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Abstract  14 

Lavas from the current eruption of the Soufrière Hills Volcano, Montserrat exhibit evidence 15 

for magma mingling, related to the intrusion of mafic magma at depth. We present detailed 16 

field, petrological, textural and geochemical descriptions of mafic enclaves in andesite 17 

erupted during 2009-2010, and subdivide the enclaves into three distinct types. Type A are 18 

mafic, glassy with chilled margins and few inherited phenocrysts. Type B are more evolved 19 

with high inherited phenocryst contents and little glass, and are interpreted as significantly 20 

hybridised. Type C are composite, with a mafic interior (type A) and a hybrid exterior (type 21 

B). All enclaves define tight linear compositional trends, interpreted as mixing between a 22 

mafic end-member (type A) and host andesite. Enclave glasses are rhyolitic, owing to 23 

extensive crystallisation during quenching. Type A quench crystallisation is driven by rapid 24 

thermal equilibration during injection into the andesite. Conversely, type B enclaves form in 25 

a hybridised melt layer, which ponded near the base of the chamber and cooled more slowly. 26 

Vesiculation near the mafic-silicic interface resulted in disruption of the hybridised layer and 27 

the formation of the Type B enclaves. The composite enclaves represent an interface between 28 

types A and B, suggesting multiple episodes of mafic injection.  29 
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 35 

The process of magma mingling, where two or more magmas mix incompletely 36 

during magma storage in the crust, is commonly associated with arc volcanism (e.g. Pallister 37 

et al.  1992; Clynne  1999) and results in the formation of banded pumice and magmatic 38 

mafic enclaves (e.g. Bacon  1986; Clynne  1999; Browne et al.  2006b; Martin et al.  2006b). 39 

More complete mixing of magmas is inhibited by large contrasts in viscosity and density, 40 

reflecting differences in temperature, composition and crystallinity, and the relative 41 

proportions of the incoming and host magmas (Eichelberger  1980; Bacon  1986; Sparks & 42 

Marshall  1986). The textures of enclaves form in response to the local crystallisation 43 

conditions, and can yield information about the mingling processes or the dynamics of the 44 

intruding magma. For example, the presence of a diktytaxitic framework composed of 45 

elongate quench crystals and chilled enclave margins indicates rapid undercooling (Bacon  46 

1986). Enclaves without chilled margins and more tabular framework crystals can indicate 47 

that they were predominantly crystallised prior to incorporation into the host magma (solid-48 

liquid mingling) (e.g. Eichelberger 1980; Coombs et al. 2002). Therefore these enclaves may 49 

represent the remnants of a fragmented vesiculated mafic layer from the silicic-mafic 50 

interface (Eichelberger  1980; Thomas & Tait  1997; Martin et al.  2006a). Formation of a 51 

discrete layer of mafic magma is typically thought to be a product of slow and small volume 52 

material injection, where viscosity, density and temperature  contrasts between the two 53 

magmas are strong (Sparks & Marshall  1986). In contrast, enclaves that predominantly 54 

crystallised after incorporation into the host reflect direct injection of intruding magma into 55 

the host and therefore a more dynamic mingling relationship (Bacon  1986; Sparks & 56 

Marshall  1986; Clynne  1999). For example, at Unzen, Japan, Browne et al. (2006a) use 57 

textural differences to infer whether enclaves sampled represent the slower cooling of the 58 

centre of an intrusion or the silicic-mafic interface where there is a high degree of 59 

undercooling.  60 

As well as mafic enclaves, disequilibrium textures within both the host rock and 61 

enclaves can also be used to track mingling dynamics. Examples of these disequilibrium 62 
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textures are sieve-textured plagioclase, reverse zoning in orthopyroxene, breakdown of 63 

amphibole and clinopyroxene-rimmed quartz (e.g. Singer et al.  1995; Tepley et al.  1999; 64 

Nakagawa et al.  2002; Browne et al.  2006b). Disequilibrium may be caused by variable 65 

heating of the host magma from input of hotter magma (e.g. Tepley et al.  1999), or 66 

incorporation of the host phenocrysts into the incoming magma (e.g. Ruprecht & Wörner  67 

2007), which may then be recycled back into the host magma via disaggregation (e.g. Clynne 68 

1989, 1999; Browne et al.  2006b; Humphreys et al.  2009). Combined textural, petrological 69 

and geochemical analysis of magmatic enclaves and coexisting phenocrysts can therefore 70 

provide insights into the nature of the mixing magmas, the dynamics of the mingling process, 71 

and changes that may be occurring during mixing.  72 

Soufrière Hills represents a unique opportunity to study the process of magma 73 

mingling in an active system. Magma intrusion at depth appears to have been quasi-74 

continuous throughout the eruption, based on excess sulphur emissions (Edmonds et al. 2001, 75 

2010) and inflation during eruptive pauses (Mattioli & Herd,  2003; Elsworth et al. 2008). A 76 

recent increase in the abundance of mafic enclaves may hint at changes in the magma 77 

mingling dynamics in Phase III (Barclay et al. 2010). Phases IV (July 2008 – Jan 2009) and 78 

V (Oct 2009 - Feb 2010) marked a change at SHV: eruptive phase length reduced from years 79 

to months and the average extrusion rate increased (Wadge et al. this volume). We present 80 

geochemical, textural and petrological analyses of mafic enclaves from Phase IV and V, 81 

alongside results from fieldwork. This work provides a window into syn-eruptive magma 82 

mingling processes.  83 

 84 

Geological Background 85 

Soufrière Hills Volcano (SHV) is located on the island of Montserrat in the Lesser Antilles 86 

island arc. The current eruption at SHV has been ongoing since July 1995 with five phases of 87 

andesitic dome-forming lava extrusion to date (Wadge et al. this volume). SHV andesite is 88 

porphyritic (30-40%) and is described in detail in prior studies (Devine et al. 1998; Barclay et 89 

al. 1998; Murphy et al, 2000; Couch et al. 2000; Humphreys et al. 2009). The phenocryst 90 

assemblage is plagioclase + hornblende + orthopyroxene + Fe-Ti oxides and minor quartz 91 

and rare zircon crystals, whereas the groundmass assemblage is plagioclase + orthopyroxene 92 

+ clinopyroxene + Fe-Ti oxides, and interstitial glass is rhyolitic in composition. The andesite 93 

temperature, as bracketed by quartz and amphibole stability is ~830-870 oC (Barclay et al. 94 
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1998). Within the andesite at SHV mafic enclaves have been ubiquitous (Murphy et al. 1998, 95 

2000; Harford et al.  2002; Barclay et al. 2010 ). Geochemically, SHV andesite compositions 96 

have been modelled as the result of fractional crystallisation of equal proportions of 97 

amphibole and plagioclase from the South Soufrière Hills basalt (erupted in the south of the 98 

island, ~130Ka; Zellmer et al. 2003; Harford et al. 2002). The SHV mafic enclaves and the 99 

South Soufrière Hills basalt are geochemically distinct with different REE trends and are not 100 

related by crystallisation (Zellmer et al. 2003).  101 

 The presence of mafic enclaves in SHV andesite is ascribed to the interaction between 102 

mafic magma and the andesitic host magma, which is perhaps the trigger and driver for the 103 

current eruption (Devine et al.  1998; Murphy et al.  1998; Murphy et al.  2000; Couch et al.  104 

2001). It has been proposed that the initial intrusion of mafic magma underplated the 105 

andesitic magma (Murphy et al. 2000). A strong viscosity contrast exists between the highly 106 

crystalline andesite magma and phenocryst-poor mafic magma, so mechanical mixing is 107 

likely to be inhibited significantly (Sparks et al.  2000). Enclaves may have formed when 108 

fragmented dykes and blobs of less dense mafic material were injected into the overlying 109 

andesite (Murphy et al. 2000).  The remobilisation of the andesitic magma may have taken 110 

place via initial conduction of heat across the mafic-andesite boundary followed by the 111 

development of instabilities and convection in the andesitic magma (Couch et al. 2001). An 112 

alternative model suggests that the remobilisation of the andesite (essentially a crystal mush) 113 

takes place by ‘gas sparging’, involving the upward migration of a hot fluid volatile phase 114 

derived from the mafic intrusion (Bachmann & Bergantz 2006). This fluid transports heat by 115 

advection, which is more efficient over shorter time-scales than conduction and may occur 116 

alongside limited mafic-silicic mingling, making this model consistent with observations of  117 

‘cryptic’ mafic component of ∼6% by volume in Phase III products (Humphreys et al. 2009; 118 

in press) and of excess gas (Edmonds et al. this volume). 119 

Questions still remain concerning the dynamics of the mingling between the two 120 

magmas at SHV. Although different enclave types have been recognised in an earlier eruptive 121 

phase (Barclay et al. 2010), there has been little attempt to decipher the differing petrological 122 

and textural features between types. Prior work on enclave petrology has focussed 123 

predominantly on Phases I to III. Eruptive phase length has altered in Phases IV and V 124 

(Wadge et al. this volume), and therefore an additional aim of the work is to evaluate any 125 

changes in enclave petrology relative to the early stages of the eruption that might allow us to 126 

infer changes in magma reservoir conditions.  127 
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 128 

Methods  129 

Samples of andesite and mafic enclaves were collected from a wide range of locations around 130 

SHV from deposits emplaced during Phase V activity (Table 1). Samples collected from the 131 

February 11th 2010 dome collapse deposits in the Trant’s area are likely to have originated 132 

from a combination of Phase III, IV and V domes. Although minor Phase III deposits were 133 

incorporated into the collapse (Stinton et al. this volume), the distinctive Phase III lava 134 

described by Barclay et al. (2010) is inferred only to be a minor component of the flow 135 

deposits based on field observations. The significantly larger extruded volume in Phase V 136 

(~74 × 106 m3; Stinton et al. this volume) compared to Phase IV (~39 × 106 m3; Wadge et al. 137 

this volume), implies that many of the samples collected from the February 11th dome 138 

collapse were derived from Phase V. Samples that were collected from pyroclastic flow 139 

deposits in Aymers and White River are derived from Phase V (Stinton et al. this volume). 140 

Pumice was sampled from across Phase V activity (Oct 2009 – Feb 2010). Phase IV samples 141 

are from the January 3rd 2009 vulcanian explosion (Table 1). 142 

Estimation of macroscopic enclave volume fraction  143 

Enclave abundance was estimated using both macroscopic point counting and image analysis 144 

in the Phase V deposits. Nine lava blocks from the February 11th 2010 dome collapse 145 

deposits in the Trant’s and Streatham areas (see map: Wadge et al. this volume) were 146 

analysed using both methods.  Selection of the blocks was random, apart from requiring a 147 

relatively exposed and flat surface for analysis. Furthermore, to assess potential anisotropy in 148 

enclave fabric or abundance, two faces of a single block were analysed. For macroscopic 149 

point counting a grid of 1 m2 with 2 cm intervals on each axis (Fig. 1b) permitted us to count 150 

up to a total of 2601 points per site. Spacing interval was chosen on the basis of the average 151 

size of enclaves, most are <10 cm in diameter (Fig. 2). The minimum size of enclaves 152 

counted was 1 cm (smaller enclaves could not be distinguished from crystal 153 

clots/glomerocrysts in the field). In addition to enclave abundance the size and shape of 154 

enclaves were also measured. Using photographs of the same 1 m2 area, enclaves were 155 

isolated digitally from the andesite using ImageJ software. The isolated area fraction 156 

occupied by the enclaves was then calculated and compared to the point counting results. 157 

Image analysis yielded similar percentages, but consistently a little lower in comparison to 158 

the point counting method (by a mean of 1%). The slight underestimation of the image 159 
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analysis method is due to our inability to resolve the small enclaves (<2 cm) in the images, 160 

but is within standard error. We refer to the values obtained by the point counting method for 161 

enclave abundances.   162 

 163 

Laboratory Analytical Methods 164 

Seventy-four mafic enclaves and andesite samples from Phases IV and V were crushed and 165 

powdered for X-Ray Fluorescence (XRF) analysis to determine major and trace element 166 

concentrations at the University of East Anglia using a Bruker AXS S4 Pioneer. Standard 167 

deviations are <1% for all major oxides, apart from MgO and P2O5, which are <2%. Trace 168 

element accuracy is <2%, apart from Sc and Ce at <7% and <4% respectively. The diameters 169 

of enclaves analysed ranged from 3.3- 23.8 cm (Table 1). We also analysed different splits of 170 

the same samples, to rule out artefacts resulting from the relatively small sample size. 171 

Standard deviations are <1% for SiO2, Al2O3, P2O5, Na2O and Sr, all other major and trace 172 

element oxides are <5%. However, a single run of sample MT27 did produce anomalously 173 

high standard deviation values for K2O and Ba of 15% and 31% respectively.  The minimal 174 

deviations seen between different splits of the same sample were not great enough to explain 175 

the range of compositions as also concluded by Zellmer et al. (2003). 176 

Thin sections of 40 samples were cut from dome rock and pumice. In enclave sections 177 

andesite-enclave margins were included, as well as the interior of large enclaves (>10 cm) to 178 

examine heterogeneity across enclaves. Secondary Electron Microscope (SEM) images were 179 

collected using Jeol JSM-5900LV at University of East Anglia, operating at an accelerating 180 

voltage of 20 kV and a working distance of 10 mm. Electron probe analysis was undertaken 181 

at University of Cambridge using a Cameca 5-spectrometer SX-100 instrument. Major 182 

elements of minerals were analysed using a 15 kV, 10 nA focused beam, and trace elements 183 

using a 15 kV, 10 nA beam. Standard deviations are <0.6% for all major and trace elements. 184 

Glasses were analysed using a 10 µm spot size with a 15 kV, 2 nA and 10 nA beam for major 185 

and trace elements respectively. Standard deviations are <0.9% for SiO2 and Al2O3, and 186 

<0.4% for all other major and trace elements.  187 

We measured plagioclase phenocryst size, type, and rim and sieve-texture thickness 188 

by analysing representative different enclave types. We used a total of six thin sections, one 189 

type A and the rest type B. We examined a wider range of Type B samples due to a greater 190 
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degree of heterogeneity across this enclave type. However, we also checked the results 191 

against other type A samples to ensure that there was no bias towards the sample analysed. 192 

We ruled out the possibility of a 2D sectioning of 3D crystals artefact as the overriding cause 193 

of differing rim widths, as we observe a positive correlation between rim width and the 194 

proportion of sieved inherited phenocrysts in different enclaves (see Fig. 3).  195 

Results  196 

The andesite erupted in Phase V of the eruption is porphyritic with a fine-grained 197 

groundmass, and contains mafic enclaves as in earlier phases (Fig. 1) (Murphy et al. 1998, 198 

2000; Harford et al.  2002; Barclay et al. 2010).  Some andesite blocks contain distinctive 199 

streaked highly crystalline layers of amphibole and plagioclase. Pumice is porphyritic with a 200 

fine-grained groundmass and often contains mafic enclaves.  201 

Total measured mafic enclave abundances within andesitic Phase V blocks range 202 

from 2.9% to 8.2% from point counting, with a mean of 5.6% (Table 2). The size of 203 

individual enclaves ranges from 1 to 80 cm; however, ∼95% of the enclaves were <10 cm in 204 

apparent diameter (Fig. 2). We categorised Phase V enclaves into three broad types that were 205 

readily identifiable in the field using characteristics such as phenocryst proportions, the 206 

nature of the margin between enclave and andesite, vesicularity, enclave size and shape, and 207 

groundmass size and colour (Table 3).  The classification scheme applied by Barclay et al. 208 

(2010) is insufficient to describe the large textural diversity of the Phase V enclaves. 209 

Type A enclaves are characterised as phenocryst-poor, vesicle-rich, with dark grey 210 

groundmass and chilled margin (Table 3, Fig. 1). In the field these enclaves are readily 211 

identified by their dark grey colour caused by the fine-grained groundmass composition. 212 

Type A enclaves are typically ellipsoidal to sub-angular in shape, with occasional fingers of 213 

the enclave material protruding into the andesite. Commonly the smaller (1-5 cm) angular 214 

enclaves without evident chilled margins are clustered, suggesting that they are fragments of 215 

a larger enclave that disaggregated mechanically after formation. Type A enclave volume 216 

fraction reaches 46 % (with a mean of 22 %) of the total number of enclaves measured (Table 217 

2). These have the smallest mean diameter of all the enclave types measured (2.3 cm), 218 

although large enclaves over 18 cm were also measured (Fig. 2).   219 

Type B enclaves are characterised as phenocryst-rich, vesicle-poor, with a light grey 220 

groundmass and indistinct margins (Table 3, Fig. 1). In the field, type B enclaves are a lighter 221 
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grey than type A, and resemble most closely the host andesite in colour and texture (Fig. 1). 222 

They are generally ellipsoidal and well-rounded, although a few (<5 %) are angular in shape. 223 

Type B enclaves dominate across most of the analysed blocks, and represented 31% to 100% 224 

(with a mean of 64%) of the total enclaves measured. Their size distribution is strongly 225 

positively skewed from the norm with most <6 cm, (with a mean of 3.4 cm; Fig. 2).   226 

Type C enclaves are composite and are characterised by distinct textural zones akin to 227 

types A and B (Table 3). Type C enclaves were present in all blocks examined except for 228 

block 5, with variable abundances of 0-41% (mean; 14%; Table 2). The size distribution of 229 

type C enclaves shows a weaker positive skew from the norm towards smaller sizes, (with a 230 

mean of 4.4 cm; Fig. 2). Below 2 cm composite textures were difficult to identify, which may 231 

be a factor in the increased mean size in comparison to other enclave types.  232 

Distribution of enclaves is not even through the blocks; enclaves tend to cluster 233 

together, particularly in the smaller size fractions. Heterogeneity is observed both between 234 

blocks and within a single block; e.g. for block 1a-b, where two faces of the same block were 235 

measured, block 1a had a lower abundance of enclaves (3.5%), relative to the other face, 236 

block 1b (6.1%, Table 2). Furthermore, type A was absent from block 1a, but type A enclaves 237 

constituted 30% of the total in block 1b (Table 4), and of those, 66% were <2 cm (Fig. 2). 238 

This suggests localised clustering both of enclaves and enclave types.  239 

Petrological and Textural Analysis 240 

Following the criteria set out in Murphy et al. (2000), the term phenocrysts is used for 241 

crystals with major axis >300 µm, microphenocrysts 100-300 µm, and microlites <100 µm 242 

for the andesite and enclaves. The compositions of minerals from Phase V andesite are 243 

similar to those from earlier eruptive phases and there is no major change in andesite 244 

assemblage (Murphy et al. 2000; Humphreys et al. 2009). Mafic enclaves have a diktytaxitic 245 

groundmass framework of elongate, randomly-oriented crystals (Fig. 1d). This groundmass 246 

consists of plagioclase ± clinopyroxene ± high-Al-amphibole ± orthopyroxene. Fe-Ti oxides 247 

are observed throughout, and are often more abundant near inclusion margins. 248 

Titanomagnetite is the most common oxide, but ilmenite is also present. Trace amounts of 249 

apatite are often observed as inclusions in titanomagnetite and plagioclase-inherited 250 

phenocrysts (see below). Variable amounts of interstitial rhyolitic glass (71-78 wt% SiO2) are 251 

found within the enclaves. Clinopyroxene (Mg# ∼75) occurs as either the breakdown product 252 



 9

of amphibole, or as reaction rims on inherited orthopyroxene phenocrysts, or in the 253 

groundmass of the inclusions. The degree to which the framework is interlocked is usually 254 

correlated negatively with the amount of glass, disruption of vesicles and sizes of the 255 

groundmass crystals. 256 

Large crystals (∼2-3 cm) of plagioclase, amphibole and orthopyroxene are present in 257 

the mafic enclaves (Fig. 1d); most exhibit textural and compositional evidence that they have 258 

been inherited from the andesite (Murphy et al.  2000; Humphreys et al.  2009). We refer to 259 

these as inherited phenocrysts as they are not antecrystic or xenocrystic in origin. Following 260 

Murphy et al. (2000), the large inherited plagioclase phenocrysts in the enclaves can be split 261 

into two main types. Type 1 comprise large oscillatory zoned sodic phenocrysts (An49-57) with 262 

calcic rims (An69-80) 40-47 µm thick, similar to the type 1 and 2 plagioclases in the andesite 263 

(after Murphy et al. 2000). Type 2 are reverse-zoned dusty sieve-textured phenocrysts, where 264 

the sieve-texture (of thickness 70 µm to extending to the crystal core) is overgrown by a clear 265 

calcic rim (of thickness 0-230 µm) and comprises glass and high-anorthite (An70-90) 266 

plagioclase. Smaller crystals (<1000 µm) have a pervasive sieve-texture. Rim width is 267 

typically largest where the degree of sieve texture is highest (Fig. 3). Low anorthite 268 

compositions (An49-57) of the cores in both plagioclase types are identical to andesite 269 

phenocrysts compositions observed throughout the eruptive phases (Murphy et al.  2000; 270 

Humphreys et al.  2009). Core-to-rim transects across inherited plagioclase phenocrysts show 271 

a sharp increase in XAn, FeO and MgO at the rim. Inherited amphibole phenocrysts are Mg-272 

hornblende (Leake et al.  1997), identical to low Al2O3 (6-8 wt %) amphiboles phenocrysts in 273 

the andesite. They are often variably opaticised, or partially reacted, with plagioclase and 274 

clinopyroxene overgrowths, indicating instability due to heating, rapid decompression or 275 

shallow storage in the dome (Garcia & Jacobson  1979; Murphy et al.  2000; Rutherford & 276 

Devine  2003; Browne & Gardner  2006; Buckley  2006; Plechov et al. 2008). Inherited 277 

orthopyroxene phenocrysts commonly have clinopyroxene overgrowths, Fe-Ti oxide 278 

inclusions, are typically reverse-zoned, with Mg# 58-74 identical to the andesite 279 

orthopyroxene compositions (Murphy et al.  2000; Humphreys et al.  2009). Rare embayed 280 

quartz phenocrysts with rims of clinopyroxene were also observed. Rare zircon crystals are 281 

also present in some enclaves.  282 

Type A Enclaves 283 
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In thin section, type A enclaves (Table 3 and Fig. 4) are defined by a fine-grained 284 

groundmass, high vesicularity (19-40%, Fig. 5), chilled margins and low abundance of 285 

inherited phenocrysts (0 – 8.6%, Table 4, Fig. 6).  The framework consists predominantly of 286 

plagioclase, with acicular amphibole and clinopyroxene also present. In the framework 287 

plagioclase disequilibrium features similar to a sieve texture can be seen developing in the 288 

cores of many microphenocrysts. These are enclosed by rims of clear plagioclase of 289 

composition An77-89 (Table 5, Fig. 4d). The framework amphibole (∼13-15 wt % Al2O3, 290 

Table 5) is magnesio-hastingsite to pargasite (Leake et al.  1997), and typically has reaction 291 

rims of clinopyroxene that range from 5 μm thick to sometimes pervading the entire crystal 292 

(Fig. 4e). In Phase I the presence of framework amphibole was interpreted to correspond with 293 

larger enclave sizes (Murphy et al.  2000); this appears not to be the case in Phase V. 294 

Framework amphibole is present irrespective of the size of the enclave. Glass abundance is 295 

low (<5%), but is concentrated near vesicles and chilled margins. It contains on average 75wt 296 

% SiO2 and 3.8 wt % K2O (Table 5 and Fig. 7). Chilled margins are typically present, defined 297 

by a decrease in groundmass grain size towards the boundary, which is sharp to weakly 298 

gradational. Across large enclaves, inherited phenocryst abundances can be spatially 299 

extremely variable with densely clustered plagioclase phenocrysts associated with regions of 300 

increased enclave vesicularity. Type 1 plagioclase (with minor disequilibrium textures) is 301 

usually absent with predominantly type 2 (sieve-textured) dominating (Table 4). The rims on 302 

type 2 crystals range from 132–230 µm thick, which are the thickest rims measured in all the 303 

enclave types (Fig. 3). The rims of the inherited phenocrysts have high anorthite contents, of 304 

An80-An90 (Table 5). Inherited amphibole phenocrysts are commonly completely opaticised 305 

with very little amphibole remaining, or have been almost completely replaced by 306 

clinopyroxene and plagioclase reaction products. Inherited phenocrysts are rarely observed 307 

transecting the boundary in this enclave type.  308 

 309 

Type B Enclaves 310 

Type B enclaves (Table 3 and Fig. 8) are defined by a variably sized fine to medium-grained 311 

groundmass, low to medium vesicularity (9-19%, Fig. 5), diffuse margins, and medium to 312 

high inherited phenocryst abundance (16.5-26%, Fig. 6 and Table 4). As with all enclave 313 

types the framework is predominantly plagioclase (An65-75), which have lower XAn values in 314 

comparison with type A framework-phase plagioclase (An77-89). High-Al framework 315 
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amphibole is typically absent, but occasionally present in enclaves with lower abundances of 316 

inherited phenocrysts (i.e. those that are closest to the type A enclaves). Glass is rare (<5%), 317 

and contains on average 77 wt% SiO2 and 2.9 wt% K2O (Table 5; Fig. 7), and is typically 318 

pooled near large vesicles where present. Orthopyroxene microlites (Wo2-4, Fs38-40, En56-60,) 319 

and calcic plagioclase microlites are sometimes observed growing outwards from vesicle 320 

walls (Fig. 8c). Some enclaves have large elongated vesicles, (∼4 cm) with some vesicles 321 

disrupting the diktytaxitic framework, where crystals close to larger vesicles appear to have 322 

been bent after formation. Crystals (microlites or inherited phenocrysts) are regularly seen 323 

transecting enclave margins (Fig. 8). Type 2 inherited plagioclase phenocrysts dominate 324 

(Table 4); overall rim thickness (27-113 µm) is smaller in comparison to type A enclaves (see 325 

above) and is variable between different enclaves (Fig. 3). Inherited amphibole phenocrysts 326 

have variable disequilibrium textures: phenocrysts are either completely opaticised, broken 327 

down to clinopyroxene and plagioclase, or have undergone only minor disequilibrium. Rare 328 

inherited quartz with clinopyroxene overgrowth rims are also observed.  329 

  330 

Type C Enclaves 331 

Type C enclaves are composite, with at least two distinct different textural zones with respect 332 

to colour, vesicularity, and inherited phenocryst assemblage. Sample MT08 for example has a 333 

dark grey interior surrounded by a lighter grey exterior (Fig. 8e-f). The dark grey interior is 334 

somewhat similar to the type A enclaves, with a diktytaxitic groundmass framework 335 

composed of plagioclase (~An84, Table 5), amphibole (~14 wt % Al2O3, Table 5) and 336 

clinopyroxene, and a mean vesicularity of 23.9%. Inherited phenocryst abundance is low 337 

(12.6%); type 2 inherited plagioclase phenocrysts are dominant. The lighter grey outer 338 

portion resembles type B enclaves, with a diktytaxitic framework of plagioclase (~An72) and 339 

clinopyroxene; this portion does not display the same degree of crystal interlocking as the 340 

darker interior portion. Sparse high-Al amphibole laths are also observed in the outer portion 341 

close to the margin with the interior portion, typically where the margin is more diffuse. 342 

Furthermore, at the most diffuse margins plagioclase microphenocrysts are often observed. 343 

Vesicularity is lower in the outer portion relative to the interior portion (17.2%). Inherited 344 

phenocryst abundances are high (26.5%), dominated by plagioclase type 2, but type 1 is also 345 

present. Inherited amphibole and orthopyroxene are also present, which typically display 346 

more subtle disequilibrium textures than in the interior portion. The glass fraction is between 347 
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5 and 10%, and it is higher in the interior portion. Glass composition is similar to the type B 348 

enclaves in both portions, although the interior portion has slightly lower mean (74 wt% 349 

SiO2) to the exterior (75 wt% SiO2; Table 5, Fig. 7). The margin between the exterior portion 350 

and the host andesite is diffuse, with phenocrysts transecting the margin. 351 

Enclaves In Pumice 352 

Enclaves in pumice are extremely vesicular compared to those in lava dome blocks. The 353 

margins of the enclaves are lined with large coalesced vesicles, inhibiting identification of the 354 

original (pre-decompression) margin texture. Large amphiboles in the enclaves sometimes 355 

display boudinage textures similar to those seen in the andesite pumice (Giachetti et al.  356 

2010). We do not include enclaves in pumice in our classification scheme owing to the large 357 

degree of textural overprinting of features by late-stage ascent processes.  358 

Geochemistry 359 

We present whole rock major and trace element geochemical data for the mafic enclave types 360 

discussed above and andesite from Phases III, IV and V, and examine geochemical 361 

differences between the enclave types, as defined on the basis of their texture and petrology. 362 

We first compare phases IV and V major and trace element composition with the 363 

earlier phases of the eruption. Phases IV and V mafic enclaves and host andesite continue to 364 

fall on the linear array of most major elements, as established in previous phases (Fig. 9) 365 

(Murphy et al. 2000; Zellmer et al. 2003). Although phase V andesite SiO2 is slightly lower 366 

on average than earlier phases, values still lie within the range of data from the previous 367 

phases (Fig. 9). However, the compositional gap in SiO2 between the mafic enclaves and the 368 

andesite observed in phases I-III, no longer exists in phase V (Fig. 9). Phase V andesite and 369 

mafic enclaves do not continue the trend of increasing MgO and decreasing Fe2O3 established 370 

between Phases I to III (Barclay et al. 2010) (Fig. 9), but instead remain similar in 371 

composition to Phase III.   372 

The different categories of enclaves, as defined by their textural and petrological 373 

features, are also distinct in terms of bulk geochemistry. Although the type A and B enclaves 374 

fall on a single linear array with the andesite with no compositional gaps, each type plots in a 375 

distinctive field for all major elements (Fig. 10). Type A enclaves occupy a narrow 376 

compositional range (49.7-52.4 wt % SiO2), whereas type B enclaves have a much broader 377 

range (53-58 wt% SiO2) (Fig. 10).  Trace element distributions in the enclaves studied are 378 
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consistent with previous studies. For example, Zr is positively correlated with SiO2, whilst V 379 

is negatively correlated (Fig. 10).Type A enclaves have systematically higher compatible 380 

trace element contents, and lower incompatible trace element contents, than the type B 381 

enclaves (Fig. 10).   382 

In the composite Type C enclaves, interior portions are less evolved (52.7 to 55.4 383 

wt% SiO2) and the outer portions are more silicic (55.8 to 58.1 wt % SiO2), with one point 384 

lying in the host andesite field. The relative difference between the two portions is typically 385 

about 3 wt %, irrespective of absolute SiO2 values. However, Type C enclave bulk 386 

compositions plot entirely within the field for Type B enclave points (Fig. 10).  387 

Glass compositions are rhyolitic (71-79 wt % SiO2, Table 5) for the mafic enclaves 388 

similar to prior eruptive phases and lie within established trends (Humphreys et al. 2010; 389 

Murphy et al. 2000).  There are some notable differences between the enclave types of Phase 390 

V. Type A enclaves have a wide scatter of K2O compositions in comparison to types B and 391 

C, but is higher on average (Fig. 7a). Type A enclaves also have on average higher FeO and 392 

MgO (Fig. 7b). In contrast type B enclaves have low FeO and MgO compositions. Type C 393 

inner and outer enclave portions glass compositions were measured. In most elements 394 

measured there is an observed difference between the two portions. The inner portion 395 

compositions plot within the type A field in FeO, MgO and TiO2, whereas the outer portion 396 

compositions tend to plot within the type B field in K2O (Fig. 7a). There are however 397 

considerable overlap between the fields in FeO and MgO (Fig. 7b).    398 

Summary 399 

In summary we find that there are distinctive textural, petrological and geochemical 400 

differences between the phase V enclave types (Table 3). Type A enclaves are least evolved 401 

with a narrow compositional range, a low inherited phenocryst fraction, high vesicularity and 402 

with chilled margins. Type B enclaves have a broader, but more silicic compositional range, a 403 

high inherited phenocryst fraction and no chilled margins. The composite Type C enclaves 404 

have a more mafic inner portion with an affinity to type A, and an outer more silicic portion 405 

akin to Type B. We examine the constraints on the formation of the differing enclave types to 406 

help constrain a model of the mingling dynamics between the andesitic and mafic magmas in 407 

Phase V.  408 

 409 
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Discussion 410 

In general, the low crystallinity and inherited phenocryst content, chilled margins, and 411 

relatively restricted primitive geochemical composition suggests that the type A enclaves are 412 

close to an end-member mafic magma that quenched rapidly on contact with the andesite. In 413 

contrast, type B enclaves, with their much higher inherited phenocryst content, lack of chilled 414 

margins and more evolved compositions, are significantly hybridised. Type C enclaves are 415 

composite, with a more mafic interior indicating dynamic mingling between types A and B.  416 

Below we discuss in detail the constraints on the formation of these three enclave types and 417 

implications for the nature of magma mixing at Soufrière Hills Volcano.  418 

 419 

Geochemical constraints on end-member magma compositions 420 

Work by Zellmer et al. (2003) indicates that the mafic magma is formed by closed-system 421 

fractional crystallisation of amphibole (70%) and plagioclase (30%).  The type A enclaves are 422 

the least evolved of the enclave types, with low incompatible trace element concentrations; 423 

we therefore interpret them to be closest to a hypothesised low SiO2 mafic magma end-424 

member. However, the presence of inherited phenocrysts indicates that even these least 425 

evolved enclaves are already hybridised.  426 

The Type B enclaves are more evolved in comparison to type A, but reflect a broad 427 

range of compositions. The strongly linear compositional arrays in major elements (Al2O3, 428 

CaO etc.) and trace elements (Zr, Ba etc.) through the mafic enclaves to the host andesite in 429 

Phase V (Fig. 10), supports a mixing relationship between the mafic and andesite end-430 

members. This suggests that type B enclaves reflect a continuum of degrees of mixing. 431 

Nonetheless, we also observe that there is bimodal distribution between the total inherited 432 

phenocryst fraction between types A and B.  Using the average core compositions of 433 

inherited plagioclase and amphibole phenocrysts, we find that addition of the phenocrysts to 434 

the mafic melt should drive the melt to more mafic compositions (Fig. 10). However, the 435 

trend between Type A and B is towards more evolved compositions with increasing 436 

phenocryst abundance (Fig. 6), suggesting that the phenocryst incorporation has relatively 437 

little impact on bulk composition and that mixing is the dominant process. 438 

The relatively homogeneous rhyolitic composition of glass in the mafic enclaves could 439 

indicate that felsic melt from the andesite has infiltrated into the mafic enclaves, or may 440 
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simply be the result of extensive crystallisation of a mafic melt.  Engulfment of inherited 441 

phenocrysts must also be accompanied by liquid assimilation from the andesite host, which 442 

will affect the bulk composition of the mafic enclaves. If this is the case, type B melt 443 

compositions may reflect a localised hybrid starting composition before framework 444 

crystallisation in contrast to the type A melt. At Narugo Volcano, Japan compositional 445 

similarity between glasses in the host magma and mafic inclusions is interpreted as evidence 446 

of infiltration of the host magma melt into a boundary layer before enclave formation (Ban et 447 

al. 2005). Although glass compositions of the andesite and enclaves are both rhyolitic and 448 

overlap at SHV, there is a clear difference between the types A and B glass in K2O (Fig. 7a). 449 

Type B is somewhat similar to the andesite (Humphreys et al. 2010) and less variable than 450 

type A glass. This may imply that the melt in Type B enclaves is more homogenised in 451 

comparison to Type A allowing K2O time to re-equilibrate with the andesite host (Humphreys 452 

et al. 2010). The diffusive timescale of K has been calculated to be 32 days for rhyolitic 453 

compositions across a length-scale of 1 cm (Humphreys et al. 2010).  Therefore, preservation 454 

of the higher K2O glass composition of the type A enclaves may be attributed to a shorter 455 

timescale of mixing than type B.  456 

 457 

Petrological and textural mingling constraints 458 

The presence of chilled margins, lower inherited phenocryst abundance, higher plagioclase 459 

anorthite compositions and ubiquitous presence of high Al-amphibole in the framework 460 

crystals of type A enclaves relative to the type B enclaves all suggest that controls on the 461 

formation differed between the enclave types.  462 

Engulfment of phenocrysts from the host magma by an incoming magma has been 463 

observed elsewhere e.g. Unzen, Kameni, Chaos Craggs (Clynne  1999; Browne et al.  2006a; 464 

Martin et al.  2006a; Feeley et al.  2008). Previous work on inherited plagioclase phenocrysts 465 

from SHV demonstrates a positive correlation between iron and anorthite content at the 466 

phenocryst rim (Humphreys et al. 2009).  The disequilibrium textures and rim growth on the 467 

plagioclase was therefore probably caused by the incorporation of the inherited phenocrysts 468 

into a high-calcium melt (Ruprecht & Wörner  2007; Humphreys et al.  2009) rather than by 469 

decompression and degassing (Coombs et al. 2000). The presence of inherited phenocrysts in 470 

the type A enclaves, where chilled margins would significantly inhibit mass exchange 471 

between the enclave and andesite (Blake & Fink  2000), indicates that the majority of 472 
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phenocryst incorporation must have taken place before chilled margin formation. The higher 473 

inherited phenocryst fraction in the type B enclaves (16.5-26%) in comparison to the Type A 474 

enclaves (0 – 8.6%) indicates a greater interaction with the andesitic melt prior to enclave 475 

formation (Fig. 6). Differing rim and sieve-texture disequilibria widths of the inherited 476 

plagioclase phenocrysts in individual enclaves may reflect differing time-scales of 477 

engulfment or conditions of residence in the mafic melt (Fig. 3). In contrast, at Unzen, Japan, 478 

uniformity of calcic rim widths and sieve-textures of inherited plagioclase phenocrysts are 479 

interpreted as indication of a single episode of engulfment of phenocrysts into enclaves 480 

(Browne et al.  2006b).  481 

The effect of adding inherited phenocrysts on the viscosity of the mafic magma was 482 

estimated using the Einstein-Roscoe relation for effective viscosity, with melt viscosity 483 

calculated using the empirical model of Giordano et al. (2008). We find that the addition of 484 

the inherited phenocrysts increases the effective viscosity of the mafic magma and dominates 485 

over the effect that the associated temperature reduction would have (Fig. 11). However, even 486 

with the maximum observed volume of 25 % inherited phenocryst fraction in the type B end-487 

member a relative viscosity contrast between the andesite (45-55 vol% phenocrysts) still 488 

exists. Prior to mafic magma crystallisation, the viscosity will be lower than the andesite 489 

viscosity. However, after quench crystallisation, where crystal content can be >90% vol, 490 

enclave viscosity will be greater than andesite viscosity and this will inhibit mixing (Sparks 491 

& Marshall 1986). The inherited phenocryst content also contributes to a viscosity contrast 492 

between types A and B, which implies that mixing would be inhibited between the two types 493 

(Fig. 11). 494 

The diktytaxitic framework observed in both type A and B enclaves demonstrate that 495 

quench crystallisation took place during thermal equilibration with the andesite. This implies 496 

that a temperature contrast must exist between the andesite and even the most hybridised 497 

mafic melt prior to enclave crystallisation. However, textural and petrological differences 498 

show that this contrast was variable during formation of types A and B enclaves. An overall 499 

higher anorthite content of type A enclave inherited plagioclase phenocryst rims, 500 

microphenocrysts and microlites in comparison to type B enclaves, could be indicative of 501 

crystallisation under hotter conditions or more H2O-rich conditions.  Differing sized enclaves 502 

and types may take different times to equilibrate thermally (Bacon 1986), and therefore 503 

phenocryst disequilibrium is likely to be slightly different between enclaves. However, 504 

inherited plagioclase phenocrysts’ sieve-textures and rims in type A enclaves are consistently 505 
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thicker (Fig. 3). This hints at higher temperatures, rather than a longer residence time of the 506 

inherited phenocrysts in comparison to type B enclaves, which may be consistent with 507 

inferences from the residual glass composition. Furthermore, this process would be limited by 508 

the rapid cooling that would take place as the enclave reached thermal equilibrium (Bacon  509 

1986; Sparks & Marshall  1986). Chilled margins reflect rapid cooling caused by a significant 510 

temperature contrast between the enclave and host magma, with the enclave largely liquid 511 

during formation (Bacon  1986; Sparks & Marshall  1986; Clynne  1999). We therefore infer 512 

that type A enclaves not only formed from a hotter melt than type B, but that formation was 513 

the result of injection into the andesite as a liquid, where rapid cooling drove crystallisation 514 

and formation of the chilled margins. 515 

The lack of chilled margins in type B enclaves could result either from a smaller 516 

temperature contrast between enclave and andesite, in comparison to type A, or from 517 

mechanical abrasion of enclave margins caused by shear stress (Feeley & Dungan 1996). We 518 

suggest that mechanical abrasion would be unlikely to remove all evidence of a chilled 519 

margin. A reduced temperature contrast would prevent strong decrease in crystal size at the 520 

chilled margin, and allows greater time for mass and chemical exchange during quenching 521 

(Bacon 1986). A temperature contrast of 15-50 °C has been experimentally constrained to 522 

produce similar textures to the type B enclaves during crystallisation in a layer at the silicic-523 

mafic interface (Coombs et al. 2002). Furthermore, variability in textures in the type B 524 

enclaves may be a function of crystallisation depth below a mafic-silicic interface, as slower 525 

cooling will take place further away from the boundary (Coombs et al. 2002; Martin et al. 526 

2006a).  This may indicate that quench crystallisation of the type B enclaves took place 527 

before incorporation into the andesite and subsequent disaggregation (e.g. Eichelberger  528 

1980; Martin et al.  2006a). 529 

The ubiquitous presence of the high-Al amphibole laths in the type A as opposed to 530 

the type B enclaves might be a function of melt volatile content. In several plutonic centres 531 

such as the Cadillac Mountain Granite and the Pleasant Bay Intrusion, a positive correlation 532 

between more hybridised (higher SiO2) enclaves, with the absence of hornblende and 533 

presence of clinopyroxene has been observed (Wiebe  1993; Wiebe et al.  1997). The change 534 

from a hydrous to anhydrous assemblage is attributed to the exchange of H2O between stably 535 

stratified mafic and silicic layers (Wiebe et al.  1997). Amphibole compositions in the type A 536 

enclaves have 6.4-9.0 wt % H2O calculated using the method of Ridolfi and Renzulli (2011). 537 

This is consistent with RhyoliteMelts modelling of a saturated water-rich mafic magma (>8 538 
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wt % H2O), which reproduces the observed porosity and fraction of melt remaining in the 539 

type A enclaves (Edmonds et al. this volume).  The lower porosity and abundance of 540 

amphibole in the type B enclaves might suggest a lower melt volatile content in comparison 541 

to type A. The presence of some high-Al amphiboles laths in the least evolved type B 542 

enclaves implies that the H2O content was sufficient to allow limited amphibole 543 

crystallisation. Variability in the volatile content of the mafic magma might be also account 544 

for differences in the anorthite content of the plagioclase microphenocrysts between enclave 545 

types. Higher H2O melt content can lead to higher anorthite content as opposed to just higher 546 

temperatures, which is consistent with the type A enclaves (e.g. Couch et al. 2003b). 547 

Alternatively, the high-Al amphibole might have had more time in the type B enclaves to 548 

resorb, which also might explain their absence.  549 

The plagioclase framework microphenocryst disequilibria observed in the type A 550 

enclaves (Fig. 4c) could be created by a number of processes; (1) strong undercooling where 551 

melt is trapped in the skeletal structure of the crystals as they grow rapidly (2) 552 

decompression-induced disequilibria (Nelson & Montana  1992) (3) degassing-induced 553 

disequilibria (Frey & Lange  2011). As there is already evidence to suggest higher rates of 554 

cooling in the type A enclaves, the large temperature contrast could conceivably be the 555 

controlling process. However, destabilisation of some framework pargasitic amphibole rims 556 

indicated by breakdown to clinopyroxene may indicate decompression-induced disequilibria 557 

or shallow storage residence in the dome (Rutherford & Devine  2003; Browne & Gardner  558 

2006; Buckley  2006). 559 

The large coalesced vesicles in some of the type B enclaves suggest vesicle expansion 560 

caused by decompression or by longer timescales. Coalesced vesicles have been cited as 561 

evidence of overturn and subsequent breakup of a foam layer at the mafic-silicic interface 562 

(Martin et al. 2006a). Bent framework crystals also imply vesicle expansion after 563 

crystallisation (Martin et al. 2006a).  This disruption to the enclave framework implies that 564 

the type B enclaves are perhaps disaggregated fragments of larger pieces (Martin et al. 565 

2006a; Edmonds et al. this volume). This is further supported by the presence of clusters of 566 

small angular to sub-angular enclaves within andesite. In a sample of andesite from Phase III, 567 

Humphreys et al. (in press) calculated that the total cryptic abundance of material derived 568 

from disaggregation of mafic enclaves is approximately 6-7%, implying that this process is 569 

prevalent at SHV. Microlites or microphenocrysts of high-Al amphibole are very rarely 570 



 19

observed within the andesite, which lends support to the idea that it is largely or even 571 

exclusively this hybridised layer that is experiencing this level of disaggregation. 572 

 573 

Type C Enclaves 574 

Composite or mixed enclaves have been observed in previous eruptive phases (Barclay et al. 575 

2010) as well as Phases IV and V. Composite enclaves are suggestive of more complex 576 

hybridisation mechanisms. The inner portion of the enclave used for this study has retained a 577 

compositional and textural identity similar to the more mafic type A. While the surrounding 578 

more silicic portion is texturally and compositionally similar to type B enclaves. The 579 

concentration of glass near the interior margin of the inner part of the enclave, together with 580 

the diktytaxitic framework present, suggests that hotter, more mafic magma is mingled into 581 

the cooler more silicic magma, whilst both are still fluid (Snyder et al.  1997). The presence 582 

of a few high-Al amphibole laths in the more silicic portion near the inner margin 583 

demonstrates that there has been limited mechanical exchange of melt and groundmass 584 

material between the two portions of the enclave. The enclave-andesite margin, with fingers 585 

of andesitic material intruding into the enclave indicates weak cooling of the silicic portion in 586 

contact with the host andesite. Composite enclaves may form as mafic magma ‘pillows’, 587 

surrounded by a thin film of hybrid material separating the mafic from the silicic magma 588 

(Blake & Ivey  1986; Snyder et al.  1997). The inner mafic portion will crystallise first, and 589 

then the surrounding hybridised portion preserving the interior mafic portion (Collins, 2000).  590 

Phase V mingling model  591 

We propose that the textural and petrological variations of the type A and B enclaves are 592 

created by differing formation mechanisms, partly influenced by the degree of mingling 593 

between the host andesite and intruding mafic magma, which in turn controls temperature and 594 

viscosity contrasts. In addition, the nature and timing of incorporation of the enclaves into the 595 

andesite may also play a role in the differences between the enclaves.  In our model for 596 

enclave formation (Fig. 12), volatile-saturated mafic magma is injected into the chamber as a 597 

plume, and mixes with the host andesite to varying degrees, engulfing the andesite-derived 598 

phenocrysts and creating a hybrid mafic magma with a broad range of compositions. Type A 599 

enclaves formed at high rates of cooling and therefore may have formed at the plume margin 600 

(Browne et al. 2006a). The high viscosity contrast between the mafic and andesitic magma 601 
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end-members would prevent effective mixing (Fig. 11), but viscous shearing of the plume 602 

margin could have taken place. Alternatively, blobs of less dense mafic magma might have 603 

detached from the plume during injection into the andesite as a ‘spray’ quenching upon 604 

incorporation into the andesite. Ponding of the intruding magma from plume collapse is likely 605 

to have occurred either as a result of a decrease in the rate of injection (e.g. Eichelberger 606 

1980; Sparks & Marshall  1986) or in the density contrast with the andesite (Feeley et al. 607 

2008).  This leads to the formation of a mafic hybrid layer where at the mafic-silicic interface 608 

crystallisation-induced vesiculation occurred (Eichelberger 1980), from which type B 609 

enclaves are derived (Fig. 12b). For enclave flotation to occur, the H2O content of the 610 

enclaves must be >6 wt % (Edmonds et al. this volume). Disruption of the mafic-silicic 611 

interface may be result of (1) crystallisation-induced vesiculation, where the density of the 612 

hybrid mafic magma reduced beneath that of the andesite and enabled overturn or (2) an 613 

instability or plume of the mafic magma intruded through the hybrid layers destabilising and 614 

inducing breakup, reproducing the cycle.    615 

Composite enclaves may form from small plumes of vesicular, less dense, hotter 616 

mafic material which could buoyantly rise and mingle within the overlying cooler hybridised 617 

layers (Cardoso & Woods, 1999). The compositional and viscosity gap between types A and 618 

B end-members would limit mixing (Fig. 11) and perhaps allow the composite enclaves to 619 

form. These could form undercooled mafic pillows within the hybrid layer, which is then 620 

intruded into the overlying andesite (Fig. 12c). However, this does not explain adequately the 621 

presence of the inherited phenocrysts in the interior more mafic portion of the enclaves.  622 

It is unclear if the timing of the processes forming the type A, B and C enclaves are 623 

similar. The presence of the composite enclaves could imply multiple injections of mafic 624 

magma, and suggest a temporal separation between types A and B. Differences in glass 625 

compositions (Fig. 7), also may indicate longer mingling time-scales for the type B enclaves 626 

in comparison to type A. In addition, differing degrees of inherited phenocryst disequilibria 627 

within single enclaves might suggest temporal variations of the engulfment of phenocrysts 628 

rather than a single intrusion.  However, as SHV is a long-lived system with multiple 629 

extrusive phases with evidence for quasi-continuous intrusion at depth, it is likely to 630 

demonstrate dynamic mingling. We also cannot rule out that the differing enclave types may 631 

be due to turbulent mingling processes rather than suggesting temporal differences.  632 
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Finally, we also cannot rule out the possibility that Type A and B enclaves may represent two 633 

separate magmas rather than simply differences in the degree of hybridisation. This is 634 

suggested by the clear differences in inherited phenocryst and vesicle abundances, glass 635 

compositions, and melt volatile contents, although the linear major- and trace-element 636 

compositional arrays do suggest variable hybridisation. The composite enclaves clearly 637 

demonstrate that two-stage mixing has occurred. We might expect to see clear differences in 638 

rare earth elements between the types, if these represent two separate magmas.  639 

 640 

Comparison with earlier extrusive phases 641 

Observed changes in the eruptive phase length, mafic enclave abundances and bulk 642 

geochemistry lead us to question whether there has been any temporal change in the nature of 643 

the intruding or erupted magma in phases IV and V. The increased average SiO2 bulk rock 644 

composition of the mafic enclaves since phase III (Fig. 9), together with the dramatic increase 645 

in compositional range of the enclaves (from basaltic to andesitic) (Fig. 9) means that there is 646 

no longer a compositional gap between the mafic enclaves and host andesite. This suggests 647 

that there has been an overall increase in the degree of hybridisation between the mafic and 648 

andesitic magmas in Phases IV and V. Increased hybridisation of the mafic magma could be 649 

related to lower degrees of cooling against the host andesitic magma, perhaps due to 650 

successive replenishments of hotter mafic magma or continued transfer of heat from the 651 

existing mafic source (Wiebe  1993; Wiebe et al.  1997; Collins et al.  2006; Turnbull et al.  652 

2010). The effective viscosity contrast would also be reduced between the two magmas and 653 

thus promote greater mixing between the two magmas, resulting in more hybridised enclaves 654 

as the current eruption continues (Sparks and Marshall, 1986). If this explanation is correct, 655 

continued heating must be relatively localised; otherwise we would anticipate observing 656 

changes to the phenocryst rim compositions in the andesite in phase V, which we do not. We 657 

also expect changes to the crystal size distributions of the mafic enclaves over time, although 658 

this is beyond the scope of the current study. 659 

 660 

Conclusions  661 

We provide a complete petrological, textural and geochemical description of three distinct 662 

mafic enclave populations in the Soufrière Hills andesite, from the eruptive products of 663 
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phases IV and V of the current eruption. Type A are basaltic with a narrow range of 664 

compositions, and are recognised by the presence of chilled margins and high-Al amphiboles, 665 

high vesicularity and high inherited phenocryst abundance. Type B have a broad range of 666 

compositions (basaltic andesite), and are identified by a lack of chilled margins, low 667 

vesicularity and high inherited phenocryst abundance, and rare to absent high-Al amphiboles. 668 

Type C are composite with a more mafic interior zone, which is similar to the described type 669 

A, and an exterior zone akin to type B. Analysis of bulk compositions, textures, enclave 670 

petrology and viscosity demonstrates that differences between the enclave types are partially 671 

the result of the degree of mingling between the andesite and mafic magmas. This in turn has 672 

led to differing contrasts in temperature, viscosity, density and composition between the 673 

enclave types. We interpret Type A to be close to a mafic end-member magma, while Type B 674 

is significantly hybridised; Type C represents an interface between the two types.  675 

We observe linear compositional arrays between Type A enclaves and the host 676 

andesite; with type B enclaves reflecting a broad range of compositions on these arrays (Fig. 677 

9). In addition, the presence of inherited phenocrysts confirms that all enclaves are hybridised 678 

to some degree. The higher inherited phenocryst abundances in type B indicate a greater 679 

degree of interaction with the host andesite. All enclaves contain rhyolitic matrix glass due to 680 

crystallisation, but there are observable differences in composition between enclave types. 681 

Variations in K2O may reflect differing time-scales for mingling and reequilibration between 682 

the enclave types.  683 

The absence of the high-Al amphibole, and lower anorthite content of plagioclase 684 

microphenocrysts in the Type B enclaves may be due to a lower melt volatile content in Type 685 

B relative to Type A. The chilled margins in type A enclaves indicate that crystallisation and 686 

formation was driven by rapid cooling with the andesite, while the more hybridised Type B 687 

experienced slower cooling. Differences in degree of mingling probably arise from variations 688 

in temperature, composition and viscosity contrasts between the andesite and mafic magmas. 689 

Thus the distinct textural, petrological and geochemical differences between enclave types 690 

reflect differing formation histories. The more mafic Type A enclaves were formed from an 691 

injected plume of more primitive mafic magma, where limited mingling led to minor 692 

incorporation of inherited phenocrysts. Continued mixing of the intruding mafic magma 693 

resulted in a hybrid mafic magma, which ponded at the base of the chamber. The texturally 694 

broad Type B enclaves represent differing fragments from within a disrupted hybrid layer 695 

formed at the mafic-silicic interface. Composite enclaves represent two-stage mingling 696 



 23

between types A and B, where more mafic magma has intruded into the more hybrid magma 697 

layer reflecting temporal differences between them.  698 

There is a suggestion that the degree of hybridisation has changed during the course 699 

of the current eruption, as reflected in the disappearance of the SiO2 gap between the host and 700 

mafic enclaves bulk compositions in Phase V. This could be due to continued mafic 701 

replenishment causing localised reductions in the temperature contrast between the magmas 702 

as heat is transferred from the mafic intrusion to the andesite. This might permit localised 703 

increases in the degree of mixing between the mafic and andesite magmas. 704 
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   901 

Figures 902 

Figure 1: (a) A representative image of an andesitic block from Feb 11 2010 dome collapse 903 

(scale: 10 cm with 2 cm intervals). (b) is an image of the net employed during point counting 904 

of mafic enclaves. Net is 1m2, string is spaced at 10 cm intervals, with 2 cm tick marks. (c) 905 

Image of type A and B enclaves seen in the field. Note distinct colour difference and the 906 

clearly distinct margins in A as opposed to B (d) shows typical diktytaxitic framework 907 

observed in mafic enclaves with inherited phenocrysts of plagioclase (plag), amphibole (amp) 908 

and orthopyroxene (opx). 909 

Figure 2: Frequency size distribution of measured enclave apparent diameters from andesitic 910 

blocks used to evaluate mafic enclave abundance in Table 2.  911 

Figure 3: Inherited plagioclase phenocrysts overgrowth rim width (measured distance from 912 

crystal edge to sieve-texture) versus sieve-texture width. Increasing rim width is correlated 913 

with sieve-texture width. Note that where sieve-texture width is greater than 1000µm the 914 

sieve-texture pervades through to the crystal core. 915 

Figure 4: All images are representative of type A enclaves. (a) Large type A enclave from 916 

Feb 11 2010 dome collapse deposit. Darkening of andesite around the enclave is an artefact 917 

of water spray used to clean the outcrop (scale: 10 cm with 2 cm intervals) (b) 918 

Photomicrograph of a type A chilled margin shown by a reduction in framework crystal size; 919 

andesite is on the left and mafic enclave on the right (c) Photomicrograph of type A 920 

framework crystals, Fe-Ti oxides (ox) (d) BSE image of framework plagioclase with sieve-921 
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texture developing in the interior of the crystal. (e) BSE image of a clinopyroxene reaction 922 

rim developing on a high-Al amphibole microphenocryst. 923 

Figure 5: Vesicle size distribution of measured type A and B enclaves.  924 

Figure 6: Total inherited phenocryst modal proportions by enclave type against SiO2 925 

composition. A total of 16 enclaves were used and we observe that enclave types A and B 926 

plot in two distinct fields. Details of the inherited phenocryst type proportions counting are 927 

shown in Table 4.  928 

Figure 7: Groundmass glass compositions of enclave types from electron probe analyses. (a) 929 

SiO2 vs. K2O. Type Ci (interior of portion of composite enclave), Type Ce (exterior portion) 930 

(b) FeO*tot vs. MgO. 931 

Figure 8: (a) to (d) are representative of type B enclaves; (e) to (f) are representative of type 932 

C. (a) Type B enclaves sized from 2 cm to >10 cm in a single andesite block from Feb 11 933 

2010 dome collapse deposit (scale: 10 cm with 2 cm intervals) (b) Photomicrograph of a 934 

diffuse margin between the host andesite and type B enclave. (c) Photomicrograph of small 935 

orthopyroxene microlites growing outwards from vesicle walls in pools of glass. 936 

Concentrations of glass are often associated with larger coalesced vesicles. (d) BSE image of 937 

a type B groundmass. Note zoning of opx crystal to cpx from core to rim. (e) Hand specimen 938 

image of the type C enclave used for this study (MT08) with an inner mafic portion and a 939 

hybrid mafic exterior portion (f) Photomicrograph of the margin between the inner and outer 940 

enclave portions The interior to the right of the margin contains more glass and high-Al 941 

amphibole microphenocrysts than the exterior portion to the left of the margin.  942 

Figure 9: Comparison of XRF bulk geochemistry of mafic enclaves and host andesite across 943 

the first five phases of extrusive activity. Open symbols are SHV andesite and closed 944 

symbols are mafic enclaves. Phase I (Murphy et al. 2000; Zellmer et al. 2003); Phase II 945 

(Mann 2010; Zellmer et al. 2003); Phase III (Barclay et al. 2010; this study); Phases IV to V 946 

(this study) 947 

Figure 10: Comparison of mafic enclave types A, B and C from Phase V using representative 948 

XRF bulk geochemistry data. Arrows indicate projected effect of adding equal proportions of 949 

inherited plagioclase and amphiboles phenocrysts to the least evolved mafic enclave bulk 950 

composition.  951 
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Figure 11: Simplified modelled effective viscosity of SHV host andesite and mafic enclaves 952 

against temperature. Melt viscosity was modelled using the method of Giordano et al. (2008) 953 

and effective viscosity using the Einstein-Roscoe relation. Andesite sample has 77 wt % SiO2 954 

40% crystals, 4% wt % H2O. We use three enclave samples using measured bulk 955 

compositions, and assume modal inherited phenocryst proportions are mixed in prior to 956 

enclave formation. Type A (MT27) is the least evolved phase V sample with 49 wt % SiO2, 957 

8% inherited phenocryst volume, and 6 wt % H2O. Type B end-members were modelled (1) 958 

53 wt % SiO2 and 16% inherited phenocrysts, 6 wt % H2O (2) 58 wt % SiO2, 24% inherited 959 

phenocrysts, and 6 wt % H2O. We assume mafic magma temperatures of between 950-960 

1100°C, and similar temperatures for Types A and B for the purposes of this model, H2O 961 

contents from Edmonds et al. (this volume) and andesite temperatures from Barclay et al. 962 

(1998).  963 

Figure 12: Proposed mingling model for Phase V from petrological, textural and 964 

geochemical analysis of mafic enclave types. (A) Type A enclaves form during intrusion of a 965 

mafic magma plume either at plume margins or from ‘spray’. Collapse of plume as indicated 966 

by arrows is driven by both density and gravity contrasts, or by a reduction in the rate of 967 

mafic injection. Andesite derived phenocrysts and melt are engulfed by the intruding mafic 968 

magma forming a hybrid mafic magma, which ponds towards the magma chamber base, with 969 

perhaps denser material at the base. (B) Hybridised mafic magma derived from the collapse 970 

of a plume; hybridised as a result of localised mixing with the andesite is shown at the base of 971 

the chamber. At the hybrid mafic-andesite interface crystallisation results due to cooling of 972 

the hybrid mafic layer. Type B enclaves are derived from this layer either as the result of 973 

blobs of magma detaching from the layer or breakup of the layer.  Mafic material may also 974 

continue to pond at the base of the chamber beneath the mafic hybrid due to quasi-continuous 975 

input of mafic material. (C) Type C enclaves may be the result of multiple injections of mafic 976 

magma. Blobs of mafic magma may detach from the intruding magma as it intrudes through 977 

the mafic hybrid, mingling with the hybrid magma. Composite enclave textures are only 978 

likely to form where viscosity and temperature contrast is greatest between the mafic and 979 

mafic hybrid i.e. close to the mafic-silicic interface.  980 
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Table 1: Phase IV and V sample locations

Sample no. Location GPS Source Date of emplacement

MVO1535 Lower Gages Vulcanian explosion 03-Jan-2009

MT18-19, MVO1588, 1590,1591,1593 Aymers 583522 1846419 Pyroclastic flow Jan-2010

MVO1566 Whites River 586880 1845330 Pyroclastic flow Jan-2010

MVO1567 Bugby Hole 587400 1851433 Dome collapse 11-Feb-2010

MT20-MT37 Trants 589511 1852588 Dome collapse 11-Feb-2010

MT06-MT11 Streatham ridge 586695 1850599 Dome collapse 11-Feb-2010



Table 2. Phase V mafic enclave proportional abundances

Enclave type Block 1a* Block 1b* Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Total points 1326 2550 2397 2397 2397 2397 2295 2601

Total enclaves points 47 155 137 196 125 115 67 126

Overall % of magmatic enclaves 3.54 6.08 5.72 8.18 5.21 4.80 2.92 4.84

Total number of enclaves measured 20 30 46 39 48 43 30 29

Type %

A 0.00 30.32 13.14 4.59 27.20 27.83 46.27 29.37

B 100.00 60.65 77.37 80.61 54.40 31.30 52.24 52.38

C 0.00 9.03 9.49 14.80 18.40 40.87 1.49 18.25

*Block 1a and 1b is the same block, but two different faces were analysed



Table 3. Summary of key features of enclave types A and B

Type Composition Margin Vesicularity
Framework 

crystals

Inherited 

phenocryst 

abundance

Inherited 

plagioclase 

phenocryst rim 

thickness

49-52 wt % 

SiO2
Chilled

32% vol 

(mean)

High-Al 

amphibole 

present

<8% vol

B

A 132-230µm

53-57 wt % 

SiO2

Unchilled to 

diffuse

13% vol 

(mean)

High-Al 

amphibole 

rare to 

absent

15-25% vol 27-113µm



Table 4. Inherited phenocryst proportional abundances of phase V enclave types

Inherited Phenocryst Type Type A (%) Type B (%) Type C: inner (%) Type C: exterior (%)

Plagioclase Type 1 0 0.5-10.9 0 1.9

Plagioclase Type 2 0 -7 5 - 21 8.9 13

Plagioclase Total 0 -7 8 - 21.2 8.9 14.9

Amphibole 0 - 2.9 1.2 - 8.5 3.3 6.7

Orthopyroxene 0 - 0.6 0.4 - 4.5 0 4.5

Total Range 0-8 15.8 - 23.6 12.6 26.5



Table 5. Average compositions of selected minerals from mafic enclaves

a) Plagioclase framework (core)

Type A Type B Type C Type C

Interior Exterior

±1σ ±1σ ±1σ ±1σ

n 22 18 9 7

SiO2 47.02 1.80 49.90 1.89 45.82 0.94 48.86 1.15

TiO2 0.02 0.01 0.03 0.01 0.02 0.01 0.03 0.01

Al2O3 33.12 1.29 31.17 1.13 32.84 0.79 30.62 1.01

FeO 0.61 0.09 0.68 0.06 0.59 0.04 0.70 0.06

SrO 0.03 0.03 0.04 0.01 0.01 0.06 0.03 0.04

MgO 0.08 0.02 0.07 0.02 0.07 0.03 0.08 0.02

CaO 17.12 1.36 14.68 1.35 17.02 0.68 14.89 0.94

Na2O 1.82 0.80 3.28 0.82 1.76 0.39 3.01 0.52

K2O 0.03 0.03 0.06 0.02 0.02 0.02 0.06 0.02

Total 99.82 99.93 98.12 98.34

XAn 83.72 6.98 71.03 7.06 84.12 3.46 72.98 4.66

b) Amphibole (core)

Type A Type B Type C Type C

Interior Exterior

±1σ ±1σ ±1σ ±1σ

n 18 10 5 na*

SiO2 41.27 0.74 41.88 2.20 40.21 0.43

TiO2 2.01 0.18 1.87 0.20 2.06 0.14

Al2O3 14.77 1.10 13.81 2.59 14.97 0.40

Cr2O3 0.01 0.01 0.01 0.01 0.00 0.02

FeO 10.00 0.96 10.79 2.04 9.75 0.44

MnO 0.12 0.03 0.18 0.14 0.11 0.05

MgO 15.21 0.43 14.65 0.72 15.23 0.24

CaO 11.96 0.21 11.66 0.42 11.96 0.19

Na2O 2.44 0.07 2.30 0.34 2.45 0.07



K2O 0.25 0.02 0.23 0.05 0.24 0.03

Cl 0.06 0.01 0.07 0.03 0.08 0.05

F 0.01 0.01 0.03 0.04 n.a.

Total 98.09 100.25 99.88

c) Clinoyroxene

Type A Type B Type C Type C

Interior Exterior

±1σ ±1σ ±1σ ±1σ

n 9 9 5 8

SiO2 49.21 1.48 50.37 1.86 47.38 1.40 47.96 2.01

TiO2 0.80 0.28 0.64 0.26 0.95 0.35 0.90 0.39

Al2O3 4.73 1.72 4.16 2.62 6.07 2.14 5.42 2.35

FeO 10.09 2.39 10.04 1.44 9.25 1.60 9.58 1.17

MnO 0.37 0.20 0.41 0.19 0.29 0.20 0.31 0.10

MgO 14.50 1.17 14.39 0.88 14.06 0.69 14.41 1.37

CaO 19.76 2.19 19.80 1.36 20.46 1.46 19.91 1.60

Na2O 0.27 0.05 0.31 0.17 0.25 0.01 0.24 0.04

Total 99.75 100.87 98.76 98.82

d) Oxides

Type A Type B Type C Type C

Interior Exterior

±1σ ±1σ ±1σ ±1σ

n 10 17 na 6

SiO2 0.10 0.02 0.44 1.12 0.32 0.62

TiO2 9.33 2.53 9.26 2.92 9.40 1.83

Al2O3 4.15 1.02 2.16 0.25 2.31 0.33

FeO 79.69 1.66 81.75 3.52 81.18 2.37

MnO 1.65 0.26 1.24 0.36 1.57 0.13

MgO 0.39 0.04 0.52 0.09 0.54 0.05



CaO 0.05 0.04 0.07 0.07 0.07 0.06

Total 95.38 95.46 95.41

e) Glass

Type A Type B Type C Type C

Interior Exterior

±1σ ±1σ ±1σ ±1σ

n 26 14 7 7

SiO2 75.05 1.38 77.05 1.29 74.46 0.40 75.52 0.90

TiO2 0.63 0.14 0.39 0.05 0.64 0.10 0.51 0.05

Al2O3 12.21 0.65 11.50 0.43 12.07 0.27 11.75 0.28

FeO 2.20 0.30 1.63 0.23 2.42 0.11 2.26 0.28

MgO 0.23 0.18 0.11 0.04 0.31 0.05 0.15 0.12

MnO 0.05 0.06 0.06 0.04 0.06 0.04 0.12 0.07

CaO 1.18 0.41 1.01 0.32 1.42 0.12 1.52 0.14

Na2O 4.16 0.47 3.61 0.16 4.00 0.17 3.91 0.11

K2O 3.83 0.55 2.98 0.10 2.89 0.08 2.68 0.16

P2O5 0.13 0.11 0.11 0.25 0.22 0.08 0.22 0.09

Cl 0.35 0.17 0.46 0.11 0.52 0.08 0.47 0.08

Total 100.13 99.04 99.15 99.23

*na: not available



Table 6. Selected Phase IV and V XRF analyses 

Sample no: MVO1535d MVO1535e MT27 MT29 MVO1567d MT35 MVO1566b MT37b MT09a MT25b MVO1593

Eruption date Jan-2009 Jan-2009 Feb-2010 Feb-2010 Feb-2010 Feb-2010 Dec-2009 Feb-2010 Feb-2010 Feb-2010 Feb-2010

Type A A A A A A B B B

wt%

SiO2 53.85 53.47 49.54 51.60 51.50 52.01 51.96 52.84 56.24 57.22 54.72

TiO2 0.97 0.77 0.88 0.80 0.82 0.80 0.79 0.80 0.67 0.66 0.73

Al203 16.17 19.17 20.09 19.12 19.67 19.63 19.68 19.59 18.74 18.52 18.79

Fe2O3 11.31 8.61 9.09 10.37 8.93 8.55 8.29 8.64 7.60 7.53 8.26

MnO 0.24 0.17 0.16 0.23 0.17 0.16 0.21 0.17 0.16 0.17 0.18

MgO 4.44 4.54 5.63 4.15 5.05 4.83 4.35 4.76 3.61 3.35 4.05

CaO 8.21 9.6 11.12 9.58 10.33 10.11 10.18 9.92 8.54 8.15 8.98
Na2O 3.29 3.11 2.71 3.18 2.78 2.93 3.16 2.74 3.24 3.49 3.24

K2O 0.6 0.54 0.41 0.42 0.54 0.55 0.45 0.62 0.67 0.74 0.61

P2O 0.24 0.11 0.09 0.18 0.11 0.10 0.08 0.11 0.12 0.13 0.12

LOI †na na -0.11 -0.33 -0.28 -0.29 0.10 1.06 0.01 -0.36 0.08

Total 100.09 100.26 99.61 99.30 99.62 99.38 99.25 101.25 99.60 99.60 99.68

ppm

Sc 25 22 35 19 29 27 24 25 19 15 21

V 214 206 283 171 242 239 221 221 167 153 193

Cu bd 35 53 70 105 36 81 11 bd bd 11

Zn 92 61 60 80 61 64 62 61 63 60 64

Rb 12 10 *bd 10 13 10 bd 15 14 16 12

Sr 233 267 273 299 270 272 274 264 261 262 268

Y 41 19 19 24 20 19 24 20 19 19 19

Zr 146 69 54 62 66 61 53 69 89 88 77

Ba 117 101 34 38 55 72 84 82 142 145 111

Ce 58 43 32 40 36 34 42 41 47 51 44

*bd: below detection; †na: not available



MVO1566e MT37a MT11 MT08a MT08b

Feb-2010 Feb-2010 Feb-2010 Feb-2010 Feb-2010

B B B C C

54.14 56.61 55.30 52.88 55.58

0.74 0.66 0.74 0.78 0.73

19.20 18.77 18.43 19.30 18.55

8.10 7.64 8.21 8.38 8.22

0.16 0.17 0.18 0.17 0.18

4.11 3.57 4.02 4.57 4.01

9.27 8.44 8.73 9.74 8.74

3.13 3.39 3.10 3.02 3.23

0.60 0.78 0.65 0.54 0.64

0.11 0.13 0.12 0.11 0.13

0.12 -0.25 0.04 -0.06 -0.01

99.56 100.00 99.52 99.66 99.43

21 17 23 27 20

207 163 207 232 185

25 bd bd bd bd

62 63 69 66 66

11 19 14 11 13

270 262 256 266 261

18 18 20 21 21

72 82 82 70 81

106 135 128 82 119

35 43 47 46 45
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