and if 2’ gets colour 3,
the vertices w1, v, 2/, z will form a bichromatic P;. Hence, we may remove colour 1
from L'(z), so L'(z) will have size at most 2.
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We make some more observations. First, we recall that every neighbour of a
vertex in W in Ny has list {2}, and every vertex in X has list {2} as well. Hence,
no vertex in Ns has both a neighbour in W and a neighbour in X; otherwise this
vertex would have an empty list by the Propagation Rule and we would have
discarded this option.

Due to the above, we can partition Ny into sets W*, X*, and Y* such that
the vertices of W* are the neighbours of W and the vertices of X* are the
neighbours of X, whereas Y* = Ny \ (X* UW*). Consequently, the neighbours
in V7 of every vertex of Y* belong to Y.

Recall that G’ has no 5-cycles. Hence, there is no edge between vertices from
two different sets of {W*, X* , Y*}. Furthermore, every vertex w* € W* has
list L'(w*) = {2}, every vertex * € X* has list L'(z*) = {1,3}, and every
vertex y* € Y* has list L'(y*) = {2,3}. If a vertex y € Y has a neighbour
w* € W*, then vww*yv is a 4-cycle where w € W is a neighbour of w*. Recall
that G’ satisfies the properties of Lemma 4. As v has degree at least 5 in G’,
this means that ¢ has degree 2 in G’. Hence, v and w* are the only neighbours
of y. In particular, we find that every vertex in Y with a neighbour in W* has
no neighbour in X*UY™*.

We now apply the Propagation Rule again. As a consequence, we update the
lists of the vertices in Y U N3, the sets Y and W in P1. The latter is because
some vertices might have moved from Y to W; in particular it now holds that
no vertex in W* is adjacent to any vertex in Y.

We summarize the above in the following property:

P2. N, can be partitioned into sets W*, X* and Y*, such that

— every vertex w* € W* has list L' (w*) = {2} and all its neighbours in Ny
belong to W,

— every vertex z* € X* has list L'(x*) C {1,3} and at least one of its
neighbours in N7 belong to X and none of them belong to W,

— every vertex y* € Y* has list L'(y*) C {2,3} and all its neighbours in
N; belong to Y, and

— there is no edge between vertices from two different sets of {W*, X* Y*}.

We now consider N3. We let T7 be the set consisting of all vertices in N3 that
have at least two neighbours in W*. We let T3 be the set consisting of all vertices
in N3 that have exactly one neighbour in W*. Moreover, we let S; be the set of
vertices of N3\ (Th UT:) that have at least one neighbour in 7;. We let S5 be the
set of vertices of N3 \ (T7 U T5) that have no neighbours in 7} but at least two
neighbours in T5. If for a vertex s € N3, there is a vertex w € W and a 4-path
from s to w whose internal vertices are in X and X*, then we let s € R.

We note that the sets Sy, So, 71 and T, are pairwise disjoint by definition,
whereas the set R may intersect with S; U Sy U Ty U T5. We now show that
N3 = RU S, USy; UT; UTs. For contradiction, assume that s is a vertex of N3
that does not belong to any of the five sets R, S1,S2,11,T». As s ¢ Ty UTs, we
find that the distance from s to every vertex of W is at least 3. Then, as G’ has
diameter 3, there exists a 4-path P; from s to each w; € W (by P1 we can write
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W* = {wy,...,ws} for some a > 3). Every P, must be of one of the following
forms: s — No — Ny —w; or s — Nog — Ng — w; or s — N3 — Ny — w;.

First assume there is some P; that is of the form s — Ny — N7 — w;, that is,
P; = szz'w; for some z € Ny and 2’ € N7. As 2’ is a neighbour of both w; and v,
we find that 2’ € X and 2’ € X*, and consequently, s € R, a contradiction.

Now assume that there exists some P; that is of the form s — Ny — Ny — w;,
that is, P; = szz'w,; for some z and 2’ in N,. By definition, z must have a
neighbour in N;. As G’ has no 5-cycle, this is only possible if z is adjacent to
w;. However, now s is no longer of distance 3 from w; in G’, a contradiction.

Finally, assume that no path from s to any w; is of one of the two forms
above. Hence, every F; is of the form s — N3 — Ny — w;. We write P; = st,w; w;
where t; € T1 U T, and w; € W*. We consider the paths Py, P, P;, which
exist as |W| > 3. As s ¢ 51, we find that ¢; ¢ T;. Moreover, as s ¢ So, we
find that t; = to = t3, and so wj = w3 = w3. In particular, the latter implies
that wj is adjacent to wi, we and w3 and thus has degree at least 3. Recall that
G’ satisfies Property 1 of Lemma 4. As w} and v each have degree at least 3
in G’, this means that each w; must only be adjacent to v and wj. However,
then wi, we and w3 are three false twins of degree 2 in G/, and by construction
of G’ we would have removed one of them, a contradiction. We conclude that
N3;=RUS,USUT, UTs.

We now reduce the lists of the vertices in N3. Let s € N3. If s € T} UT5
(that is, s is adjacent to a vertex w* € W*) then, as L'(w*) = {2}, we find that
L'(s) C {1,3}. If s € Ty, then we can reduce the list of s as follows. By the
definition of T, s is adjacent to a second vertex w’' # w* in W*. By P2, we
find that w’ has a neighbour w € W. We find that L'(w*) = L(w') = {2} and
L(w) = {3}. Then s cannot be assigned colour 3, as otherwise w*, s, w’, w would
form a bichromatic Ps. Hence, we can reduce the list of s from {1, 3} to {1}.

Now suppose that s € S7. Then, by the definitions of the sets S; and 77 and
P2, there exists a path P = stw*w where t € T}, w* € W* and w € W. We
deduced above that ¢ has list L’(t) = {1}. Consequently, we can delete colour 1
from the list of s by the Propagation Rule, so L'(s) C {2,3}. Now suppose that
s € Sa. Then, by the definition of Sy and P2, there exist two paths Py = st;jwjw,
and Py = stowiwy where t1,t2 € 1o, wi,ws € W* wy,wy € W, and 1 # t2. We
claim that s cannot be assigned colour 2. For contradiction, suppose that s has
colour 2. Then ¢, which has list {1, 3}, must receive colour 1, as otherwise ¢; will
have colour 3 and s, ¢;, w}, w; is a bichromatic Py (recall that w} and w; can only
be coloured with colours 2 and 3, respectively). For the same reason, ¢t must get
colour 1 as well. However, now w7, 1, s,%2 is a bichromatic Py, a contradiction.
Hence, we can remove colour 2 from L'(s). Afterwards, L'(s) C {1, 3}.

Finally, suppose that s € R. By the definition of R, there is some path
P; = sx*x’w where z* € X*, 2’ € X, and w € W. By P1 and P2, respectively,
it holds that L'(z’) = {2} and L'(z*) C {1,3}. Hence, s cannot be coloured 2: if
x* gets colour 1, the vertices v, z’, z*, s will form a bichromatic Py, and if z* gets
colour 3, the vertices w1, ', z*, s will form a bichromatic P;. In other words, we
may remove colour 2 from L/(s), so L'(s) C {1, 3}.
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R {1,3}
N3
{1,3}
No {2, B}
N D) q: (2.3)
1 \ v )
{vo}

Fig. 2. An example of a pair (G’,L’) in Case 2a. The colours crossed out show the
difference between the general situation in Case 2 and what we show holds in Case 2a.

As N3 = RU S1 U Sy UT; UTs, we obtained the following property:

P3. Nj only consists of vertices whose lists are a subset of {1,3} or {2,3}, and
N3 can be split into sets R, S7,S2,71,T5, such that Sy, So, 71 and T3 are
pairwise disjoint, and

— every vertex r € R has list L'(r) C {1, 3} and there is a 4-path from r to
a vertex in W that has its two internal vertices in X* and X, respectively,

— every vertex t € 77 has list L'(t) = {1} and has at least two neighbours
in W=,

— every vertex ¢ € Ty has list L'(¢) C {1, 3} and has exactly one neighbour
in W*,

— every vertex s € Sp has list L'(s) C {2, 3}, has no neighbours in W* but
is adjacent to at least one vertex in 77, and

— every vertex s € Sy has list L'(s) C {1,3} and has no neighbours in
T1 UW?™* but at least two neighbours in 75.

Hence, we constructed a set £’ of 2-list assignments of G’, such that £’ is of size
O(n) and G’ has a star 3-colouring if and only if G’ has a star 3-colouring that
respects L' for some L' € L'. Moreover, we can find each L' € £ in O(m + n)
time by a bread-first search for detecting the 4-paths. For each L' € £, we do
as follows. We still need to construct the edge-extension G, of G'. However, the
edge-extension L, of L' might not be a 2-list assignment. The reason is that G’
may have an edge ss’ for some vertex s € No with L'(s) = {2,3} and some
vertex s’ € N3 with L'(s") = {1, 3} such that L (255 ) = {1, 2, 3}. We distinguish
between two cases; see also Figure 2 and Figure 3.

Case 2a. Check if G’ has a star 3-colouring that gives = colour 2 and every
other vertex of Ny colour 3.

We only consider this case if | X| = 1. We give every vertex in Y list {3}. Then,
by the Propagation Rule, we can delete colour 3 from every list of a vertex in
Y*. We construct G and L. in O(m?) time by Lemma 3. Then L is a 2-list
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Ny

{vo}

Fig. 3. An example of a pair (G, L) in Case 2b. The colours crossed out show the
difference between the general situation in Case 2 and what we show holds in Case 2b.

assignment of G’,. This can be seen as follows. Let e = ss’ be an unsuitable
edge of G'. As G’ has no vertices with list {1,2}, we find that L'(s) = {2,3}
and L'(s") = {1,3}. Then s must be in S;. By definition, it follows that there
exist vertices t € Ty and w* € W* such that st and tw* are edges of G'. As
L'(t) = {1} and L'(w*) = {2}, the edge tw™* is list-reducing. Hence, s is a fixer
for the edge ss’. The claim now follows from Lemma 3, and by the same lemma,
it remains to check if G/, has a 3-colouring that respects L. We can do the latter
in O(m?) time by Theorem 4.

Case 2b. Check if G’ has a star 3-colouring that gives at least one other vertex
of Ny, besides x, colour 2.

If | X| > 2, then we found a vertex of Ny \ {z} that gets colour 2. If X = {x}, we
will not try to find this vertex; for our algorithm its existence will suffice. By P2,
every z* € X* has list L(2*) C {1, 3} and a neighbour 2’ € X with L'(z") = {2}.
By the Case 2b assumption, there is at least one other vertex =’/ in N; that gets
colour 2. Then z* cannot be coloured 1, as otherwise 2", v, z’, * would form a
bichromatic P;. Hence, we remove colour 1 from the list of every vertex of X*
so that afterwards L(z*) = {3} for every 2* € X*. We remove colour 3 from the
list of every neighbour of a vertex of X*. As L’ is a 2-list assignment that does
not assign any vertex of G’ the list {1,2}, afterwards every neighbour of every
vertex of X* in N3 has list {1} or {2}. Moreover, X* is an independent set (as
otherwise we discard (G, L’)). No vertex of W* UY™* is adjacent to any vertex
in X* (by P2). Hence, every vertex in X* has no neighbours in N.

We now prove that no vertex in Ss can receive colour 3. For contradiction,
assume that c¢ is a star 3-colouring of G that respects L’ and that assigns a vertex
s € Sy colour ¢(s) = 3. As G’ has diameter 3, there is a path P from s to z € X
of length at most 3. Then P is of the form s — Ny — x or s — N3 — Ny — x or
$— Ny — Ny —xo0rs— No— Ny —x. If Pis of the form s — Ny — x, then s has
a neighbour in X*, which has list {3}. Hence, as s received colour 3, this is not
possible. We show that the other three cases are not possible either.
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First suppose that P is of the form s — N3 — Ny — z, say P = szz*x for some
z € N3 and z* € Ns. As no vertex of W* UY™ is adjacent to any vertex in X,
we find that z* € X*. This means that z must receive colour 1, as otherwise
the vertices z, x*, z, s would form a bichromatic P;. As s € So, we find that s
has two neighbours t; and t5 in Ts. Both ¢ and t5 have list {1, 3}, so they must
receive colour 1. At least one of them, say t1, is not equal to z. However, now x*,
z, s, t1 form a bichromatic Py, a contradiction. Hence, this case cannot happen.

Now suppose that P is of the form s — No — Ny — x, say P = szax*z for some
z,x* € Nao. As no vertex of W* U Y™ is adjacent to any vertex in X, z* € X*.
However, no vertex in X* has a neighbour in N5. Hence, this case cannot happen.

Finally, suppose that P is of the form s — Ny — N; — x, say P = sw*wx for
some w* € Ny and w € Ni. As X is independent and no vertex of Y is adjacent
to a vertex of X, we find that w € W and thus w* € W*. However, this is not
possible, as s € Sy is not adjacent to any vertex in W* by definition. Hence,
this case cannot happen either, so we have proven the claim. So, we can remove
colour 3 from the list of every vertex s € Sy. Hence, L'(s) = {1} for every s € Ss.

We construct G, and L’ in O(m?) time by Lemma 3. We claim that L’
is a 2-list assignment of G%. This can be seen as follows. Let e = ab be an
unsuitable edge of G’. As G’ has no vertices with list {1,2}, we may assume that
L'(a) = {1,3} and L'(b) = {2,3}. As every vertex in R is adjacent to a vertex in
X* with list {3}, no vertex in R has list {1,3}. We just deduced that no vertex
in So has list {1, 3} either. Hence, the only vertices with list {1, 3} belong to 7%,
so a € Ty. Then, by definition, we find that a has a neighbour w € W*, which
has a neighbour w € W. As w* has list {2} and w has list {3}, the edge w*w
is list-reducing. Hence, a is a fixer for the edge ab. The claim now follows from
Lemma 3, and by the same lemma, it remains to check if G’ has a 3-colouring
that respects L. We can do the latter in O(m?) time by Theorem 4.

This concludes the description of our algorithm. The correctness of our algorithm
follows from the correctness of the branching steps. Its running time is O(nm?),
as there are O(n) branches, and we deal with each branch in O(m?) time. O

We also need an observation on a known construction [1] (proof omitted).
Lemma 7. STAR 3-COLOURING is NP-complete on graphs of diameter at most 8.

The Proof of Theorem 2. The first statement follows from Lemmas 6 and 7. For
the second statement, the case d = 1 is trivial, and for the case d > 2, k > 4 we
reduce from STAR 3-COLOURING: to an instance G of STAR k-COLOURING, we
add a clique of k — 3 vertices, which we make adjacent to every vertex of G.

4 L(1,2)-Labelling for Graphs of Diameter 2

We show that an n-graph G of diameter 2 has an L(1, 2)-n-labelling if and only
if G has a Hamiltonian path, no edge of which is contained in a triangle, and
that the latter problem is NP-complete (proofs omitted). This yields:

Theorem 5. L(1,2)-LABELLING is NP-complete for graphs of diameter at most 2.
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