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Quantum systems with multiple degenerate classical harmonic minima exhibit new non-
perturbative phenomena which are not present for the double-well and periodic potentials. The
simplest characteristic example of this family is the triple-well potential. Despite the fact that
instantons are exact semiclassical solutions with finite and minimal action, they do not contribute
to the energy spectrum at leading order in the semiclassical analysis. This is because the
instanton fluctuation prefactor vanishes, which can be interpreted as the action becoming infinite
quantum mechanically. Instead, the non-perturbative physics is governed by different types of
bion configurations. A generalization to supersymmetric and quasi-exactly soluble models is also
discussed. An interesting pattern of interference between topological and neutral bions, depending
on the hidden topological angle, the discrete θ angle and the perturbative level number, leads to an
intricate pattern of divergent/convergent expansions for low lying states, and provides criteria for
the exact solvability of some of the states. We confirm these semiclassical bion predictions using
the Bender-Wu Mathematica package to study the structure of the associated perturbative expan-
sions. It also turns out that all the systems we study have a curious exact one-to-one relationship
between the perturbative coefficients of the three wells, which we check using the BenderWu package.

Dedicated to Roman Jackiw on the occasion of his 80th birthday

I. INTRODUCTION

Much of our physical intuition about instantons is derived from quantum mechanical instanton
examples such as the symmetric double-well or periodic cosine potential, for which the instanton
analysis is standard text-book material [1–10]. The subject of instantons is one in which Roman
Jackiw has made many important contributions, both original discoveries [11–13], and also crystal
clear pedagogical expositions that get to the heart of the physics [14–16]. We dedicate this paper
to Roman, in recognition of his profound influence on the many facets of non-perturbative physics.
In this paper we describe several new and intriguing aspects of instantons, critical points at infinity
and non-trivial configurations that live on their thimbles, known as bion configurations, that arise
in multi-well potentials with degenerate minima. The simplest example that captures the new
non-trivial aspects of such systems is the triple-well potential.

It is first useful to recall the salient features of the symmetric double-well potential, both the
bosonic system and its supersymmetric (SUSY) extension, to exhibit the sharp contrast with triple-
well and multi-well potentials. Interestingly, many things that we learn in textbooks concerning
the degenerate double-well system are not general rules, but exceptions that arise in the limiting
case of identical neighboring wells, i.e. neighboring wells which are related by a symmetry.

ar
X

iv
:2

00
1.

10
12

8v
1 

 [
he

p-
th

] 
 2

8 
Ja

n 
20

20



2

The symmetric double well potential can be expressed as

V =
ω2

2
x2(x− 1)2 (1)

Familiar non-perturbative features of this symmetric double-well system include:

1. In the semiclassical limit of deep wells, the low-lying states are split into doublets with expo-
nentially small energy splitting, ∆E ∼ e−SI , associated non-perturbatively with the existence
of instanton solutions that tunnel between the two minima. These instanton configurations
have action SI .

2. Perturbation theory in each well is asymptotic, with expansion coefficients that are factorially
divergent and non-alternating in sign: cn ∼ n!

(2SI)n . This behavior is associated with the

existence of non-perturbative neutral-bion configurations, correlated instanton/anti-instanton
configurations, which live on the thimble of critical points at infinity[17].

3. In the SUSY extension of this model, the ground state energy vanishes to all orders per-
turbatively, but SUSY is broken non-perturbatively: ENP0 ∼ −e−2SI+iπ. This behavior is
associated with a non-perturbative neutral bion solution to the second order equations of
motion associated with the classical plus quantum potential, 1

2 (W ′)2 ± ~
2W

′′, having action
2SI and hidden topological angle θHTA = π. In the original instanton language, this can
be viewed as a configuration on the Lefschetz thimble of an instanton/anti-instanton critical
point at infinity. The quasi-zero-mode thimble integral lives in the complex plane, which is
responsible for the θHTA = π, and which is the semiclassical origin of the positivity of the
non-perturbative energy shift.

Many of the characteristic features of multiple-well systems appear already for the triple-well
potential. For comparison purposes we concentrate on the symmetric triple-well potential (see
Figure 1):

V =
ω2

2
x2(x2 − 1)2 (2)

The most interesting non-perturbative features of this symmetric triple-well system are:

1. There are exact instanton solutions tunneling between neighboring minima, with finite action
SI , but they play no role for the leading non-perturbative effects! This is due to the vanishing
of the prefactor coming from the instanton fluctuation determinant.

2. The low-lying energy levels for states localized in the outer wells are exponentially split by
a two-instanton effect rather than a one-instanton effect, ∆Eouter ∼ e−2SI , while the energy
levels for states localized in the inner well are not split at all, ∆Einner = 0. Rather, they are
shifted up or down by the neutral bion contribution, Eshift

inner ∼ e−2SI . In the first doublet, the
lower state has an anti-symmetric wavefunction, in contrast to the situation in the double-well
potential where the lower state wavefunction is symmetric. In fact, the pattern of wavefunction
symmetries is quite different, since the pattern must respect the oscillation theorem (increase
of the number of nodes with energy) and the parity symmetry properties of the wavefunctions.
See Figure 1.

3. There are two identical barriers, but two different types of wells: inner and outer. See Figure
1. Nevertheless, the perturbative expansions in the inner and outer wells are explicitly related:
see Eq. (20) below.
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FIG. 1. Energy levels in the symmetric triple-well potential (2). The outer wells have classical frequency
ωouter = 2ω, while the inner well has frequency ωinner = ω. The perturbative energy levels for states
localized in the outer wells are split into doublets by tunneling, while those for states localized in the inner
well are not split into doublets. Note that the unperturbed harmonic levels for states localized in the inner
and outer wells are interlaced in a systematic way. The right hand side shows the numerical solutions of
the low-energy wavefunctions. Note that for nearly degenerate wave-functions we have represented the one
with a higher energy with a dashed line. Notice also that for the lowest doublet the even, rather than the
odd, eigenfunction has higher energy.

4. Perturbation theory in each kind of well is asymptotic, with expansion coefficients that are
factorially divergent and non-alternating in sign: cn ∼ n!

(2SI)n . This behavior is associated with

the existence of non-perturbative neutral-bion configurations with zero topological charge but
action equal to twice the instanton action. These can be interpreted as configurations on the
thimble of an instanton/anti-instanton critical point at infinity.

5. In the SUSY extension of this triple-well model, the ground state energy vanishes to all
orders perturbatively for both (−1)F even/odd sectors H±. In the H− sector, the ground
state energy is ENP0 = 0, due to the fact that there is a normalizable zero-mode of H−.
Semiclassically this vanishing of ∆ENP0 is due to cancellation between topological and neutral
bion contributions; while in the H+ sector, ENP0 ∼ −e−2SI+iπ, due to an unpaired neutral
bion. The hidden topological angle is crucial for both these results.

6. In the SUSY extension there is again a simple explicit relation between the perturbative
expansion coefficients in the inner and outer wells. See Eq. (41).

7. There is a ζ-deformed generalization[4, 34, 45, 46] of the SUSY triple-well system, discussed
in Section IV, in which the fermion number parameter is deformed from ζ = 1. When
ζ = 2m+1

3 ,m = 1, 2, . . . curious cancellations arise in the semiclassical analysis, and result in
convergent perturbation theory for part of the spectrum. These special ζ values correspond
to the quasi-exactly solvable potentials.[18–20] Namely the corresponding H−,ζ system has
2m lowest states for which perturbation theory is convergent, while for higher states one finds
the generic divergent perturbative expansion. Of these 2m states, m are exactly solvable by
methods of [18–20], with a convergent perturbative expansion which sums to the correct result.
In this case the two types of bion contribution cancel against each other. The other m states
are not exactly solvable, and there is a non-vanishing combination of topological and neutral
bion contributions. For H+,ζ , there is an alternating pattern for the lowest m states. dm2 e
of these states have convergent perturbative expansions and non-perturbative contributions
from neutral and topological bions, and m−dm2 e have asymptotic divergent expansions. None
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of these states are exactly solvable non-perturbatively. The interplay between the topological
and neutral bions provides a path integral semi-classical explanation of certain puzzles about
non-perturbative effects in quasi-exactly solvable systems, for which a finite number of energy
levels can be found algebraically.

These physical features of the triple-well potential (2) are explained semiclassically in the following
sections. They illustrate that the double-well potential (1) is in fact quite special, in the sense that
neighboring wells have the same frequency, and this is what makes instanton solutions physically
relevant. In the case for which neighboring wells do not have the same frequency, such as the triple
well potential (2), despite the fact that the instanton action is finite, the instanton amplitude is
zero due to the vanishing of the fluctuation prefactor.

II. INSTANTONS AND BIONS IN THE TRIPLE WELL SYSTEM

A. Vanishing of Instanton Amplitudes for Inequivalent Degenerate Wells

In this Section we show that given two consecutive degenerate harmonic wells with frequencies
ω1 6= ω2, despite the fact that a classical finite action instanton solution exists for the Euclidean
BPS equation, the amplitude for such an instanton is zero due to quantum mechanical effects.
Therefore, the instantons in general do not contribute to the energy spectrum at leading order in
semi-classics, even though they are exact solutions with minimal action. Below, we describe this
effect for the symmetric triple-well potential, which captures the essence of the general case.

The BPS equations for the symmetric triple-well potential (2), ẋ = ∓ω x(x2− 1), have instanton
and anti-instanton solutions:

instantons : x
(±)
I (t) = ± 1√

1 + e−2ω(t−t0)
(3)

anti− instantons : x
(±)

Ī
(t) = ± 1√

1 + e2ω(t−t0)
(4)

Here, the (±) notation denotes the minimum (at x = ±1) to or from which the solution tunnels,

and t0 denotes the zero-mode degree of freedom. The instanton solutions x
(±)
I (t) tunnel from the

inner vacuum at x = 0 to the outer vacua at x = ±1, while the anti-instanton solutions x
(±)

Ī
(t)

tunnel from the outer vacua at x = ±1 to the inner vacuum at x = 0. See Figure 2. The instanton
and anti-instanton action is

SI = SĪ =
ω

4
(5)

The quadratic fluctuation operator in the background of an instanton is F = (−∂2
t +Vfluc(t)) where

Vfluc(t) = [V ′′(x)]
x=x

(±)
I (t)

=
ω2
(
−10 e2ω(t−t0) + 4 e4ω(t−t0) + 1

)(
e2ω(t−t0) + 1

)2 . (6)

See Figure 3. (For an anti-instanton: t → −t.) The non-perturbative amplitude associated with
an instanton or anti-instanton is a standard textbook computation [1–8]:

[I] ∼ Jτ0
[

det′ F

detF0

]−1/2

e−SI (7)
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FIG. 2. Instantons and anti-instantons in the symmetric triple well (2). Instantons tunnel from the inner
minimum to the outer minima (±), and anti-instantons tunnel from the outer minima (±) to the inner
minimum.

Here, prime indicates that the zero mode is omitted from the determinant, as it must be integrated

over exactly. The Jacobian factor is given by Jt0 =
√

SI
2π , and detF0 is the normalization by the

free fluctuation operator, which if one is interested in the ground state should have the frequency
of the middle well. The determinant factor of this instanton amplitude can be expressed in terms
of asymptotic values of the instanton and anti-instanton solutions [1, 7, 22]:[

det′ F

detF0

]−1/2

∼ lim
β→∞

e−
β
2×

1
2 (ω1−ω0) = 0 (8)

Here ω0 = ω is the frequency of the inner well, and ω1 = 2ω is the frequency of the outer wells, and
β is the regulated length of the Euclidean time direction. The determinant factor in (8) vanishes,
due to the mis-match of the frequencies in the inner and outer wells. Therefore

[I] = 0 =
[
Ī
]

(9)

This means that the instanton solutions, despite being the non-perturbative objects with the lowest
action, do not contribute to the energy spectrum of the ground state and low-lying states. This is
also clear from looking at the numerical wavefunctions shown in Fig. 1, where the states are either
localized in the outer wells or the inner wells, but not in both. Generalizing this argument, we
see that this is actually true whenever classical degeneracy is not accidental, i.e. not related by a
symmetry.

B. Perturbation Theory in the Triple Well System

There are two different wells in the triple well potential (2), so we might expect that perturbation
theory is different in the inner and outer wells. Indeed, the perturbative expansions for low-
lying levels look different. We can study the various perturbative expansions using the BenderWu
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FIG. 3. The instanton fluctuation operator potential (6) for the symmetric triple well. The mis-match
between the t→ ±∞ limits leads to a vanishing fluctuation determinant: see Eq. (8).

Mathematica package [21]. Comparing the perturbative expansion coefficients for the first few
levels in the inner and outer wells suggests no particular relation between them beyond the obvious
relation for the first term, the unperturbed energy:
inner well perturbative expansion coefficients:

νinner = 0 :

{
1

2
,−3

4
,−27

16
,−153

16
,−20385

256
,−27027

32
, . . .

}
(10)

νinner = 1 :

{
3

2
,−15

4
,−225

16
,−2025

16
,−411075

256
,−799875

32
, . . .

}
(11)

νinner = 2 :

{
5

2
,−39

4
,−855

16
,−10809

16
,−3009285

256
,−7884891

32
, . . .

}
(12)

outer well perturbative expansion coefficients:

νouter = 0 :

{
1,−15

8
,−45

8
,−5265

128
,−6885

16
,−5735205

1024
, . . .

}
(13)

νouter = 1 :

{
3,−111

8
,−711

8
,−165969

128
,−412695

16
,−628455429

1024
, . . .

}
(14)

νouter = 2 :

{
5,−303

8
,−3105

8
,−1132497

128
,−4310145

16
,−9871632837

1024
, . . .

}
(15)

To recognize the relation between the perturbative expansions in the inner and outer wells, we write
the expansion coefficients in terms of the perturbative level number ν for the respective well. The
first five orders of the perturbative expansions for the inner and outer wells, as a function of the
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perturbative level number ν in the respective well, are:

inner :

{
ν +

1

2
,−3ν2

2
− 3ν

2
− 3

4
,−3ν3 − 9ν2

2
− 39ν

8
− 27

16
,

−105ν4

8
− 105ν3

4
− 363ν2

8
− 129ν

4
− 153

16
,

−603ν5

8
− 3015ν4

16
− 3645ν3

8
− 495ν2 − 39897ν

128
− 20385

256
, . . .

}
(16)

outer :

{
2ν + 1,−6ν2 − 6ν − 15

8
,−24ν3 − 36ν2 − 93ν

4
− 45

8
,

−210ν4 − 420ν3 − 1671ν2

4
− 831ν

4
− 5265

128
,

−2412ν5 − 6030ν4 − 16335ν3

2
− 24885ν2

4
− 20259ν

8
− 6885

16
, . . .

}
(17)

These inner-well and outer-well expansion coefficients do not immediately look like they are
related, but when expressed as functions of the action parameter, B ≡ ν + 1

2 , we find:

inner :

{
B,−3B2

2
− 3

8
,−3B3 − 21B

8
,−105B4

8
− 411B2

16
− 297

128
,

−603B5

8
− 4275B3

16
− 351B

4
, . . .

}
(18)

outer :

{
2B,−6B2 − 3

8
,−24B3 − 21B

4
,−210B4 − 411B2

4
− 297

128
,

−2412B5 − 4275B3

2
− 351B

2
, . . .

}
(19)

We recognize that the perturbative expansions are related by a simple explicit map:

Eouter
pert (B, ~) = Einner

pert (2B, ~) (20)

We have verified this result to very high orders using the BenderWu package [21] for computing
perturbative expansions.

The origin of relation (20) is not immediately obvious using direct Rayleigh-Schrödinger pertur-
bation theory, but it can be understood straightforwardly using the relation to exact WKB. In this
approach, ordinary perturbation theory can be generated by the following procedure [23, 24]. First,
compute the formal series for the all orders WKB action

a(E, ~) =

∞∑
n=0

~2na2n(E) (21)

where a2n(E) are the WKB actions [25, 26]:

a0(E) =
√

2

∮
tp

dx
√
E − V ; a2(E) = −

√
2

26

∮
tp

dx
(V ′)2

(E − V )5/2
; . . . (22)
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In the triple-well system, all the a2n(E) are expressed in terms of simple hypergeometric functions.[24]
Next, impose the all-orders Bohr-Sommerfeld quantization condition

a(E, ~) = 2π~
(
ν +

1

2

)
, ν = 0, 1, 2, . . . (23)

Finally, expand each a2n(E) at small E and then invert (23) to express the energy as a function of
ν and ~. This inversion produces an expression of the form E = E(ν, ~), rather than (23) which
is of the form ν = ν(E, ~). Furthermore, the expression E = E(ν, ~) coincides with standard
Rayleigh-Schrödinger perturbation theory expanded about the νth harmonic unperturbed state.
This perturbative procedure can be implemented for actions with turning points for the inner well
or outer wells, and the coefficients of the ~ expansion are polynomials in the respective ν label, as
listed in Eq. (16-17).

The triple-well potential in (2) has the interesting geometric property [24] that at each order of
the WKB expansion, the actions are equal in the inner and outer wells, up to a simple factor of 2:

ainner
2n (E) =

1

2
aouter

2n (E) , n = 0, 1, 2, . . . (24)

For example, at the classical level it is clear that the frequencies and actions in the inner and outer
wells differ only by factors of 2. Remarkably, this behavior persists to all orders for the triple-
well system [24]. This means that in this all-orders Bohr-Sommerfeld approach to perturbation
theory, the symmetry under B → 2B in (20) follows immediately from (23), which is equivalent to
perturbation theory.

It is well known that important connections between perturbative and non-perturbative physics
are encoded in the large-order behavior of perturbation theory [27–30]. For the triple-well potential
(2) the high orders of the perturbative expansions can be studied efficiently using the BenderWu
Mathematica package [21]. It is simple to generate many hundreds of terms in these expansions,
which permits high-precision analysis of the large-order growth. The leading growth for the per-
turbative expansion coefficients in (16-17) is as follows:

inner : c(level ν), inner
n ∼ βν

2n+ 3ν
2 −

1
4 Γ
(
n+ 3ν

2 −
1
4

)
π Γ
(

3ν
2 + 3

4

) , n→∞ (25)

outer : c(level ν), outer
n ∼ γν

2n+3ν+ 1
2 Γ
(
n+ 3ν + 1

2

)
π Γ
(
3ν + 3

2

) , n→∞ (26)

up to some n-independent rational normalization factors. Note that these asymptotic behaviors are
consistent with the exact relation (20), and the expression (25) is consistent with an expression in
[30].

For our purposes here, the most important facts about large-order perturbation theory for the
triple-well system are:

• the coefficients grow factorially in magnitude;

• the coefficients do not alternate in sign;

• the factor 2n in (25)-(26) corresponds to 1/(2SI)
n in our normalization, the nth power of the

inverse of twice the instanton action (5).

These facts imply that naive Borel summation of these formal perturbative series produces am-
biguous imaginary non-perturbative terms with exponential factor e−2SI . These are cancelled by
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contributions from instanton/anti-instanton interaction effects [17, 31–35], which we refer to as
quantum bions, and which are analyzed in the next subsection. This cancellation mechanism is one
of the clearest examples of the application of resurgent trans-series in physics, where a trans-series
combines both perturbative and non-perturbative contributions in such a way that naive imaginary
terms are cancelled in the full trans-series, producing real and unambiguous physical results [36, 37].

C. Critical Points at Infinity, Lefschetz Thimbles and Bions in the Triple Well System

In the two-instanton sector of a generalized instanton gas analysis, we must carefully consider
the critical points at infinity, and their Lefschetz thimble contribution.[17] The main results of Ref.
[17] for the double well-potential and its ~-tilting are the following:

• An instanton and anti-instanton is a critical point at infinite separation. Starting with the
theory compactified on a circle with size β, the classical + quantum interaction between the
two is of the form Veff(τ) =

(
−A(e−ω τ + e−ω(β−τ)) + ~ωτ

)
. The critical point is determined

by the classical action, and located at ω τ∗ = β
2 . As β →∞, the classical interaction between

the two instantons dies off and the configuration becomes a genuine saddle point.

• The thimble associated with the critical ω τ∗ is given by (for ~→ eiθ ~)

Γθ=0+

QZM = γ+
1 + γ+

2 + γ+
3 (27)

where the segments are γ+
1 = (−∞+ iπ, β2 + iπ), γ+

2 = [β2 + iπ, β2 − iπ], γ+
3 = (β2 − iπ,∞− iπ) .

In the β →∞ limit, the integration is equal to the contribution of the γ+
1 segment.

• These critical points at infinity are non-Gaussian. Therefore, to reproduce the correct NP-
contributions at second order in semi-classics, the quasi-zero-mode (QZM) integrals need to
be done exactly, not in the Gaussian approximation.

• The configurations that dominate the integration over Γθ=0+

QZM are the neutral and topological
bion configurations.

In a semi-classical treatment of the quantum mechanical path integral, we must take into account
the physical effect of all saddles and their thimbles, including the critical points at infinity, and their
thimbles: see e.g. [17, 33–35, 38–40]. In what follows we analyze the triple well system using the
notions of topological bions and neutral bions.

There are two different kinds of correlated instanton configurations: topological1 bions and neu-
tral bions. We begin by discussing neutral bions of the classical triple-well system. These can be
thought of as the solutions of the inverted potential which roll down from one of the peak of the
inverted potential, to an adjacent peak of the inverted potential, and then roll back. It is clear that
we can find a solution which performs this motion any number of times in time β. We will refer to
an object which performs this motion once (down the hill, up the hill and back) as a neutral bion.
The term neutral indicates that there is no topological charge associated with this object.

1 In some of our previous work these were called the “real bions”. We have renamed them “topological bions” here
because they need not be real saddles of the classical equations of motion. Their most important distinguishing
feature is that they have a nonzero topological charge, in contrast to neutral bions whose topological charge
vanishes.
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The topological bion is more interesting. Intuitively such an object corresponds to a tunneling
event between the far left well and the far right well. Indeed looking at Fig. 1, such an object
must exist on physical grounds in order to explain the energy splitting between the states localized
on the left and on the right. The name topological emphasizes the topological stability of the
configuration which has its two ends in two classical minima related by a symmetry. However the
classical potential clearly does not have real finite action solutions of this kind2. Candidate solutions
of the topological bion can be found in various ways as limits approaching this functional separatrix.
One possibility is to make a small shift of the minimum of the middle well, in which case a solution
appears. Another possibility is to take a limit of the complex solutions at energy just above the
top of the inverted potential. Another approach, which we adopt here, is to employ minimization
of the quantum action, which yields physically consistent results.[33–35]. These quantum saddles
correspond to the tails of the Lefshitz thimbles of the appropriate saddles minimizing the classical
action, in the spirit of [17]. The full details of the connection between the aforementioned limiting
procedures is interesting and deserves further future study. However, for the purposes of this work
we consider both the neutral bion and the topological bion to be solutions of the equations of
motion with the quantum corrected potential 1

2 (W ′)2 + ~
2W

′′, as in Refs.[33–35]. The neutral bions
are also well-defined objects on the thimble as in [17], and we expect that the same holds for the
topological bions. We show that this combined approach is self-consistent.

The characteristic size of bions in the Euclidean time direction is given by

t∗ ∼ ln
1

~
(28)

The topological and neutral bions have finite action, and their fugacities are given by

[T B] ∝ e−2SI , [NB] ∝ e−2SI±iπ4 (29)

for the topological bion [T B] and the neutral bion [NB] respectively. The complex phase, the
hidden topological angle θHTA, comes from the fact that these configurations are in fact complex
configurations which saturate the thimble integral. The physical effects of the topological and
neutral bions are very different.

-t*/2 t*/2
t

-1

1

4

Vfluc (t)

FIG. 4. Sketch of the structure of the fluctuation potential for the bion configurations.

2 Thinking of the inverted potential of the triple-well, the only classical solutions which go from one outer maximum
to another would be flying off to infinity, and would hence have infinite action.
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1. Physics of the Topological Bion

The non-perturbative effect of the topological bion is analogous to that of a single instanton
in the symmetric double-well potential in the sense that it is responsible for the non-perturbative
splitting, ∆E ∼ e−2SI , of the energy levels for low-lying states localized in the outer wells. The
prefactor is computed from the determinant factors as in expression (7), but now with action 2SI ,
and with the fluctuation potential of the form in Figure 4. Since the asymptotic values of the
fluctuation potential coincide, the prefactor is finite and non-zero, unlike for the single instanton
where it vanishes (8):

topological bion amplitude:
[
Ī± I∓

]
∼ e−2SI (30)

2. Physics of the Neutral Bion

The neutral bions play a very different role. Their non-perturbative character is similar to that
of a correlated instanton/anti-instanton molecule in the symmetric double-well system [17, 33–35].
The associated amplitude can be computed in an instanton gas picture as follows. Consider a
widely separated (separation much greater than the instanton size scale) instanton/anti-instanton
molecule, interacting via the effective potential

Veff(τ) = −ω1c
2
1 e
−ω1 τ +

~
2

(ω1 − ω0) τ (31)

where we write ω0 = ω for the frequency of the inner well, and ω1 = 2ω for that of the outer wells.
The first term in Veff(τ) is the classical interaction, arising from the overlap of the tails of two
consecutive instantons, as is familiar from the usual symmetric double-well potential. [17, 31–35]
The second term is the action accumulated during the intermediate Euclidean time regime spent in
the other minimum. The difference in energy between the true and false vacua is ∆E = 1

2 (ω1−ω0),
and the time spent is τ . Hence the action cost of this intermediate regime is ∆S = ∆Eτ =
τ
2 (ω1 − ω0). So for the symmetric triple-well potential in (2), ∆S = τ

2ω.
Unlike instantons, whose amplitude vanishes at the one-loop level (since the time spent in the

false vacuum is infinite), the amplitude for a neutral bion is non-zero. To see this, consider a
correlated instanton/anti-instanton pair, starting in the central well at the true vacuum with fre-
quency ω, and taking a journey to the neighboring degenerate minimum with frequency ω1 > ω0,
spending Euclidean time τ , (which is the separation quasi-zero mode that we will integrate over),
and returning back to the original vacuum. To account for this correlated event, we evaluate the[
I+ Ī+

]
amplitude as follows

[
I+ Ī+

]
∼ e−2SI

∫
ΓQZM

d(ω1τ)e−
1
~ (−ω1c

2
1 e
−ω1τ+ ~

2 (ω1−ω0)τ) (32)

where the integral is to be taken along an appropriate thimble [17], which, for β →∞, passes along
the Im τ = π line. This integral encodes the effect of the neutral bion fluctuation determinant.

The critical point of the effective potential Veff(τ) determines the characteristic size of the neutral
bion:

V
′

eff(τ) = 0⇒ ω1τ
∗ = log

[
ω1c

2
1

~D

]
∓ iπ (33)
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We have defined the “deficit parameter”

D =
1

2

(
1− ω0

ω1

)
(34)

The integration ΓQZM over the quasi-zero-mode degree of freedom yields

[
I+ Ī+

]
± ∼ e

−2SIe±iπD
(

~
ω1c21

)D
Γ(D) (35)

This result identifies the hidden topological angle (HTA) [41, 42] as

θHTA =
π

2

(
ω1 − ω0

ω1

)
≡ πD (36)

In general, there would be a different HTA for a neutral bion connecting with another neighboring
minimum with a different characteristic frequency. But in the symmetric triple-well potential (2)
the frequencies of the two outer wells are equal, so the amplitude for the different types of neutral
bions are the same. Since ω0 = ω and ω1 = 2ω, we obtain a hidden topological angle given by:

θHTA =
π

4
(37)

Hence the quantum neutral bion amplitude is

[I+Ī+]± ∼ e−2SIe±i
π
4

(
~
ωc21

)1/4

Γ

(
1

4

)
(38)

A similar discussion applies to all neutral bion amplitudes: [I±Ī±] and [Ī±I±]. Note that these
amplitudes have an imaginary two-fold ambiguity. The ambiguity cancels the ambiguity associated
with the Borel resummation of perturbation theory [17, 31–35], and the real part provides a non-
perturbative shift to the ground state energy.

In Section IV we consider a deformation of the triple-well system in which the hidden topological
angles differ by special fractionally-quantized amounts. This has the effect that perturbation theory
is convergent for a finite set of states, but divergent for all other states.

III. SUPERSYMMETRIC EXTENSION OF THE TRIPLE WELL SYSTEM

A. SUSY Symmetric Triple Well

Integrating out the fermions in SUSY quantum mechanics produces a pair of bosonic partner
Hamiltonians [4, 17, 33, 34, 43]:

H± = −~2

2

d2

dx2
+
ω2

2
x2(x2 − 1)2 ± ~ω

2
(3x2 − 1) (39)

The potential has a classical term and a quantum induced O(~) term coming from integrating out
the fermions. These partner Hamiltonians can be factored as

H± =
1

2
Q±Q∓ , Q± ≡ ±~ d

dx
+W ′ (40)
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where the superpotential term is W ′(x) = ω x(x2 − 1). The associated partner potentials, V±(x) =
1
2 (W ′)2± ~

2W
′′, are shown in Figure 5. Note that it is important that the magnitude of the fermionic

contribution, ~W ′′(x) is parametrically small, proportional to ~, but still much greater than e−2/~,
at which point the non-perturbative effects of the non-SUSY system dominate the physics.

x

V+ (x)

x

V- (x)

FIG. 5. The form of the SUSY partner potentials V±(x) for the SUSY triple-well system.

As expected, the ground state of each potential V± has zero energy to all orders in perturbation
theory. All other states have divergent perturbative expansions. (Nevertheless, there are still resur-
gent relations between perturbative and non-perturbative sectors [44]). The perturbative structure
of the SUSY partner hamiltonians H± can be studied with the BenderWu Mathematica package
[21]. This enables one to verify explicitly the generalization of the relation (20) between the per-
turbative expansions in the inner and outer wells extended to the SUSY potentials. We find that
(recall B ≡ ν + 1

2 , where ν is the perturbative level number for states localized in that well) the
perturbative expansions for states localized in the inner and outer wells are related as:

Eouter,±
pert (B, ~) = Einner,±

pert

(
2B ± 3

2
, ~
)

(41)

This is easy to check using the BenderWu package.3

3 To check this one can use the BenderWuLevelPolynomial function to compute the level-number dependence. See
the documentation of the BenderWu package.[21]



14

FIG. 6. Sketch of the neutral and topological bions in the H+ (left) and H− (right) sectors.

The semiclassical analysis of the SUSY triple-well system can be described as follows. Recall that
near the classical minima x = 0,±1, the bosonic potential behaves as

Vbosonic ≡
1

2
W ′(x)2 ≈

{
4ω2

2 x2 , x ≈ ±1
ω2

2 x
2 , x ≈ 0

(42)

The classical harmonic oscillator frequencies are ω0 = ω, and ω1 = 2ω. Therefore a classical path
fixed near x = 0,±1 will contribute βω0,1/2 to the action density, to one loop in perturbation
theory in ~. However, such paths also get a contribution from the fermionic potential, W ′′(x):

±~
2
W ′′(x) ≈

{
± 2~ω

2 , x ≈ ±1
∓~ω

2 , x ≈ 0
(43)

Thus, for H+ the action contribution for paths near x ≈ 0 cancel between the one loop bosonic
fluctuation and the fermionic contribution, but they add near x ≈ ±1. On the other hand, for H−

the action contributions for paths near x ≈ ±1 cancel, while they add near x ≈ 0. In fact one can
show that this cancellation is exact to any order, and so the energies in the corresponding local
minima are all zero to any order in perturbation theory.

Thus, for the ground state a non-perturbative path must start and end at x = 0 for the Hamil-
tonian H+, but it must start and end at x = ±1 for H−. See Figure 6. Therefore, H+ allows only
an instanton I± followed by an anti-instanton Ī±, i.e. a correlated [I±Ī±] configuration, interpo-
lating from x = 0 to x = ±1 and then back to x = 0. We refer to these configurations as neutral
bions, because their path is topologically trivial in the sense that they start and end at the same
perturbative vacuum. The H− case also allows for a neutral bion: i.e. an instanton I± followed by
an anti-instanton Ī±. However since H− has two degenerate minima to all orders in perturbation
theory, we also have a topologically nontrivial configuration: an anti-instanton of type Ī±, followed
by an instanton of type I∓, thereby taking x : ±1 → 0 → ∓1. We refer to such a configuration as
a topological bion.

The correlated semiclassical configurations which contribute to the partition function are there-
fore:

neutral bion: [NB]+ ≡ [I±Ī±] for H+ (44)

neutral bion: [NB]− ≡ [I±Ī±] for H− (45)

topological bion: [T B]− ≡ [Ī±I∓] for H− (46)
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These configurations are parametrized by the distance τ between the constituent instanton and
anti-instanton. To compute their effect, one integrates over the separation τ :

[I±Ī±] = C+e
−2SI

∫
dτe−S

+
nb(τ)−ω1τ , for H+ (47)

[I±Ī±] = C−e
−2SI

∫
dτe−S

−
nb(τ)−ω0τ , for H− (48)

[Ī±I∓] = C−e
−2SI

∫
dτe−S

−
tb(τ)−ω0τ , for H− (49)

The constants C± factorize to a pair of one-loop determinants around single (anti-)instantons, pro-
vided that the divergent part due to the frequency mismatch is subtracted, as it is explicitly taken
into account above. The difference between C+ and C− is determined entirely by the difference
of the terms ±

∫
W ′′(x) in the action, evaluated in the background of the relevant configurations.

Furthermore Snb(τ) and Stb(τ) are the “classical” (i.e. leading order in ~) interactions, and the
subscript refers to the “neutral bion” and “topological bion”, respectively. As usual, these in-
teraction terms can be found from the asymptotic behavior of the bion solutions [17, 33, 34]. A
straightforward computation yields:

S+
nb(τ) = −2ω1c

2
1e
−ω1τ , (50)

S−nb(τ) = −2ω0c0e
−ω0τ , (51)

S−tb(τ) = 2ω0c0e
−ω0τ = −S−nb(τ) (52)

where the coefficients, c0 = 1/
√

3 and c1 = −3/2, come from the details of the asymptotics of the
instanton solution. Note that, as expected, for the neutral bion the classical interaction between
constituents is attractive, while for the topological bion it is repulsive. Furthermore, also as ex-
pected, in the H− system the interaction between the topological bion constituents is minus that
of the neutral bion constituents.

As explained in Sec. II C, these bions are the dominant configurations of a critical point at
infinity.[17] The saddle point at infinity is a non-Gaussian critical point with vanishing contribution,
but its thimble contributes non-trivially. The evaluation over the thimble amounts to integrating
over a contour ω1τ ∈ R+iπ, ω0τ ∈ R+iπ in the first and second cases (neutral bions), and ω0τ ∈ R
in the third case (topological bions). Performing the τ integrals exactly yields the amplitude and
also the phase associated with each bion configuration:

H+ : [NB]+ ≡ [I±Ī±] =
~

ω0ω1c0c1
e−2SI+iπ (53)

H− : [NB]− ≡ [I±Ī±] =
~

ω0ω1c0c1
e−2SI+iπ (54)

H− : [T B]− ≡ [Ī±I∓] =
~

ω0ω1c0c1
e−2SI (55)

The phase is given by θHTA = π both for the neutral bion [NB]+ in the H+ sector, and for
the neutral bion [NB]− in the H− sector. In contrast, the phase associated with the topological
bion is zero. The quantization of the HTA in units of π for the neutral bion implies that there
is no ambiguity in the neutral bion amplitude, and hence there should not be any ambiguity in
perturbation theory for the ground state for H−. Indeed, perturbation theory for the ground state
is convergent in either sector (in fact, it vanishes to all perturbative orders due to supersymmetry).
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B. Non-perturbative Cancellations and the Witten index

We can now combine the contributions of the neutral and topological bions. Consider first
the H+ sector. In the leading order semi-classical approximation, we sum over the neutral bion
configurations. There are two distinguishable configurations of equal magnitude which contribute
to the partition function (see Fig. 6). The partition function can be viewed as a dilute gas of
neutral bions of these two types. Summing over all such configurations, we find

Z+ ≈
∞∑
n=0

1

n!
(β[NB])n

∞∑
m=0

1

m!
(β[NB])m

= e2β[NB] = e−2βKe−2SI
(56)

with K a positive constant. The non-perturbative ground state (N = 0) energy in the H+ sector is

Enp,+(N = 0) = −2 [NB] = −2Ke−2SI+iπ > 0 (57)

Here the label N refers to all states in the spectrum, not just the perturbative levels in one of the
potential wells. Note that the positive semi-definiteness of the spectrum [guaranteed by the SUSY
factorization (40)] arises semiclassically in (57) as a result of the hidden topological angle: θHTA =
π. The HTA arises here because the integration cycle is in the complex domain, hence, the neutral
bion configuration (or any other configuration on this thimble that contributes to semi-classics at
this order) is manifestly complex. Since the contribution of real saddles or real configurations to
path integrals are manifestly negative, the existence of θHTA = π is strictly necessary in this case
for compatibility with the supersymmetry algebra, which requires Enp,+(N = 0) ≥ 0.

For the H− sector we sum over both the neutral bions and also the topological bion. However the
topological bion starts in one vacuum and ends in the other, so only even powers of these configu-
rations can contribute to the thermal partition function [which demands periodicity in Euclidean
time]. In addition there is a neutral bion, the sum over which is not constrained. Therefore,

Z− ≈ 2

∞∑
n=0

1

n!
(β[NB])n

∞∑
m=0

1

(2m)!
(β[T B])2m

= 2 cosh([T B]β)e[NB]β . (58)

The overall factor of two in front is due to the fact that there is a sum over the two perturbative
supersymmetric vacua, i.e. the outer well harmonic vacua. However, notice that since [NB]+ =
[NB]− = −[T B]− = −Ke−2SI , where K is a (positive) constant, we have that

Z− ≈ 1 + e−2βKe−2SI . (59)

This has the consequence that the non-perturbative energies of the two lowest levels in the H−

sector are

Enp,−(N = 0) = −([T B] + [NB]) = 0

Enp,−(N = 1) = −(−[T B] + [NB]) = 2Ke−2SI (60)

Observe that Enp,−(N = 1) is degenerate with Enp,+(N = 0), as we know from supersymmetry.[43]
The supersymmetric Witten index is therefore given semiclassically by

IW = Z− − Z+ = 1 (61)
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which agrees with the well known result from SUSY.[43] Semiclassically, the cancellation of the
ground state energy is due to the opposite sign contributions of [T B] and [NB], which arises from
the hidden topological angle θHTA = π.[33]

IV. ZETA-DEFORMED THEORIES AND QUASI-EXACTLY SOLUBLE MODELS

The fermionic contribution to the partner Hamiltonians (39) can be extended to multiple flavors
of fermions, where we will also take the ”fermion number” parameter ζ > 0 to be non-integer,
constructing H±,ζ pairs of partner Hamiltonians.[4, 34, 45, 46] In this section, we examine novel
properties of these paired Hamiltonians:

H±,ζ = −~2

2

d2

dx2
+
ω2

2
x2(x2 − 1)2 ± ζ ω

2
~(3x2 − 1) (62)

Notice that the form mimics the supersymmetric form of the potential

V ±,ζ(x) =
1

2
W ′(x)2 ± ζ

2
~W ′′(x) (63)

with W ′(x) being analogous to the “superpotential”

W ′(x) = ω x(x2 − 1) (64)

A. Perturbative Expansions for the Zeta-deformed Theories

We first observe that the perturbative expansion around the inner and outer wells are once
again related. We employ the BenderWu mathematica package to facilitate these expansions, and
discover that the energy expansion coefficients around the inner and outer wells, as a function of
the harmonic oscillator level number, given in terms of B = ν + 1

2 for the respective well, are given
by

Einner,±,ζ :

{
B ∓ ζ

2
,−3B2

2
± 3Bζ

2
− 3

8
,

−3B3 ± 9B2ζ

2
− 9Bζ2

8
− 21B

8
± 9ζ

8
, . . .

}
(65)

Eouter,±,ζ :

{
2B ± ζ,−6B2 ∓ 6Bζ − 9ζ2

8
− 3

8
,

−24B3 ∓ 36B2ζ − 63Bζ2

4
− 21B

4
∓ 27ζ3

16
∓ 45ζ

16
, . . .

}
(66)

These expansion coefficients imply that the perturbative energies in the inner and outer wells are
related as follows:

Eouter,±,ζ
pert (B, ~) = Einner,±,ζ

pert

(
2B ± 3ζ

2
, ~
)
. (67)

These relations generalize the inner-outer perturbative relations for the non-SUSY case in (20), and
for the SUSY case in (41).
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There is further interesting structure in the perturbative expansions for the partner hamiltonians
H±,ζ , which we now use to give a semiclassical understanding of the rich algebraic structure of quasi-
exactly-solvable (QES) hamiltonians.[6, 18–20, 47]. After suitable rescaling, the sextic potential
analyzed in Ref [20] matches the form in (62). In our notation, the QES systems arise for special
rational values of ζ:

ζQES =
2m+ 1

3
, m = 1, 2, 3, . . . (68)

Using the BenderWu package, we have studied the perturbative expansions for the low-lying states
of the H±,ζ partner hamiltonians. Note that for H+,ζ the middle well is lowered, while for H−,ζ

the outer wells are symmetrically lowered, analogous to Figure 5 for the SUSY models.

1. Perturbative Structure for H+,ζQES

For H+,ζQES the middle well is lowered, so the low-lying states are localized in the middle well
for 0 ≤ νinner ≤ m− 1.

• m=1: The lowest QES case has m = 1, which means ζ = 1, which is the SUSY case. The
ground state has Epert(νinner = 0, ~) = 0 to all orders of perturbation theory. But it receives
a non-perturbative shift, which is positive, as discussed in Section III B. For νinner ≥ 1,
the perturbative expansions are all divergent asymptotic expansions, with non-alternating
expansion coefficients that grow factorially in magnitude.

νinner = 0 : convergent expansion Epert = 0 (69a)

νinner ≥ 1 : divergent non-alternating expansion (69b)

• m=2: In this case the deformation parameter has a non-integer rational value, ζ = 5
3 , and

we find that the ground state, (νinner = 0), has a divergent and non-alternating perturbative
expansion, while the series for the first excited state truncates (νinner = 1), and is thus
convergent:

νinner = 0 : divergent non-alternating expansion (70a)

νinner = 1 : convergent expansion Epert =
2

3
(70b)

νinner ≥ 2 : divergent non-alternating expansion (70c)

• m=3: In this case the deformation parameter has a non-integer rational value, ζ = 7
3 , and we

find the following pattern:

νinner = 0 : convergent expansion Epert =
1

3
−
√

1− 2~ (71a)

νinner = 1 : divergent non-alternating expansion (71b)

νinner = 2 : convergent expansion Epert =
1

3
+
√

1− 2~ (71c)

νinner ≥ 3 : divergent non-alternating expansion (71d)
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• m=4: In this case the deformation parameter has an integer value, ζ = 3, and we find the
following pattern:

νinner = 0 : divergent non-alternating expansion (72a)

νinner = 1 : convergent expansion Epert = 1−
√

1− 6~ (72b)

νinner = 2 : divergent non-alternating expansion (72c)

νinner = 3 : convergent expansion Epert = 1 +
√

1− 6~ (72d)

νinner ≥ 4 : divergent non-alternating expansion (72e)

This pattern continues for higher m: the states with 0 ≤ νinner ≤ m − 1 alternate between con-
vergent and divergent perturbative expansions, and all states receive non-perturbative corrections
of the form: ∆ENP ∼ e−2SI .

2. Perturbative Structure for H−,ζQES

For H−,ζQES the outer wells are lowered symmetrically, so the low-lying states are localized in
the outer wells for 0 ≤ νouter ≤ m− 1. These states have an additional parity structure because of
the parity symmetry between the two outer wells.

• m=1: The lowest QES case has m = 1, which means ζ = 1, which is the SUSY case.
The lowest perturbative state in each outer well has Epert(νouter = 0, ~) = 0 to all orders
of perturbation theory. This perturbative level is split by non-perturbative effects. The
parity-symmetric ground state remains zero, while the parity-antisymmetric first-excited state
receives a positive non-perturbative shift, ∆ENP ∼ e−2SI , as discussed in Section III B. For
νouter ≥ 1, the perturbative expansions are all divergent asymptotic expansions, with non-
alternating expansion coefficients that grow factorially in magnitude.

νouter = 0 : convergent expansion Epert = 0 (73a)

νouter ≥ 1 : divergent non-alternating expansion (73b)

• m=2: In this case the deformation parameter has a non-integer rational value, ζ = 5
3 , and

we find that the lowest perturbative level, (νouter = 0), has a convergent (indeed, truncating)
expansion,

E
−,ζ= 5

3
pert (νouter = 0, ~) = −2

3
(74)

This lowest perturbative level is split into a doublet by non-perturbative effects, with the
lower (ground) doublet state receiving a negative shift, ∆ENP ∼ −e−2SI , while the higher
(first excited) doublet state receives no non-perturbative shift. The general perturbative
pattern for m = 2 is:

νouter = 0 : convergent perturbative expansion (75a)

νouter ≥ 1 : divergent non-alternating expansion (75b)
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• m=3: In this case the deformation parameter has a non-integer rational value, ζ = 7
3 , and

we find that the first two perturbative levels for states localized in the outer wells have non-
truncating but convergent (indeed, exactly summable) expansions:

E
−,ζ= 7

3
pert (νouter = 0, ~) = −1

3
−
√

1 + 2~ (76a)

E
−,ζ= 7

3
pert (νouter = 1, ~) = −1

3
+
√

1 + 2~ (76b)

E
−,ζ= 7

3
pert (νouter ≥ 2, ~) : divergent non-alternating expansion (76c)

These should be contrasted with the νinner = 0, 2 perturbative energies for theH+,ζ sector with
ζ = 7

3 in the previous subsection. The parity-symmetric forms of the νouter = 0, 1 perturbative
states in (76a-76b) are exactly solvable, and receive no non-perturbative corrections. On the
other hand, the parity-antisymmetric forms of the νouter = 0, 1 states in (76a-76b) receive
non-perturbative corrections with a positive shift: ∆ENP ∼ e−2SI > 0. For νouter ≥ 2,
the perturbative energy expansions are divergent with non-alternating coefficients growing
factorially fast in magnitude.

• m=4: In this case the deformation parameter has an integer value, ζ = 3, and we find that
the first two perturbative levels for states localized in the outer wells have non-truncating but
convergent (indeed, exactly summable) expansions:

E−,ζ=3
pert (νouter = 0, ~) = −1−

√
1 + 6~ (77a)

E−,ζ=3
pert (νouter = 1, ~) = −1 +

√
1 + 6~ (77b)

E−,ζ=3
pert (νouter ≥ 2, ~) : divergent non-alternating expansion (77c)

These should be contrasted with the νinner = 1, 3 perturbative energies for theH+,ζ sector with
ζ = 3 in the previous subsection. The parity-symmetric forms of the νouter = 0, 1 perturbative
states in (77a-77b) are exactly solvable, and receive no non-perturbative corrections. On the
other hand, the parity-antisymmetric forms of the νouter = 0, 1 states in (77a-77b) receive
non-perturbative corrections with a positive shift: ∆ENP ∼ e−2SI > 0. For νouter ≥ 2,
the perturbative energy expansions are divergent with non-alternating coefficients growing
factorially fast in magnitude.

B. Semiclassical Bion Analysis of QES Spectra: the Hidden Topological Angle and the
Discrete θ Angle

In this Section we present a bion explanation of the intricate spectral patterns found for the H±,ζ

QES systems in the previous Section.

1. H+,ζ : Physics of the Hidden Topological Angle

The partner Hamiltonian H+,ζ is the ζ-deformation of the partner Hamiltonian in SUSY QM
which does not have a normalizable zero energy state, with potential shown in the left hand side of
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Fig. 5. For H+,ζ , the inner-well is lowered and the outer wells are lifted. The harmonic states in

the inner well have energies ω0

(
1
2 −

ζ
2 + νinner

)
, where νinner = 0, 1, 2, . . ., and the lowest harmonic

state in each of the outer wells has energy ω1

(
1
2 + ζ

2

)
. Recall that for our sextic potential, ω0 = ω,

and ω1 = 2ω. We wish to explain semiclassically the alternating pattern structure of the low lying
states in the inner well found in Section IV A 1, for which for half of the states perturbation theory
is convergent, while for the other half it is an asymptotic divergent series, with non-alternating
coefficients. This arises due to an interesting structure of the HTA. However, for the convergent
states, the result will not converge to the physical non-perturbative answer, as there are only neutral
bion contributions, and no topological bions to cancel them. Hence the non-perturbative effects
are present, unlike for the symmetric states in the H−,ζ system which we discuss below in the next
subsection.

The semiclassical amplitude for the neutral bion configuration can be computed via a general-
ization of the method in Section III A, extended to include the dependence on the perturbative
level number ν. This analysis builds on earlier work[23, 34, 46], and full details of the modern bion
approach will be presented elsewhere. [48] The main result is that the thimble integration leads to
the following expression for the neutral bion amplitude:

[I+Ī+]± ∼ e−2SIe±iπD
+,ζ

(
~

ω1c21

)D+,ζ

Γ(D+,ζ) (78a)

Here the “deficit angle” D+,ζ is (compare with Eqs. (34) and (84)):

D+,ζ =
1

2

[
(1 + ζ)− ω0

ω1
(1− ζ + 2 νinner)

]
(79)

The neutral bion amplitude has an imaginary ambiguous part

Im([I+Ī+]±) ∼ ±ie−2SI
π

Γ(1−D+,ζ)

(
~

ω0c20

)D+,ζ

(80)

For the symmetric triple-well, for which ω1 = 2ω0 = 2ω, we deduce the hidden topological angle:

θ+,ζ
HTA = πD+,ζ = π

(
1

4
+

3ζ

4
− νinner

2

)
=
π

2
(m+ 1− νinner) (81)

Thus, for the H+,ζ sector, the HTA is quantized in units of π/2, rather than in units of π, as arises

for the H−,ζ sector: compare with Eq. (86) for θ−,ζHTA.

The result (81) for θ+,ζ
HTA has several important implications for the structure of the low-lying levels

for which 0 ≤ νinner ≤ m− 1. There are two distinct cases, depending on whether m+ 1− νinner is
even or odd.

• m odd: The imaginary ambiguous part vanishes for νinner ∈ S1 = {0, 2, . . . ,m−1}, and it does

not vanish for νinner ∈ S2 = {1, 3, . . . ,m−2}. This comes about because θ+,ζ
HTA is quantized in

units of π for S1, but θ+,ζ
HTA is quantized in odd multiples of π/2 for S2. Therefore, perturbation

theory must be convergent for S1, and it must be divergent for S2. Furthermore, for the states
in S1, since ∆ENP = −[NB], the non-perturbative energy shift is positive if the HTA is an
odd integer multiple of π, and is negative if the HTA is an even integer multiple of π.
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• m even: The imaginary ambiguous part vanishes for νinner ∈ S1 = {1, 3, . . . ,m − 1}, and

it does not vanish for νinner ∈ S2 = {0, 2, 4, . . . ,m − 2}. This comes about because θ+,ζ
HTA is

quantized in units of π for S1, but θ+,ζ
HTA is quantized in odd multiples of π/2 for S2. Therefore,

perturbation theory must be convergent for S1, and it must be divergent for S2. Note that this
has the interesting implication that for the ground state, perturbation theory is asymptotic,
while for the first excited state it is convergent.

Furthermore, for the states in S1,

∆ENP = −[NB] = −eiπ(m+1
2 −

νinner
2 )2Ke−2SI (82)

Therefore, the non-perturbative energy shift is positive if the HTA is an odd integer multiple of
π, and it is negative if the HTA is an even integer multiple of π. For level number νinner ≥ m,
all the states have divergent asymptotic expansion.

These predictions of the neutral bion analysis explain the patterns found in Section IV A 1 using
the Bender-Wu Mathematica package.[21]

2. H−,ζ : Physics of the Hidden Topological Angle and the Discrete θ Angle

When ζ is close to unity, the deformation (62) serves as a soft SUSY breaking deformation which
reveals how the hidden resurgent structure of SUSY quantum mechanics is present, disappearing at
the non-generic SUSY value of ζ = 1 [44]. Consider the role of the neutral bions in this ζ-deformed
theory. The neutral bion configuration starts at an outer well, interpolates to the inner well, and
then interpolates back again. At the harmonic level, the lowest state localized in the inner well

has energy ω0

(
1
2 + ζ

2

)
, and the ground state and low lying states localized in the outer wells have

energies ω1

(
1
2 −

ζ
2 + νouter

)
, where νouter = 0, 1, 2, . . . is the harmonic energy level label. For a

certain number of low lying states localized in the outer wells, we will show that the perturbation
theory is convergent. For half of these states, perturbation theory converges to the exact physical
result, while for the other half there is a non-perturbative bion contribution on top of the convergent
perturbative sum, generalizing the result of the supersymmetric model.

As in the H+,ζ sector discussed in the previous section, the semiclassical amplitude for the neutral
bion configuration can be computed via a generalization[48] of the method in Section III A, extended
to include the dependence on the perturbative level number ν. The main result is that the thimble
integration leads to the following expression for the neutral bion amplitude:

[I+Ī+]± ∼ e−2SIe±iπD
−,ζ
(

~
ω0c20

)D−,ζ
Γ(D−,ζ) (83)

Here D−,ζ is the zeta-deformed “deficit angle” (compare with Eq. (34) and (79)):

D−,ζ ≡ 1

2

[
1− ω1

ω0
(1 + 2νouter) + ζ

(
1 +

ω1

ω0

)]
(84)

The imaginary part of the neutral bion amplitude can be written as

Im([I+Ī+]±) ∼ ±ie−2SI
π

Γ(1−D−,ζ)

(
~

ω0c20

)D−,ζ
(85)
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Thus, for the symmetric triple-well, for which ω1 = 2ω0 = 2ω, we deduce the hidden topological
angle associated with the neutral bion configuration:

θ−,ζHTA = πD−,ζ = π

(
−1

2
+

3ζ

2
− 2νouter

)
= π (m− 2νouter) (86)

Note that θ−,ζHTA is quantized in integer units of π, rather than in integer units of π
2 , as for θ+,ζ

HTA

in (81). Furthermore, the phase θ−,ζHTA does not have a level number dependence, since the angles
are identified by 2π shifts. This is in contrast to the H+,ζ sector, where there is a non-trivial level
number dependence in (81), leading to an alternating convergent/divergent perturbative pattern

for the low-lying states of the H+,ζ sector. For the states for which 0 ≤ νouter ≤
⌊

3(ζ−1)
4

⌋
=
⌊
m−1

2

⌋
,

the amplitude of the topological bions and neutral bions are related by

[NB] = eiπm [T B] (87)

for the QES ζ values in (68).
Each value of νouter gives rise to two eigenstates of the H−,ζ hamiltonian, one symmetric combina-

tion (N = 2νouter) and one anti-symmetric (N = 2νouter +1), where N is the fundamental quantum
number associated with H−,ζ . Here the level label N refers not to a perturbative level in a given
well, but to the states of the whole potential. The states for which there is no non-perturbative con-
tribution, i.e, the non-perturbative contribution cancels, is determined by an interference pattern
sourced by the hidden topological angle θHTA and by a discrete theta angle θdisc..

The appearance of the discrete theta angle can be seen as follows. The triple-well potential has a

parity symmetry, P . Therefore, one can consider two types of partition functions: tr
(
e−βH

−,ζ
)

and

tr
(
P e−βH

−,ζ
)

(see also [23]). One can now gauge parity. By this one usually means the following

tr

[(
1 + P

2

)
e−βH

−,ζ
]

=
∑

N∈HP even

e−βEN (88)

where in the state sum we sum over only parity even states, i.e. gauging the parity is equivalent to
this projection. However when gauging one has a choice to project to a state sum over only parity
odd states, and we can identify this with turning on the discrete theta angle4:

θdisc. = π (89)

Then

tr

[(
1− P

2

)
e−βH

−,ζ
]

=
∑

N∈HP odd

e−βEN (90)

On the other hand,

Z− = tr
(
e−βH

−,ζ
)
≈ e−βE02 cosh([T B]β) e[NB]β

= e−βE0

(
eβ([T B]+[NB]) + eβ(−[T B]+[NB])

)

4 Here the terminology [49] is analogous to the one in periodic potentials. The discrete translation symmetry of a
periodic potential can be gauged by projecting to a particular charge θ which is angle valued for a Z symmetry.
This is the usual θ angle, or Bloch angle, for a particle on a circle.
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Z−P = tr
(
Pe−βH

−,ζ
)
≈ e−βE02 sinh([T B]β) e[NB]β

= e−βE0

(
eβ([T B]+[NB]) − eβ(−[T B]+[NB])

)
(91)

Therefore, the [T B] contribution to parity even and parity odd states has an over-all sign difference.
As a result, we can write the leading non-perturbative contribution at energy level N as

ENP
N = −(eiπN [T B] + [NB])

= −(eiπN + eiπm)[T B]

= −(eiπN + eiπm)KN,me
−2SI , (92)

where KN,m > 0. Therefore, the contribution of bion configurations to an energy level can be
positive, negative or zero, depending on the even/odd parity of N and m. This result has the
following implications:

• m = odd, N = 2νouter= even (S): the NP contribution vanishes for such a symmetric state.
These states are exactly solvable.

• m = odd, N = 2νouter +1= odd (AS): the NP shift is ENP
N = 2KNe

−2SI > 0. The AS partner
is lifted up non-perturbatively.

• m = even, N = 2νouter= even (S): the NP shift is ENP
N = −2KNe

−2SI < 0. The symmetric
state is pushed down. These states are not exactly solvable.

• m = even, N = 2νouter + 1= odd (AS): the NP contribution is ENP
N = 0. These states are

exactly solvable.

This bion analysis explains the spectral structure in Section IV A 2, which was found using the
BenderWu package. Our construction provides a semiclassical path integral explanation of the
remarkable phenomena observed in quasi-exactly-solvable (QES) [18, 47] systems. In QES systems,
for the m =odd (even) case, a number

⌊
m+1

2

⌋
of symmetric (anti-symmetric) states are exactly

solvable and free of non-perturbative contributions. It was a puzzle why these states do not receive
non-perturbative contributions despite the existence of obvious non-perturbative solutions. The
above bion analysis, culminating in the expression (92), resolves this puzzle. First, apart from the
obvious configurations (the topological bions), there are also neutral bions. Their net effect involves
a subtle interference effect between the hidden topological angle θHTA and the discrete theta angle
θdisc.. When this expression vanishes in the path integral, the corresponding state is exactly solvable
in the Hamiltonian formulation.

V. CONCLUSIONS

We have shown that several new non-perturbative effects arise in the triple-well system that have
no analogue in the familiar symmetric double-well system. The main results are the following.

• In potentials with harmonic classically-degenerate minima not related by a symmetry, despite
the fact that instantons are exact solutions, they do not contribute to the energy spectrum at
leading order in semi-classics. The fluctuation prefactor of the instanton amplitude vanishes
if the frequencies in two consecutive well are not equal.
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• Quite generally the leading order semiclassical configurations contributing to the spectrum
of such systems are bion configurations. These are dominant configurations that live on the
Lefschetz thimble of critical points at infinity.

• Even though the inner and outer wells have different shapes and different curvatures, the
perturbative expansions for states localized in the inner and outer wells are related by an
exact mapping; in the bosonic system (20) as well as in the supersymmetric (41) and quasi-
exactly-solvable systems (67). This fact has a simple explanation in terms of the all-orders
WKB approach to perturbation theory.

• In the SUSY and QES systems, there is an intriguing pattern of interference between the
neutral bions and topological bions, which arises from the interplay of the hidden topological
angle and the discrete theta angle. Whenever the non-perturbative effects cancel precisely,
the corresponding state in the Hilbert space is exactly solvable.

• The bion analysis resolves an old puzzle concerning quasi-exactly-solvable systems. Despite
the presence of obvious non-perturbative configurations which would contribute to the spec-
trum, the spectrum turns out to be algebraic, and does not include non-perturbative factors.
This is the result of interference between different bions, and the analysis shows that there
also exist complex configurations, and there are exact non-perturbative cancellations among
them. This is a clear demonstration of resurgent structure in the SUSY and QES systems.

• Semiclassical analysis based on the hidden topological angle θHTA predicts that the character
of the perturbative expansion has an alternating pattern of convergent/divergent states, and
then changes from convergent to divergent after a certain energy level. These predictions have
been confirmed by a large-order analysis of the associated perturbative expansions using the
Bender-Wu Mathematica package.[21]

Our bion construction shows that the semi-classical analysis for general quantum potentials is
far more intricate than the paradigmatic textbook examples of the double-well potential and the
periodic potential. Perhaps, the most interesting lessons concern the important roles played by
complex configurations and the remarkable interference patterns induced by the hidden topological
angle and the discrete theta angle. We believe that there are many other further phenomena waiting
to be explored. In particular, it would be interesting to investigate the appearance of the hidden
topological angle, and the interference between saddles, in the exact WKB formulation.
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