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ABSTRACT

In this chapter, we survey some recent developments in the field of geophysical in-
version. We aim to provide an accessible general introduction to the breadth of
current research, rather than focussing in depth on particular topics. We hope to
give the reader an appreciation for the similarities and connections between different
approaches, and their relative strengths and weaknesses.

1 INTRODUCTION

Geophysics is built upon indirect information. We cannot travel deep into the Earth
to directly measure rheological properties, nor journey back through geological time
to record the planet’s tectonic evolution. Instead, we must draw inferences from
whatever observations we can make, constrained as we are to the Earth’s surface and
the present day. Inevitably, such datasets are sparse, incomplete, and contaminated
with signals from many unknown events and processes. We therefore rely on a variety
of mathematical, statistical and computational techniques designed to help us learn
from available data. Collectively, these are the tools of ‘geophysical inversion’, and
they lie at the heart of all progress in geophysics.

To achieve this progress, geophysicists have long pioneered—and indeed driven—
developments in the mathematical and statistical theory that underpins inference.
The acclaimed French mathematician Pierre-Simon Laplace played a central role in
our understanding of tidal forcing, developing the theory of spherical harmonics along
the way. He is also credited (along with Gauss and Legendre) with the development
of the least-squares algorithm and the underpinnings of modern Bayesian statistics—
an approach which was subsequently extended and popularised within the physical
sciences by Sir Harold Jeffreys (1931, 1939), who is of course also well-known for his
contributions to seismology and solid-earth geophysics (see, e.g. Cook, 1990). Tech-
nological developments have also been significant, with (for example) the challenges
of handling and processing the huge volumes of data obtained from continuously-
operating terrestrial and satellite sensor systems stimulating innovation in computa-
tional science.

In this chapter, we discuss some current and emerging ideas that we believe to have
significance for the broad field of geophysical inversion. In doing so, we aim to not just
highlight novelty, but also demonstrate how such ‘new’ ideas can be connected into
the canon of established techniques and methods. We hope that this can help provide
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insight into the potential strengths and weaknesses of different strategies, and sup-
port the interpretation and integration of results obtained using different approaches.
Inevitably, constraints of time and space mean that our discussion here remains far
from comprehensive; much interesting and important work must be omitted, and our
account is undoubtedly biased by our own perspectives and interests. Nevertheless,
we hope that the reader is able to gain some appreciation for the current state of
progress in geophysical inversion.

In order to frame our discussion, and to enable us to clearly define notation and ter-
minology, we begin with a brief account of the basic concepts of geophysical inversion.
For a more in-depth account, readers are encouraged to refer to one of the many text-
books and monographs covering the subject, such as those by Menke (1989), Parker
(1994), Tarantola (2005) or Aster et al. (2013).

2 FUNDAMENTALS

The starting point for any geophysical inversion must be a mathematical description
of the earth system of interest. In practical terms, this amounts to specifying some
relationship of the form

F [m(x, t), u(x, t)] = 0 (1)

where m(x, t) represents some property (or collection of properties) of the Earth with
unknown value that may vary across space, x, and/or time, t; and where u(x, t)
represents some quantity (or collection of quantities) that can—at least in principle—
be measured or observed. Most commonly in geophysics, F has the form of an
integro-differential operator. Underpinning eq. (1) will be some set of assumptions,
A, although these may not always be clearly or completely enunciated.

2.1 The Forward Problem

The fundamental physical theory embodied by eq. (1) may then be used to develop
predictions, often via a computational simulation. This invariably involves introduc-
ing additional assumptions, B. In particular, it is common to place restrictions on the
function m, so that it may be assumed to have properties amenable to efficient compu-
tation. For example, it is very common to assert that the function must lie within the
span of a finite set of basis functions, ψ1, . . . , ψM , allowing it to be fully-represented
by a set of M expansion coefficients,

m(x, t) =

M∑
i=1

miψi(x, t) (2)

It is important to recognise that such restrictions are primarily motivated by compu-
tational considerations, but may impose certain characteristics—such as a minimum
length-scale, or smoothness properties—upon the physical systems that can be repre-
sented. Nevertheless, by doing so, we enable eq. (1) to be expressed, and implemented,
as a ‘forward model’

u(x, t) = G(x, t,m) (3)

which computes simulated observables for any ‘input model’ conforming to the req-
uisite assumptions. Typically, the function G exists only in the form of a numerical
computer code, and not as an analytical expression in any meaningful sense. As a
result, we often have little concrete understanding of the function’s global behaviour
or properties, and the computational cost associated with each function evaluation
may be high.
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2.2 Observational Data and the Inverse Problem

We use d to represent a data vector, with each element di representing an observation
made at a known location in space and time, (xi, ti). This is assumed to correspond
to u(xi, ti), corrupted by ‘noise’ (essentially all processes not captured within our
modelling assumptions, A∪B), any limitations of the measurement system itself, and
any preprocessing (e.g. filtering) that has been applied to the dataset. We address
the latter two factors by applying transformations (e.g. equivalent preprocessing
and filters designed to mimic instrument responses) to the output of our forward
model; mathematically, this amounts to composing G with some transfer function
T . For notational convenience, we define a new function, g, which synthesises the
entire dataset d: [g(m)]i = T ◦ G(xi, ti,m). We also introduce the concept of a data
covariance matrix, Cd, which encapsulates our assumptions about the uncertainties
and covariances within the dataset. The fundamental goal of inversion is then to
find—or somehow characterise—m such that g(m) matches or explains d.

Since d contains noise, we do not expect any model to be able to reproduce the data
perfectly. Moreover, the forward problem may be fundamentally non-unique: it may
generate identical predictions for two distinct models. As such, there will typically be
a range of models that could be taken to ‘agree with’ observations. We must therefore
make a fundamental decision regarding the approach we wish to take. We may:

1. Seek a single model, chosen to yield predictions that are ‘as close as possible’ to
the data, usually with additional requirements that impose characteristics we
deem desirable and ensure that a unique solution exists to be found, e.g. that
the model be ‘as smooth as possible’;

2. Seek a collection or ensemble of models, chosen to represent the spectrum of
possibilities that are compatible with observations—again, perhaps tempered
by additional preferences;

3. Disavow the idea of recovering a complete model, and instead focus on identify-
ing specific characteristics or properties that must be satisfied by any plausible
model.

In the context of this paper, we have deliberately framed these three categories to be
quite general in scope. Nevertheless, readers may appreciate some specific examples:
the first category includes methods based upon numerical optimisation of an objec-
tive function, including the familiar least-squares algorithm (e.g. Nocedal & Wright,
1999), while Markov chain Monte Carlo and other Bayesian methods fall within the
second (e.g. Sambridge & Mosegaard, 2002); Backus-Gilbert theory (e.g. Backus &
Gilbert, 1968) lies within the third. Each of these groups is quite distinct—at least
in philosophy—from the others, and in the remainder of this paper we address each
in turn.

3 SINGLE MODELS

Before we can set out to find the model that ‘best’ explains the data, we must in-
troduce some measure of the agreement between observations and predictions. This
‘misfit function’ or ‘objective function’ is of fundamental importance in determining
the properties of the recovered model, and the efficiency of the solution algorithms
that may be available to us. In general, misfit functions take the form

φ(m) = φd(d,g(m)) + φm(m) (4)
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Figure 1: Misfit functions for a simple inverse problem (after Valentine & Sam-
bridge, 2020a). (a) A planet is modelled as comprising two spherical layers: a core
of radius r1 and density ρ1, and an outer unit of density ρ2 extending to radius
r2. Defining units such that r2 = 1 and ρ2 = 1, we find the overall mass of the
planet to be M = 4.76 ± 0.25 units. What can be said about r1 and ρ1? (b) The
data misfit, φd(d, g(r1, ρ1)), as in eq. (5), highlighting non-linear behaviours. Two
gradient-based optimisation trajectories are shown for different starting points (cir-
cles), with convergence to distinct solutions (stars). The inverse problem is inherently
non-unique. (c) Penalty term, φm(r1, ρ1), expressing a preference for a small core
with density similar to that of the surface layer. (d) Combined (regularised) misfit,
φd(d, g(r1, ρ1))+φm(r1, ρ1). Both optimisation trajectories now converge to the same
point.

where φd is a metric defined in the ‘data space’, measuring how far a model’s predic-
tions are from observations, and φm is a ‘regularisation’ or ‘penalty’ term (see Fig. 1).
This encapsulates any preferences we may have regarding the solution, and aims to
ensure that the function φ has a unique minimum.

Once a misfit function has been defined, it is conceptually straightforward to search
for the model that minimises φ(m). However, it is often challenging to achieve this in
practice. The most complete characterisation of φ comes from a grid-search strategy,
with systematic evaluation of the function throughout a discretised ‘model space’ (typ-
ically following eq. 2). This is viable for small problems, and is commonly-encountered
in the geophysical literature (e.g. Sambridge & Kennett, 1986; Dinh & Van der Baan,
2019; Hejrani & Tkalčić, 2020), but the computational costs of evaluating the for-
ward model, combined with the ‘curse of dimensionality’ (Curtis & Lomax, 2001;
Fernández-Mart́ınez & Fernández-Muñiz, 2020) rapidly become prohibitive. How-
ever, in many cases, it is possible to obtain Fréchet derivatives of the forward problem
(eq. 3) with respect to the model, δG/δm, and this information can be used to guide
a search towards the minimum of φ(m).

3.1 Euclidean Data Metrics

Overwhelmingly, the conventional choice for φd is the squared L2, or Euclidean, norm
of the residuals weighted using the data covariance matrix, Cd,

φd(d,g(m)) =
∥∥C− 1

2

d (d− g(m))
∥∥2
2

= (d− g(m))
T

C−1d (d− g(m)) (5)

Relying on the Fréchet derivatives is essentially an assumption that g(m) is (locally)
linear. For the usual case, where the model has been discretised as in eq. (2) and can
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be represented as a vector of coefficients, m, we have g(m) = g(m0) + G(m−m0),
where m0 is the linearisation point and [G]ij = ∂[g(m)]i/∂mj |m=m0

. We therefore
find

∂φ

∂m
= 2GTC−1d [G(m−m0)− (d− g(m0))] +

∂φm
∂m

(6)

This can be used to define an update to the model, following a range of different
strategies. Setting m = m0, we obtain the gradient of φ with respect to each coor-
dinate direction at the point of linearisation: this information may then be used to
take a step towards the optimum, using techniques such as conjugate-gradient meth-
ods (as in Bozdağ et al., 2016) or the L-BFGS algorithm of Liu & Nocedal (1989),
as employed by Lei et al. (2020). Alternatively, we can exploit the fact that at the
optimum, the gradient should be zero: for a suitable choice of φm, it is possible to
solve eq. (6) directly for the m that should minimise the misfit within the linearised
regime. This is ‘the’ least-squares algorithm, employed by many studies (e.g. Wiggins,
1972; Dziewonski et al., 1981; Woodhouse & Dziewonski, 1984). Few interesting prob-
lems are truly linear, and so it is usually necessary to adopt an iterative approach,
computing a new linear approximation at each step.

3.1.1 Stochastic Algorithms

Since the fundamental task of optimising an objective function is also central to
modern machine learning efforts, recent geophysical studies have also sought to exploit
advances from that sphere. In particular, methods based on ‘stochastic gradient
descent’ have attracted some attention (e.g. van Herwaarden et al., 2020; Bernal-
Romero & Iturrarán-Viveros, 2021). These exploit the intuitive idea that the gradient
obtained using all available data can be approximated by a gradient obtained using
only a subset of the dataset—and that by using different randomly-chosen subsets on
successive iterations of gradient descent, one may reach a point close to the overall
optimum. In appropriate problems, this can yield a substantial reduction in the overall
computational effort expended on gradient calculations. It should be noted that the
success of this approach relies on constructing approximate gradients that are, on
average, unbiased; as discussed in Valentine & Trampert (2016), approximations that
induce systematic errors into the gradient operator will lead to erroneous results.

3.2 Sparsity

As has been discussed, we commonly assume that a model can be discretised in terms
of some finite set of basis functions. Usually, these are chosen for computational
convenience, and inevitably there will be features in the real earth system that cannot
be represented within our chosen basis. This leads to the problem of ‘spectral leakage’
(Trampert & Snieder, 1996): features that are unrepresentable create artefacts within
the recovered model.

In digital signal processing, the conditions for complete and accurate recovery of a
signal are well-known. According to Nyquist’s theorem, the signal must be band-
limited and sampled at a rate at least twice that of the highest frequency component
present (Nyquist, 1928). Failure to observe this leads to spurious features in the
reconstructed signal, known as aliasing—essentially the same issue as spectral leak-
age. This has far-reaching consequences, heavily influencing instrument design, data
collection, and subsequent processing and analysis.

However, recent work has led to the concept of ‘compressed sensing’ (Donoho, 2006;
Candès & Wakin, 2008). Most real-world signals are, in some sense, sparse: when
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expanded in terms of an appropriately-chosen basis (as per eq. 2), only a few non-zero
coefficients are required. If data is collected by random sampling, and in a manner
designed to be incoherent with the signal basis, exploiting this sparsity allows the sig-
nal to be reconstructed from far fewer observations than Nyquist would suggest. The
essential intuition here is that incoherence ensures that each observation is sensitive
to many (ideally: all) coefficients within the basis function expansion; the principle of
sparsity then allows us to assign the resulting information across the smallest number
of coefficients possible.

In theory, imposing sparsity should require us to use a penalty term that counts
the number of non-zero model coefficients: φm(m) = α2‖m‖0. However, this does
not lead to a tractable computational problem. Instead, Donoho (2006) has shown
that it is sufficient to penalise the L1 norm of the model vector, φm(m) = α2‖m‖1 =
α2
∑

i |mi|. This can be implemented using a variety of algorithms, including quadratic
programming techniques and the Lasso (Tibshirani, 1996). Costs are markedly higher
than for L2-based penalty functions, but remain tolerable.

Sparsity-promoting algorithms have significant potential: they open up new paradigms
for data collection, offering the opportunity to substantially reduce the burden of
storing, transmitting and handling datasets. The success of compressed sensing also
suggests that the data misfit φd(d,g(m)) may be accurately estimated using only
a small number of randomly-chosen samples: for certain classes of forward model,
this may offer a route to substantially-reduced computational costs. Again, work is
ongoing to explore the variety of ways in which concepts of sparsity can be applied
and exploited within the context of geophysical inversion (e.g Herrmann et al., 2009;
Wang et al., 2011; Simons et al., 2011; Bianco & Gerstoft, 2018; Muir & Zhang, 2021).

3.3 Non-Euclidean Data Metrics

A common challenge for gradient-based methods is convergence to a local—rather
than global—minimum. This situation is difficult to identify or robustly avoid, since
doing so would require knowledge of the global behaviour of the forward model. In
this context, a particular downside to the use of a Euclidean data norm is that it
treats each element of the data vector (i.e., each individual digitised data point)
independently. For geophysical datasets, this is often undesirable: the spatial and
temporal relationships connecting distinct data points are physically-meaningful, and
a model that misplaces a data feature (such as a seismic arrival) in time or space
is often preferable to one that fails to predict it at all. This problem is particularly
familiar in waveform-fitting tasks, where the Euclidean norm is unduly sensitive to
any phase differences between data and synthetics. From an optimisation perspective,
this can manifest as ‘cycle-skipping’, where waveforms end up mis-aligned by one or
more complete periods.

As a result, there is interest—and perhaps significant value—in exploring alternative
metrics for quantifying the agreement between real and observed data sets. A partic-
ular focus of current research is measures built upon the theory of Optimal Transport
(e.g. Ambrosio, 2003; Santambrogio, 2015). This focusses on quantifying the ‘work’
(appropriately defined) required to transform one object into another, and the most
efficient path between the two states. In particular, the p-Wasserstein distance be-
tween two densities, f(x) and g(x) may be defined

Wp(f, g) =

[
inf
T∈T

∫
c(x, T (x))pf(x) dx

]1/p
(7)
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where T is the set of all ‘transport plans’ T (x) that satisfy

f(x) = g(T (x))|∇T (x)| (8)

and c(x, y) is a measure of the distance between points x and y. The resulting metric
provides a much more intuitive measure of the difference between two datasets, and
perhaps offers a principled route to combining information from multiple distinct data
types (sometimes known as ‘joint inversion’).

Pioneered in geophysics by Engquist & Froese (2014), this has subsequently been
employed for numerous studies, including the work of Métivier et al. (2016a,b,c,d)
and others (e.g. Huang et al., 2019; He et al., 2019; Hedjazian et al., 2019). However,
numerous challenges remain to be fully-overcome. Since Optimal Transport is con-
ceived around density functions—which are inherently positive—signed datasets such
as waveforms require special treatment. In addition, since computing the Wasserstein
distance between two functions is itself an optimisation problem, there are practical
challenges associated with employing it in large-scale inversion problems, and these
are the focus of current work.

4 ENSEMBLE-BASED METHODS

We now switch focus, and consider the second fundamental approach to geophysical
inversion: instead of seeking a single model that explains the data, we now aim to
characterise the collection, or ensemble, of models that are compatible with obser-
vations. Clearly, this has potential to be more informative, providing insight into
uncertainties and tradeoffs; however, it also brings new challenges. Computational
costs may be high, and interpretation and decision-making may be complicated with-
out the (illusion of) certainty promised by single-model strategies.

There are many different ways in which one might frame an ensemble-based inversion
strategy: at the simplest, one might adapt the grid-search strategy of Section 3 so
that the ‘ensemble’ is the set of all grid nodes for which φ(m) is below some threshold.
This approach, with models generated randomly rather than on a grid, underpinned
some of the earliest ensemble-based studies in geophysics (e.g. Press, 1970; Anderssen
et al., 1972; Worthington et al., 1972). However, it is not particularly convenient from
a computational perspective, since such an ensemble has little structure that can be
exploited for efficiency or ease of analysis. Techniques exist that seek to address this
(e.g. Sambridge, 1998) but the most common strategy is to adopt a probabilistic—
and typically Bayesian—perspective. This involves a subtle, but important, change of
philosophy: rather than seeking to determine the Earth structure directly, Bayesian
inversion aims to quantify our state of knowledge (or ‘degree of belief’) about that
structure (for more discussion, see, e.g., Scales & Snieder, 1997).

The hallmark of Bayesian methods is that the posterior distribution—P(m |d), the
probability of a model m given the observations d—is obtained by taking the prior
distribution (P(m), our state of knowledge before making any observations), and
weighting it by the likelihood, P(d |m), which encapsulates the extent to which the
data support any given model (see Fig. 2a–c). When normalised to give a valid
probability distribution, we obtain

P(m |d) =
P(d |m)P(m)

P(d)
(9)

which is well-known as Bayes’ Theorem (Bayes, 1763). We take this opportunity
to remark that whereas a misfit function may be chosen in rather ad hoc fashion
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Figure 2: Bayesian analysis for the simple inverse problem introduced in Fig. 1. (a)
The likelihood, P(d |m), quantifies the extent to which any given choice of model can
explain the data. (b) The prior distribution, P(m), encapsulates our beliefs before
observing any data, and can be ‘sampled’ to generate a collection of candidate models
(Dprior; dots; 50 shown). (c) The posterior distribution, P(m |d) combines prior and
likelihood (eq. 9) to encapsulate our state of knowledge after taking account of the
data. In realistic problems visualising the posterior is intractable, but we can generate
samples from it (Dpost; 50 shown). (d) We can evaluate the forward model g(m) for
each example within an ensemble of prior samples, and additionally simulate the
effects of noise processes. This can be completed without reference to any data. The
information can be stored in many forms, including as a machine learning model. (e)
Once data becomes available, this information can be queried to identify regions of
parameter space that may explain observations—see Section 4.2. This provides an
approximation to the posterior; we additionally show 1-D marginals for each model
parameter. (f) A similarly-sized set of posterior samples provides a much better
approximation to the true posterior, as it is targeted towards explaining one specific
set of observations—see Section 4.3. However, computational costs may be prohibitive
for some applications.
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to exhibit whatever sensitivity is desired, a likelihood has inherent meaning as ‘the
probability that the observations arose from a given model’, and ought to be defined
by reference to the expected noise characteristics of the data. We also highlight the
work of Allmaras et al. (2013), which provides a comprehensive but accessible account
of the practical application of Bayes’ Theorem to an experimental inference problem.
However, it is usually challenging to employ eq. (9) directly, since evaluating the
‘evidence’, P(d), requires an integral over the space of all allowable models, M,

P(d) =

∫
M
P(d |m)P(m) dm (10)

which is not computationally tractable for arbitrary large-scale problems. Instead,
most Bayesian studies either make additional assumptions that enable analytic or
semi-analytic evaluation of the evidence, or they exploit the fact that the ratio
P(mA |d)/P(mB |d) can be evaluated without knowledge of the evidence to obtain
information about the relative probability of different models.

4.1 Bayesian Least Squares

The choice of prior is central to the success of any Bayesian approach—and also lies
at the heart of many controversies and interpretational challenges, largely due to
the impossibility of representing the state of no information (e.g. Backus, 1988). It
is therefore apparent that within a Bayesian framework all inference is considered
relative to a known prior. In principle, the prior should be chosen based on a careful
consideration of what is known about the problem of interest; in practice, this is
often tempered by computational pragmatism, and a distribution with useful analytic
properties is adopted.

4.1.1 Gaussian Process Priors

A convenient choice when dealing with an unknown model function m(x, t), is a
Gaussian Process prior,

m(x, t) ∼ GP (µ(x, t), k(x, t,x′, t′)) (11)

This is essentially the extension of the familiar normal distribution into function space,
with our knowledge at any given point, (x, t), quantified by a mean µ(x, t) and stan-
dard deviation k(x, t; x, t)1/2; however, the covariance function k also quantifies our
knowledge (or assumptions) about the expected covariances if m were to be measured
at multiple distinct points. A comprehensive introduction to the theory of Gaussian
Processes may be found in, e.g., Rasmussen & Williams (2006).

In some geophysical problems, the data-model relationship is—or can usefully be
approximated as—linear (see also Section 3.1), and so can be expressed in the form

di =

∫ T

0

∫
X
qi(x, t)m(x, t) dx dt (12)

where qi(x, t) is some ‘data kernel’, and where X represents the domain upon which
the model is defined. Moreover, we assume that the noise process represented by Cd

is explicitly Gaussian. These assumptions permit analytic evaluation of the evidence,
and the posterior distribution can be written in the form (Valentine & Sambridge,
2020a)

m̃(x, t) ∼ GP
(
µ̃(x, t), k̃(x, t; x′, t′)

)
(13)

9



where we use a tilde to denote a posterior quantity, and where

µ̃(x, t) = µ(x, t) +
∑
ij

wi(x, t)
[
(W + Cd)

−1
]
ij

(dj − ωj) (14)

k̃(x, t; x′, t′) = k(x, t; x′, t′)−
∑
ij

wi(x, t)
[
(W + Cd)

−1
]
ij
wj(x

′, t′) (15)

with

wi(x, t) =

∫ T

0

∫
X
k(x, t; x′, t′)qi(x

′, t′) dx′ dt′ (16)

Wij =

∫ T

0

∫ T

0

∫∫
X 2

qi(x, t)k(x, t; x′, t′)qj(x
′, t′) dx dx′ dtdt′ (17)

ωi =

∫ T

0

∫
X
µ(x, t)qi(x, t) dx dt (18)

This approach has formed the basis for a variety of geophysical studies (e.g. Tarantola
& Nercessian, 1984; Montagner & Tanimoto, 1990, 1991; Valentine & Davies, 2020)
and has the attractive property that the inference problem is posed directly in a
function space, avoiding some of the difficulties associated with discretization (such
as spectral leakage).

4.1.2 Discretised Form

Nevertheless, if one chooses to introduce a finite set of basis functions, as in eq. (2), it
is possible to express eqs. (11–18) in discretized form (for full discussion, see Valentine
& Sambridge, 2020b). The prior distribution on the expansion coefficients becomes

m ∼ N (mp,Cm) (19)

and the linear data-model relationship is expressed in the form g(m) = Gm. The
posterior distribution may be written in a variety of forms, including

m ∼ N (m̃, C̃m) (20)

where

m̃ = mp +
(
GTC−1d G + C−1m

)−1
GTC−1d (d−Gmp) (21)

C̃m =
(
GTC−1d G + C−1m

)−1
(22)

This well-known result, found in Tarantola & Valette (1982), has formed the basis of
much work in geophysics. The expression for m̃ is also often applied in non-Bayesian
guise—compare with the discussion in Section 3.1—with the prior covariance matrix
Cm regarded as a generic ‘regularisation matrix’ without probabilistic interpretation.

4.2 Prior Sampling

The results of the previous section are built upon assumptions that our prior knowl-
edge is Gaussian and the forward model is linear. This is computationally convenient,
but will rarely be an accurate representation of the true state of affairs. Unfortunately,
more general assumptions tend not to support analytic expressions for the posterior,
and hence it becomes necessary to adopt ‘sampling-based methods’. These rely on
evaluating the forward problem for a large number of models, in order to accumulate
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information about the relationship between model and data. Various strategies exist,
which can be characterised by the manner in which sampling is performed.

The first group of strategies are those where candidate models are generated according
to the prior distribution, and predicted data (potentially including simulated ‘noise’)
is computed for each. This provides a set of samples

Dprior = {(mi,g(mi)) , i = 1, . . . , N} (23)

which may then be interpolated as necessary to address inversion questions (see
Fig. 2d–e). This family of approaches is known as ‘prior sampling’ (Käufl et al.,
2016a), with different examples characterised by differing approaches to interpola-
tion. Many of the recent studies that exploit machine learning to perform inversion
may be seen within the prior sampling framework, although not all are explicitly
Bayesian in design.

4.2.1 Mixture Density Networks

If we do take a Bayesian approach, then we may note that the density of samples
within Dprior approximates—by construction—the joint probability density, P(m,d).
If we can fit an appropriate parametric density function to the samples, it is then
straightforward to interpolate to obtain the conditional density P(m |d) correspond-
ing to observations (which we recognise to be the posterior distribution). One currently-
popular way to achieve this is to employ Mixture Density Networks (MDNs; Bishop,
1995), which involve an assumption that the conditional distribution can be written
as a Gaussian Mixture Model (GMM),

P(mj |d) ≈
K∑

k=1

wk(d)√
2πσ2

k(d)
exp

(
− (mj − µk(d))

2

2σ2
k(d)

)
(24)

where the weights wk (which are subject to an additional constraint,
∑

k wk = 1),
means µk and standard deviations σk that define the GMM are assumed to be func-
tions of the data. These relationships may in turn be represented by a neural network.
The set of prior samples, Dprior, is then used to optimise the neural network param-
eters, such that the expected value

EDprior {P(mj |d)} =
1

N

N∑
i=1

P
(

[mi]j |g (mi)
)

(25)

is maximised. This approach has been applied to a variety of geophysical problems,
including structural studies at global (e.g. Meier et al., 2007; de Wit et al., 2014) and
local (e.g. Earp et al., 2020; Mosher et al., 2021) scales, seismic source characterisation
(Käufl et al., 2014), and mineral physics (e.g. Rijal et al., 2021).

4.2.2 Challenges and Opportunities

The principal downside to prior sampling—discussed in detail by Käufl et al. (2016a)
in the context of MDNs, but applicable more broadly—is the fact that only a few of
the samples within Dprior will provide useful information about any given set of obser-
vations. In realistic problems, the range of models encompassed by the prior is large
in comparison to the range encompassed by the posterior, and much computational
effort is expended on generating predictions that turn out to have little similarity to
observations. This is exacerbated by issues associated with the ‘curse of dimensional-
ity’, motivating the common choice (implicit in our notation for eq. 24) to use prior
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sampling to infer low- or uni-dimensional marginal distributions rather than the full
posterior. Overall, the consequence is that prior sampling tends to yield rather broad
posteriors, representing ‘our state of knowledge in the light of the simulations we have
performed’, rather than ‘the most we can hope to learn from the available data’. We
also emphasise that results are wholly dependent on the choice of prior, and will be
meaningless if this does not encompass the real earth system. This is perhaps obvious
in an explicitly Bayesian context, but may be lost when studies are framed primarily
from the perspective of machine learning.

The great benefit of prior sampling is that nearly all of the computational costs are
incurred before any knowledge of observed data is required. As a result, it may be
effective in situations where it is desirable to obtain results as rapidly or cheaply as
possible following data collection—e.g. to enable expensive numerical wave propaga-
tion simulations to be employed for earthquake early warning (Käufl et al., 2016b).
We note parallels here to the use of scenario-matching approaches in the field of
tsunami early warning (e.g Steinmetz et al., 2010). It is also well-suited to applica-
tions where the same fundamental inverse problem must be solved many times for
distinct datasets, perhaps representing observations repeated over time, or at many
localities throughout at a region.

Prior sampling may also be effective in settings requiring what we term ‘indirect’ infer-
ence, where the primary goal is to understand some quantity derived from the model,
rather than the model itself. For example, in an earthquake early warning setting, one
might seek to determine seismic source information with a view to then using this to
predict tsunami run-up, or the peak ground acceleration at critical infrastructure sites
(Käufl, 2015). In a prior sampling setting, one may augment Dprior to incorporate a
diverse suite of predictions, Dprior = {(mi,g1(mi),g2(mi), . . .) , i = 1, . . . , N}, and
then employ some interpolation framework to use observations of the process associ-
ated with (say) g1 to make inferences about g2. From a Bayesian perspective, this
can be seen as a process of marginalisation over the model parameters themselves.

4.3 Posterior Sampling

As an alternative to prior sampling, one may set out to generate a suite of samples,
Dpost, distributed according to the posterior (see Fig. 2f). Again, there are a variety
of ways this can be achieved—for example, a simple (but inefficient) approach might
involve rejection sampling. More commonly, Markov chain Monte Carlo (McMC)
methods are employed, with the posterior forming the equilibrium distribution of a
random walk. Encompassed within the term McMC lie a broad swathe of algorithms,
of which the Metropolis-Hastings is probably most familiar, and the field is continually
the subject of much development. We do not attempt to survey these advances, but
instead direct the reader to one of the many recent reviews or tutorials on the topic
(e.g. Brooks et al., 2011; Hogg & Foreman-Mackey, 2018; Luengo et al., 2020).

As set out in Käufl et al. (2016a), prior and posterior sampling procedures gener-
ate identical results in the theoretical limit. However, in practical settings they are
suited to different classes of problems. Posterior sampling approaches are directed
towards explaining a specific dataset: this allows computational resources to be tar-
geted towards learning the specifics of the problem at hand, but prevents expensive
simulations from being ‘recycled’ in conjunction with other datasets. It should also
be noted that the ‘solution’ obtained via posterior sampling takes the form of an
ensemble of discrete samples. This can be challenging to store, represent, and in-
terrogate in a meaningful way: many studies resort to reducing the ensemble to a
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single maximum-likelihood or mean model, and perhaps some statistics about the
(co)variances associated with different parameters, and thereby neglect much of the
power of McMC methods. Effective solutions to this issue may be somewhat problem-
dependent, but remain the focus of much work.

4.3.1 Improving Acceptance Ratios

Generation of ensembles of posterior samples is inherently wasteful: by definition, one
does not know in advance where samples should be placed, and hence for every ‘useful’
sample, a large numbers of candidate models must be tested (i.e., we must evaluate
the forward problem) and rejected. This is exacerbated by requirements for ‘burn-in’
(so that the chain is independent of the arbitrary starting point) and ‘chain thinning’
(to reduce correlations between consecutive samples), which also cause substantial
numbers of samples to be discarded. Much effort is therefore expended on developing
a variety of strategies to improve ‘acceptance ratios’ (i.e., the proportion of all tested
models that end up retained within the final ensemble).

One route forward involves improving the ‘proposal distribution’, i.e. the manner
in which samples are generated for testing. Ideally, we wish to make the proposal
distribution as close as possible to the posterior, so that nearly all samples may be
retained. Of course, the difficulty in doing so is that the posterior is not known in
advance. An avenue currently attracting considerable interest is Hamiltonian McMC
(HMC) methods, which exploit analogies with Hamiltonian dynamics to guide the
random walk process towards ‘acceptable’ samples (see, e.g. Neal, 2011; Betancourt,
2017). In order to do so, HMC methods require, and exploit, knowledge of the
gradient of the likelihood with respect to the model parameters at each sampling
point. This provides additional information about the underlying physical problem,
enabling extrapolation away from the sample point, and the identification of ‘useful’
directions for exploration. To apply this idea, we must be able to compute the required
gradients efficiently; early applications in geophysics have included seismic exploration
and full-waveform inversion (e.g. Sen & Biswas, 2017; Fichtner et al., 2019; Aleardi
& Salusti, 2020).

In many cases, the fundamental physical problem of eq. (1) is amenable to implemen-
tation (eq. 3) in a variety of ways, depending on the assumptions made (B). Usually,
simplified assumptions lead to implementations with lower computational costs, at the
expense of introducing systematic biases into predictions. Recently, Koshkholgh et al.
(2021) has exploited this to accelerate McMC sampling, by using a low-cost physical
approximation to help define a proposal distribution. Likelihood evaluations continue
to rely on a more complex physical model, so that accuracy is preserved within the
solution to the inverse problem—but the physically-motivated proposal distribution
improves the acceptance rate and reduces overall computational costs. This is an
attractive strategy, and seems likely to underpin future theoretical developments.

4.3.2 Trans-Dimensional Inference

In practice, McMC studies typically assume a discretised model, expressed relative
to some set of basis functions in as in eq. (2), and the choice of basis functions
is influential in determining the characteristics of the solution. In particular, the
number of terms in the basis function expansion typically governs the flexibility of the
solution, and the scale-lengths that can be represented. However, it also governs the
dimension of the search space: as the number of free parameters in the model grows,
so does the complexity (and hence computational cost) of the Monte Carlo procedure.
Trans-dimensional approaches arise as an attempt to strike a balance between these
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two competing considerations: both basis set and expansion coefficients are allowed
to evolve during the random walk process (Green, 1995; Sambridge et al., 2006; Bodin
& Sambridge, 2009; Sambridge et al., 2012).

The trans-dimensional idea has been applied to a wide variety of geoscience prob-
lems, including source (e.g Dettmer et al., 2014) and structural (Burdick & Lekić,
2017; Galetti et al., 2017; Guo et al., 2020) studies using seismic data, in geomag-
netism (Livermore et al., 2018) and in hydrology (Enemark et al., 2019). It can be
particularly effective in settings where basis functions form a natural hierarchy of
scale lengths, such as with wavelets and spherical harmonics, although keeping track
of information creates computational challenges (Hawkins & Sambridge, 2015). We
note that model complexity is not confined only to length-scales: one can also em-
ploy a trans-dimensional approach to the physical theory, perhaps to assess whether
mechanisms such as anisotropy are truly mandated by available data. The approach
can also be employed to identify change-points or discontinuities within a function
(e.g Gallagher et al., 2011), and used in combination with other techniques such as
Gaussian Processes (Ray & Myer, 2019; Ray, 2021).

4.4 Variational Methods

One of the drawbacks of posterior sampling is the fact that the sampling procedure
must achieve two purposes: it not only ‘discovers’ the form of the posterior distribu-
tion, but also acts as our mechanism for representing the solution (which takes the
form of a collection of appropriately-distributed samples). Large numbers of samples
are often required to ensure stable statistics and ‘convincing’ figures, even if the under-
lying problem itself is rather simple. To address this, one may introduce a parametric
representation of the posterior distribution, and frame the inference task as deter-
mination of the optimal values for the free parameters—much as with the Mixture
Density Network (section 4.2.1). This approach, often known as Variational Infer-
ence (e.g. Blei et al., 2017), transforms inference for ensembles into an optimisation
problem, and offers potentially-large efficiency gains.

We sketch the basic concept here, noting that a galaxy of subtly-different strategies
can be found in recent literature (see, e.g. Zhang et al., 2019, for a review). As usual,
our goal is to determine the posterior distribution, P(m |d). To approximate this,
we introduce a distribution function Q(m |θ) that has known form, parameterised by
some set of variables θ—for example, we might decide that Q should be a Gaussian
mixture model, in which case θ would encapsulate the weights, means and variances
for each mixture component. Our basic goal is then to optimize the parameters θ
such that Q(m |θ) ≈ P(m |d).

To make this meaningful, we must—much as in section 3—first define some measure
of the difference between the two distributions. In Variational Inference, the usual
choice is the Kullback-Leibler divergence (Kullback & Leibler, 1951),

DKL(Q‖P) =

∫
Q(m |θ) log

Q(m |θ)

P(m |d)
dm

= EQ(m | θ)

{
log
Q(m |θ)

P(m |d)

}
(26)

where the notation EQ(m){f(m)} signifies ‘the expected value of f(m) when m is
distributed according to Q’. Exploiting the properties of logarithms, and applying
Bayes’ Theorem, we can rewrite this in the form

DKL(Q‖P) = logP(d) + EQ(m | θ){logQ(m |θ)− logP(d |m)− logP(m)}
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(27)

where P(d) has been moved outside the expectation since it is independent of m.
While this quantity is unknown, it is also constant—and so can be neglected from the
perspective of determining the value of θ at which DKL is minimised. The quantity
P(d) − DKL(Q‖P) is known as the ‘evidence lower bound’ (ELBO), and maximi-
sation of this is equivalent to minimising the Kullback-Leibler divergence. Because
the variational family Q(m |θ) has a known form, the ELBO can be evaluated, as
can the derivatives ∂DKL/∂θi. Thus, it is conceptually straightforward to apply any
gradient-based optimisation scheme to determine the parameters such that Q best
approximates the posterior distribution.

4.4.1 A Gaussian Approximation

To illustrate this procedure, and to highlight connections to other approaches, we
consider an inverse problem where: (i) the model is discretised, as in eq. (2), so that
we seek an M -component model vector m; the prior distribution on those model
coefficients is Gaussian with mean mp and covariance Cm; and (iii) the likelihood
takes the form P(m |d) = k exp(− 1

2φ(m)) for some appropriate function φ. We
choose to assert that the solution can be approximated by a Gaussian of mean µ and
covariance matrix Σ, and seek the optimal values of these quantities. Thus, we choose

Q(m |µ,Σ) =
1

(2π)M/2(det Σ)1/2
exp

{
−(m− µ)TΣ−1(m− µ)

}
. (28)

To proceed, we need to determine the expectation of various functions of m under
this distribution—and their gradients with respect to µ and Σ.

A number of useful analytical results and expressions can be found in Petersen &
Pedersen (2015). It is straightforward to determine that

∂

∂µ
DKL(Q‖P) = C−1m (µ−mp) +

1

2

∂

∂µ
EQ {φ(m)} (29)

∂

∂Σ
DKL(Q‖P) = −1

2

(
Σ−1 −C−1m

)
+

1

2

∂

∂Σ
EQ {φ(m)} (30)

These expressions can be used to drive an iterative optimisation procedure to deter-
mine the optimal variational parameters. In implementing this, the result

∂

∂θi
EQ(m | θ) {f [m]} = EQ(m | θ)

{
f(m)

∂

∂θi
logQ(m |θ)

}
(31)

may be useful.

In the case where g(m) is (or is assumed to be) linear, and where the function
φ is defined as the L2 norm of the residuals, the expected value can be evaluated
analytically. The misfit is quadratic in form,

φ(m) = dTC−1d d− 2dTC−1d Gm + mTGTC−1d Gm (32)

as in Section 4.1.1. Hence the expected value, given m is distributed according to the
Gaussian Q, can be determined, along with its derivatives

EQ {φ(m)} = −2dTC−1d Gµ + Tr
(
GTC−1d GΣ

)
+ µTGTC−1d Gµ (33)

∂

∂µ
EQ {φ(m)} = −2GTC−1d d + 2GTC−1d Gµ (34)

∂

∂Σ
EQ {φ(m)} = GTC−1d G (35)

15



Substituting these expressions into eqs. (29–30), and solving for the µ and Σ such that
the gradients of DKL are zero (as is required at a minimum), we find that the optimal
distribution Q is identical to the posterior distribution obtained in eq. (20). This is
unsurprising, since our underlying assumptions are also identical—but demonstrates
the self-consistency of, and connections between, the different approaches. Again, we
also highlight the similarity with the expressions obtained in Section 3.1, although
the underlying philosophy differs.

4.4.2 Geophysical Applications

Variational methods offer a promising route to flexible but tractable inference. As the
preceding example illustrates, they provide opportunities to balance the (assumed)
complexity and expressivity of the solution against computational costs. A number of
recent studies have therefore explicitly sought to explore their potential in particular
applications, including for earthquake hypocentre determination (Smith et al., 2022),
seismic tomography (Zhang & Curtis, 2020; Siahkoohi & Herrman, 2021; Zhao et al.,
2022) and hydrogeology (Ramgraber et al., 2021). However, given the fairly broad
ambit of variational inference, many past studies could also be seen as falling under
this umbrella.

4.5 Generative Models

Many of the methods discussed so far rely on strong assumptions about the form of
prior and/or posterior distributions: we suppose that these belong to some relatively
simple family, with properties that we can then exploit for efficient calculations. How-
ever, such assertions are typically justified by their convenience—perhaps aided by an
appeal to the principle known as Occam’s Razor—and not through any fundamen-
tal physical reasoning (see, e.g. Constable et al., 1987). This is unsatisfactory, and
may contribute substantial unquantifiable errors into solutions and their associated
uncertainty estimates.

Recently, a number of techniques have emerged that allow representation of, and
computation with, relatively general probability distributions. In broad terms, these
are built upon the idea that arbitrarily complex probability distributions can be con-
structed via transformations of simpler distributions. This is familiar territory: when-
ever we need to generate normally-distributed random numbers, a technique such as
the Box-Muller transform (Box & Muller, 1958) is applied to the uniformly-distributed
output of a pseudo-random number generator. However, the versatility of such ap-
proaches is vastly increased in conjunction with the tools and techniques of modern
machine learning.

This is an area that is currently the focus of rapid development; recent reviews in-
clude those of Bond-Taylor et al. (2022) and Ruthotto & Haber (2021). Clearly, the
concept is closely-connected to the idea of variational inference, as discussed in Sec-
tion 4.4. Several major techniques have emerged, including ‘generative adversarial
networks’ (GANs) (e.g. Goodfellow et al., 2014; Creswell et al., 2018), ‘variational
autoencoders’ (Kingma & Welling, 2014), and ‘normalizing flows’ (Rezende & Mo-
hamed, 2015; Kobyzev et al., 2021). A variety of recent studies have explored diverse
applications of these concepts within the context of geophysical inversion: examples
include Mosser et al. (2020), Lopez-Alvis et al. (2021), Zhao et al. (2022) and Scheiter
et al. (2022). We have no doubt that this area will lead to influential developments,
although the precise scope of these is not yet clear.
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5 MODEL PROPERTIES

The third fundamental approach builds on the work of Backus & Gilbert (1968) and
Backus (1970a,b,c), and we sketch it briefly for completeness. For certain classes of
problem, as in eq. (12), each of the observables di can be regarded as representing
an average of the model function weighted by some data kernel qi(x, t). It is then
straightforward to write down a weighted sum of the observations,

Dα =
∑
i

αidi =

∫ T

0

∫
X
Q(α,x, t)m(x, t) dx dt (36)

where Q(α,x, t) =
∑

i αiqi(x, t), and α = (α1, α2 . . .) represents some set of tunable
weights. By adjusting these, one may vary the form of the averaging kernel Q, and
frame a functional optimisation problem to determine the α that brings Q as close
as possible to some desired form. In this way, the value of the average that is sought
can be estimated as a linear combination of the observed data.

Backus-Gilbert theory has an inherent honesty: it is data-led, with a focus on un-
derstanding what the available data can—or cannot—constrain within the system.
On the other hand, this can be seen as a downside: it is not usually possible to
use the results of a Backus-Gilbert–style analysis as the foundation for further sim-
ulations. Moreover, interpretation can be challenging in large-scale applications, as
the ‘meaning’ of each result must be considered in the light of the particular aver-
aging kernel found. Perhaps for this reason—and because it is designed for strictly
linear problems (although we note the work of Snieder, 1991)—the method is well-
known but has found comparatively little use. Notable early examples include Green
(1975), Chou & Booker (1979) and Tanimoto (1985, 1986). More recently, it has been
adopted by the helioseismology community (Pijpers & Thompson, 1992), and applied
to global tomography (Zaroli, 2016) and to constrain mantle discontinuities (Lau &
Romanowicz, 2021). Concepts from Backus-Gilbert theory are also sometimes used
to support interpretation of models produced using other approaches: for example,
Ritsema et al. (1999) presents Backus-Gilbert kernels to illustrate the resolution of a
model obtained by least-squares inversion.

6 MISCELLANEA

The preceding sections have focussed on the range of different philosophies, and as-
sociated techniques, by which geophysical inversion can be framed. We now turn to
consider some additional concepts and developments that are not themselves designed
to solve inverse problems, but which can potentially be employed in conjunction with
one or other of the approaches described above.

6.1 Approximate Forward Models

One of the major limiting factors in any geophysical inversion is computational cost.
High-fidelity numerical models tend to be computationally-expensive, and costs may
reach hundreds or even thousands of cpu-hours per simulation. In such cases, resource
availability may severely constrain the number of simulations that may be performed,
rendering certain approaches infeasible. There is therefore considerable potential
value in any technique that may lower the burden of simulation.

6.1.1 Surrogate Modelling

One possible solution to this lies in ‘surrogate modelling’: using techniques of machine
learning to mimic the behaviour of an expensive forward model, but at much lower
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computational cost. This is an idea that has its origins in engineering design (see,
e.g., Quiepo et al., 2005; Forrester & Keane, 2009), and typically involves tuning the
free parameters of a neural network or other approximator to match a database of
examples obtained via expensive computations (or, indeed, physical experiments).
The approximate function can then be interrogated to provide insights, or to serve as
a drop-in replacement for the numerical code.

Although the term ‘surrogate modelling’ only appears relatively recently in the geo-
physics literature, the underlying idea has a long history. For example, seismologists
have long recognised that travel times of seismic arrivals from known sources can be
interpolated, and the resulting travel-time curves used to assist in the location of new
events (e.g. Jeffreys & Bullen, 1940; Kennett & Engdahl, 1991; Nicholson et al., 2004).
One may also regard the Neighbourhood Algorithm (Sambridge, 1999a,b) within this
framework: it uses computational geometry to assemble a surrogate approximation
to evaluation of (typically) the likelihood for any given model. By employing and
refining this within a Markov chain, it is possible to substantially reduce the com-
putational costs of McMC-based inference. In doing so, we exploit the fact that the
mapping from models to likelihood (a scalar quantity) is, typically, much simpler than
the mapping from models to data. Closely-related is the field of ‘Bayesian optimiza-
tion’, which relies on a surrogate (often a Gaussian Process) to encapsulate incomplete
knowledge of an objective function, and takes this uncertainty into account within
the optimization procedure (e.g. Shahriari et al., 2016; Wang et al., 2016).

Latterly, surrogate models (also known as emulators) have been explicitly adopted for
geophysical studies. Similar to the Neighbourhood Algorithm, Chandra et al. (2020)
employed a neural network-based surrogate to replace likelihood calculations within a
landscape evolution model; on the other hand, Das et al. (2018) and Spurio Mancini
et al. (2021) both develop a surrogate that directly replaces a forward model and
outputs synthetic seismograms. Other geophysical examples include modelling of
climate and weather (e.g. Field et al., 2011; Castruccio et al., 2014), and applications
in hydrology (Hussain et al., 2015) and planetary geophysics (Agarwal et al., 2020).

6.1.2 Physics-Informed Neural Networks

A number of recent studies have also explored the concept and applications of ‘physics-
informed neural networks’ (PINNs; see, e.g. Raissi et al., 2019; Karniadakis et al.,
2021). As with surrogate models, these exploit machine learning techniques to pro-
vide a version of the forward model that has significantly lower computational cost
than ‘conventional’ implementations. However, whereas a surrogate is constructed
using a suite of examples obtained by running the conventional model (at substantial
expense), a PINN is directly trained to satisfy the physical constraints. Typically, this
amounts to defining a neural network to represent the observable function, u(x, t),
and then employing a training procedure to minimise the deviation from eq. (1).
This is potentially a more efficient approach, and provides the researcher with greater
oversight of the behaviour and limitations of the learned model.

A number of recent examples may be found, particularly in the seismological lit-
erature. Moseley et al. (2020), Song et al. (2021) and Smith et al. (2020) all use
PINNs to solve problems related to the wave equation, with the latter underpinning
the variational inference approach of Smith et al. (2022). A range of potential appli-
cations in climate science and meteorology are discussed in Kashinath et al. (2021),
while He & Tartakovsky (2021) consider hydrological problems. Again, it is clear that
PINNs present a promising opportunity that is likely to bring substantial benefits for
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geophysics, but it is not yet clear how the field will evolve.

6.1.3 Conventional Approximations

Surrogate models and PINNs both rely on machine learning, and their ‘approximate’
nature arises from this: they are constructed to give good average performance for a
particular task, but there are few hard constraints on their accuracy in any specific
case. In many geophysical problems, an alternate route exists, and has long been
exploited: rather than seeking an approximate solution to a complex physical prob-
lem, we can use conventional methods to obtain an accurate solution for a simplified
physical system (i.e., adopting a more restrictive set of assumptions, A ∪ B). Thus,
for example, seismic waves might be modelled under the assumption that propaga-
tion is only affected by structure in the great-circle plane between source and receiver
(Woodhouse & Dziewonski, 1984) at far lower cost than (almost) physically-complete
simulation (e.g Komatitsch et al., 2002). Depending on circumstances, it may be
beneficial to exploit a known approximation of this kind, where impacts can be un-
derstood and interpretations adjusted accordingly. We also highlight that it may be
desirable to vary the level of approximation used for forward simulations within an
inversion framework, using a fast approximate technique for initial characterisation,
and increasing accuracy as solutions are approached. In the ideal case, one might en-
visage a forward model where the level of approximation is itself a tuneable parameter
(e.g. via the coupling band-width in a normal-mode–based solver, Woodhouse, 1980),
enabling a smooth transition from simplified to complete modelling as a solution is
approached.

6.2 Computational Advances

Modern geophysics is computationally-intensive, and—as we have seen—the feasibil-
ity of various inversion strategies is directly linked to the available resources. As
such, computational developments are often important in driving the development
and adoption of novel inference approaches. In particular, current progress leverages
a number of technological advances that have been stimulated by the rapid growth of
‘machine learning’ applications across society. This includes general-purpose compu-
tational libraries such as Tensorflow (Abadi et al., 2016) and Pytorch (Paszke et al.,
2019), along with more specialist tools such as Edward (Tran et al., 2016). A key
feature of these libraries is native support for auto-differentiation, making it easy to
exploit gradient-based optimisation strategies. This is an area that has previously
been highlighted as ripe for exploitation in geophysics (Sambridge et al., 2007), al-
though its use is not yet widespread. Another interesting development is the rise of
packages such as FEniCS (Logg et al., 2012), which aim to automatically generate
forward models from a statement of the relevant physical equations (e.g. Reuber &
Simons, 2020). This has the potential to greatly expand the range of problems that
it is feasible to address.

6.3 Novel Data–Novel Strategies

An ongoing theme of geophysics is the growth in data quantity. This is often driven
by concerted efforts to collect high-resolution datasets: examples include high-quality
satellite gravity measurements (e.g. Kornfeld et al., 2019), and systematic continental-
scale surveys such as USArray (Meltzer et al., 1999) or AusAEM (Ley-Cooper et al.,
2020). Handling and processing such massive datasets has necessitated new tools and
standards designed to enable easy exploitation of high-performance computing (e.g.
Krischer et al., 2016; Hassan et al., 2020). On the other hand, we have also seen
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exciting recent developments in planetary seismology, with the recent breakthrough
analysis of Martian seismic data from the InSight mission (Knapmeyer-Endrun et al.,
2021; Khan et al., 2021; Stähler et al., 2021). In this context, the available dataset
is very limited: we must work with a single instrument, limited capacity for data
transmission, and with data characteristics quite different from those of Earth. Un-
doubtedly techniques will need to develop accordingly.

Another driver for innovation in geophysical inversion is innovation in data collection.
Recent advances in sensor technology includes the growth of distributed acoustic
sensing (e.g. Daley et al., 2013; Parker et al., 2014), which uses fibre-optic cables to
measure strain rates, and nodal seismic acquisition systems (Dean et al., 2018), which
enable dense deployments of semi-autonomous instruments. Fully-exploiting these
technologies within an inversion context will doubtless motivate a new generation of
analysis techniques (e.g. Lythgoe et al., 2021; Muir & Zhang, 2021), and ongoing
innovation in the field of geophysical inversion.

7 CONCLUDING REMARKS

Athanasius Kircher published his Mundus Subterraneus in 1665, with his now-famous
images of fiery chambers criss-crossing the Earth’s interior to feed its volcanoes. What
was his evidence for this structure? He acknowledges: ‘sive ea jam hoc modo, sive
alio’—‘either like this, or something else’. As Waddell (2006) writes, this

...makes very clear that Kircher was not interested in whether his images
had managed to capture exactly the subterranean structure of the Earth.
Such large and detailed copper engravings must have been extremely ex-
pensive to commission and print, suggesting that Kircher did believe them
to be important. But their value lay in their ability to encourage specu-
lation and consideration...

Some 350 years later, geophysical images are produced with more emphasis on rigour—
but otherwise, perhaps little has changed.

In this chapter, we have sought to survey and summarise the state of the art of
geophysical inversion, and to highlight some of the theoretical and conceptual con-
nections between different approaches. As we hope is clear, the field continues to
develop at pace: driven by the need to better-address geoscience questions; drawn on
towards exciting horizons across mathematics, statistics and computation. In partic-
ular, the growth of machine learning has focussed much attention on techniques of
regression, model-building and statistical inference, and the fruits of this have been
evident throughout our discussion. We have no doubt that geophysical inversion will
continue to produce images and models that can inspire and stimulate geoscientists
for many years to come.
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Wieczorek, M. A., Broquet, A., Antonangeli, D., McLennan, S. M., Samuel, H.,

25



Michaut, C., Pan, L., Smrekar, S. E., Johnson, C. L., Brinkman, N., Mittelholz,
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M., Duran, A., Garcia, R., Huang, Q., Kim, D., Lekić, V., Samuel, H., Schimmel,
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C., Zenhäusern, G., Beucler, E., Clinton, J., Dahmen, N., van Driel, M., Gudkova,
T., Horleston, A., Pike, W., Plasman, M., & Smrekar, S., 2021. Seismic detection
of the martian core, Science, 373, 443–448.

Steinmetz, T., Raape, U., Teßmann, S., Strobl, C., Friedemann, M., Kukofka, T.,
Riedlinger, T., Mikusch, E., & Dech, S., 2010. Tsunami early warning and decision
support, Natural Hazards and Earth System Sciences, 10, 1839–1850.

Tanimoto, T., 1985. The Backus-Gilbert approach to the three-dimensional structure
in the upper mantle — I. Lateral variation of surface wave phase velocity with its
error and resolution, Geophysical Journal International , 82, 105–123.

Tanimoto, T., 1986. The Backus-Gilbert approach to the three-dimensional structure
in the upper mantle — II. SH and SV velocity, Geophysical Journal International ,
84, 49–69.

Tarantola, A., 2005. Inverse problem theory and methods for model parameter esti-
mation, SIAM, Philadelphia.

Tarantola, A. & Nercessian, A., 1984. Three-dimensional inversion without blocks,
Geophysical Journal of the Royal Astronomical Society , 76, 299–306.

Tarantola, A. & Valette, B., 1982. Generalized nonlinear inverse problems solved
using the least squares criterion, Reviews of Geophysics and Space Physics, 20,
219–232.

30



Tibshirani, R., 1996. Regression shrinkage and selection via the lasso, Journal of the
Royal Statistical Society B , 58, 267–288.

Trampert, J. & Snieder, R., 1996. Model estimations biased by truncated expansions:
Possible artifacts in seismic tomography, Science, 271, 1257–1260.

Tran, D., Kucukelbir, A., Dieng, A. B., Rudolph, M., Liang, D., & Blei, D. M.,
2016. Edward: A library for probabilistic modeling, inference, and criticism,
arXiv:1610.09787.

Valentine, A. & Davies, D., 2020. Global models from sparse data: A robust estimate
of earth’s residual topography spectrum, Geochemistry, Geophysics, Geosystems,
p. e2020GC009240.

Valentine, A. & Sambridge, M., 2020a. Gaussian process models—I. A framework for
probabilistic continuous inverse theory, Geophysical Journal International , 220,
1632–1647.

Valentine, A. & Sambridge, M., 2020b. Gaussian process models—II. Lessons for
discrete inversion, Geophysical Journal International , 220, 1648–1656.

Valentine, A. & Trampert, J., 2016. The impact of approximations and arbitrary
choices on geophysical images, Geophysical Journal International , 204, 59–73.

van Herwaarden, D. P., Boehm, C., Afansiev, M., Thrastarson, S., Krischer, L.,
Trampert, J., & Fichtner, A., 2020. Accelerated full-waveform inversion using
dynamic mini-batches, Geophysical Journal International , 221, 1427–1438.

Waddell, M., 2006. The world, as it might be: Iconography and probabalism in the
Mundus subterraneus of Athanasius Kircher, Centaurius, 48.

Wang, Y., Cao, J., & Yang, C., 2011. Recovery of seismic wavefields based on com-
pressive sensing by an l1-norm constrained trust region method and the piecewise
random subsampling, Geophysical Journal International , 187, 199–213.

Wang, Z., Hutter, F., Zoghi, M., Matheson, D., & de Freitas, N., 2016. Bayesian
optimization in a billion dimensions via random embeddings, Journal of Artificial
Intelligence Research, 55, 361–387.

Wiggins, R., 1972. The general linear inverse problem: Implication of surface waves
and free oscillations for Earth structure, Reviews of Geophysics and Space Physics,
10, 251–285.

Woodhouse, J., 1980. The coupling and attenuation of nearly resonant multiplets in
the Earth’s free oscillation spectrum, Geophysical Journal of the Royal Astronom-
ical Society , 61, 261–283.

Woodhouse, J. & Dziewonski, A., 1984. Mapping the upper mantle: three-dimensional
modelling of Earth structure by inversion of seismic waveforms., Journal of Geo-
physical Research, 89, 5953–5986.

Worthington, M., Cleary, J., & Anderssen, R., 1972. Density modelling by Monte
Carlo inversion—II. Comparison of recent Earth models, Geophysical Journal of
the Royal Astronomical Society , 29, 445–457.

Zaroli, C., 2016. Global seismic tomography using Backus-Gilbert inversion, Geo-
physical Journal International , 207, 876–888.

31
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