A SEMI-STABLE CASE OF THE SHAFAREVICH
CONJECTURE

VICTOR ABRASHKIN

ABSTRACT. Suppose K = W (k)[1/p], where W (k) is the ring of
Witt vectors with coefficients in algebraically closed field k of char-
acteristic p # 2. We discuss an explicit construction of p-adic
semi-stable representations of the absolute Galois group of K with
Hodge-Tate weights from [0, p). This theory is applied to projec-
tive algebraic varieties over Q with good reduction outside 3 and
semi-stable reduction modulo 3.

INTRODUCTION

In this expository paper we discuss the following result in the spirit
of the Shafarevich conjecture about non-existence of non-trivial abelian
schemes over Z.

Theorem 0.1. If Y is a projective algebraic variety over Q with good
reduction outside 3 and semi-stable reduction modulo 3 then h*(Y¢) =
h1’1<Yc).

In particular, above Theorem implies that there are no such (non-
trivial) abelian varieties Y (first proved in [13; 27]). Our result also
eliminates a great deal of other varieties, e.g. all K3-surfaces.

The proof of Theorem 0.1 is given in [11] and is based on a:

— study of torsion subquotients of the Galois module H, 3t(YQ> Q3);

— modification of Breuil’s torsion theory of semi-stable p-adic rep-
resenations with HT (Hodge-Tate) weights from [0, p — 1] over W (k),
where k is algebraically closed field of characteristic p;

— formalism of pre-abelian categories (short exact sequences, 6-
terms Hom — Ext exact sequences, p-divisible group objects, devissage);

— study of the group of fundamental units in Q(v/3, €>™/?) (via the
computing package SAGE).

The strategy of the proof is very close to the strategy used in the
following “crystalline case” of the Shafarevich conjecture [23, 7].
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Theorem 0.2. Suppose X is a projective algebraic variety over Q with
everywhere good reduction. Then

(l) hl(Xc) = 0, hQ(X(c) = h1’1<Xc) and hg(X(c) = 0,’

b) h*(Xc) = h®?(X¢) under Generalized Riemann Hypothesis (GRH).

Part a) of this Theorem was obtained in [7] by studying the finite
subquotients of the Galois modules HY,(Xg, Qs) with 1 < i < 3. These
Galois modules are unramified outside 5 and their local behaviour at 5
is described by the Fontaine-Laffaille theory [19] of p-adic torsion crys-
talline representations with HT weights from [0, p—2]. The approach in
[7] is essentially similar to the approach from [23] but Fontaine consid-
ers etale cohomology with coefficients in Q7. (Of course, these results
would be not possible without great achievements of Fontaine’s theory
of p-adic periods.)

Part b) was proved by the author in [7]. The proof requires the study
of the Galois module H}(Xg,Q5), where the tools of the Fontaine-
Laffaille theory are not sufficient. For this reason, we developed in [6]
a modification of the Fontaine-Laffaille theory for crystalline represen-
tations with HT weights from [0, p — 1]. Note that our modification of
Breuil’s theory works also in the context of crystalline representations
and can be applied to reprove part b) of Theorem 0.2 (and similar
results for varieties over Q(i), Q(v/—3) and Q(v/5) from [7]). The ap-
propriate comments will be given in due course below.

The constructions in [11] are very technical and we just sketch and
discuss their basic steps. Most of them can be illustrated by earlier
results related to the Shafarevich Conjecture, cf. Subsection 1.

In Subsections 2-4 we work with a local field K = Frac W (k), where
W (k) is the ring of Witt vectors with coefficients in algebracally closed
field k of characteristic p, p > 2. Let K be an algebraic closure of K
and 'y = Gal (K/K). In Subsection 2 we outline the construction of
the functor V* from an appropriate category of filtered modules to the
category of F,[['x|-modules. This construction is based on the intro-
duction of a modulo p “truncated” version of Fontaine’s ring of p-adic
semi-stable periods. We associate to V* the functor CV* with values in
the category of co-filtered F,[I'x]-modules and prove that this functor
is fully faithful. In Subsection 3 we obtain the ramification estimates
for the Galois modules H from the image of V*: if v > 2 — 1/p then

the higher ramification subgroups Fgg) act trivially on H. We also
obtain the ramification estimate for the Galois modules which are as-
sociated with the modulo p subquotients of crystalline representations
with HT weights from [0, p) and prove that both estimates are sharp.
The methods we use here are close to the methods from [8, 9, 10]; one
can use also our constructions to show that the estimates from [24] are
sharp if e =n = 1. In Subsection 4 we explain the construction of our
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modification of Breuil’s functor V/*. In fact, it is very close to the con-
struction of the modification of the Fontaine-Laffaille functor from [6]
but it can be developed in a simpler way due to advantages of Breuil’s
theory. One of main features of this construction is that on the level
of modulo p subquotients, V/* essentially coincides with the functor V*
from Subsection 2. This gives the ramification estimates for modulo
p subquotients of semi-stable and crystalline representations with HT
weights from [0,p). Finally, in Subsection 5 we outline the proofs of
Theorems 0.1 and 0.2.

1. THE SHAFAREVICH CONJECTURE

Conjecture (1. R. Shafarevich, 1962). There are no projective alge-
braic curves over Q of genus g > 1 with everywhere good reduction,

[29].

The case g = 1 was considered by Shafarevich himself. He has just
listed explicitly 22 elliptic curves over Q with good reduction outside 2
and verified that all these curves have bad reduction at 2. Later his PhD
student (Volynsky) studied the case of curves of genus 2. This approach
resulted in enormous calculations and was not published. In both cases
the approach was based on the study of canonical equations for these
curves. It became clear later that one should study the problem in a
more general setting.

Conjecture. There are no abelian varieties A over Q of dimension
g > 1 with everywhere good reduction.

This statement is easier to approach. The existence of such abelian
variety would have provided examples of non-trivial p-divisible groups
over Z (for all prime numbers p). The question about the existence of
such p-divisible groups was asked by J.Tate in [31]. On this way the
conjecture was proved in [21, 3] in 1985. Main features of used methods
will be described below.

1.1. Small values of g. In [1, 2] it was proved that any 2-divisible
group over 7Z of height h < 6 is isogeneous to the trivial 2-divisible
group. This gave the cases g = 2 and g = 3 of the Shafarevich conjec-
ture. The method can be explained as follows.

Suppose G is a f.f.g.s. (finite flat group scheme) over Z such that
2idg = 0. Then

a) if the order |G| = 2 then G is either etale (Z/2); = Spec(Z @ Z)
or multiplicative uy = Spec Z[z]/(z* — 1) f.f.g.s. over Z, [31];

b) if |G| = 4 and G = Spec A(G) is not a product of f.f.g.s. of order
2 then there is a short exact sequence of f.f.g.s.

0— o —G— (Z/2)7 — 0
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and A(G) = A(pa) @ Z[i], [1]. In particular, A(G)g # Q & K, where
[K : Q] = 3. (Use that A(G)q is etale over Q and there are no cube
field extensions K /Q unramified outside 2.)

¢) there are similar short exact sequences for f.f.g.s. G over Z of order
2" with n = 3,4, 5,6,

0 — us — G — (Z/2)5 — 0,

where a + b = n, [2]. This statement is highly non-trivial because the
Galois group of the field-of-definition Q(G) of Q-points of f.f.g.s. of
order 2" is not generally soluble if n > 4. On the one hand, we used
the Tate formula for the discriminant of A(G) from [31], vo( D(A(G)) =
d2", where d = dim(G®IF,) (it implies that vo(D(A(G))) < 192 because
we can assume that d < 3 by switching, if necessary, from G to its
Cartier dual). On the other hand, we used the Odlyzko lower bounds
for the minimal discriminants of algebraic number fields, cf. [30, 18, 25];

d) in the special pre-abelian category of f.f.g.s. G over Z such that
2idg = 0, one has

Ext(ps, (Z/2)z) = Ext((Z/2)z, (Z/2)z) = Ext(pz, p2) = 0.

Therefore, the above exact sequences for G and devissage in the pre-
abelian category of finite flat 2-group schemes over Z give the following
exact sequence of 2-divisible groups over Z

(11) 0— {/Lgn}zZl — Q — (Qg/Zg)b — O,

where G is of height a + b < 6 (for more details about devissage in
pre-abelian categories cf. Appendix, especially Theorem A.1);

e) such 2-divisible group G never comes from a non-trivial abelian
scheme A over Z. Otherwise, looking at dimensions we obtain b # 0,
but the exact sequence of 2-divisible groups from d) splits over Fy and,
therefore, A has infinitely many Fs-points. The contradiction.

The above method does not work in higher dimensions.

Indeed, suppose A is an abelian scheme over Z and G = Ker(2id4)
is a group scheme of points of order < 2 on A. Then |G| = 2%,
dim(G ® Fy) = g and Tate’s formula gives vy(D(A(G))/%9) = g. Note
that A(G)®Q is the product of algebraic number fields (because G ®Q
is etale) and these fields are unramified outside 2 (because G ® Z; is
etale if [ # 2). Therefore, the normalized discriminant of A(G) equals
29 and tends to infinity if g — oo.

On the other hand, if Q(G) is the field-of-definition of Q-points of
G, then Gal(Q(G)/Q) C SL(2g,F5) is not generally soluble if g > 2,
and the only global idea we can use in this situation is related to lower
bounds of minimal discriminants of algebraic number fields. The best
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known bounds are the Odlyzko estimates and they are given by the
tables of real numbers {dy | N € N} such that if [K : Q] = N then
ID(K/Q)|'N > dy. For large N, dy ~ do, =~ 22.3; under GRH there
are better estimates {d} | N € N} in this case d¥_ ~ 44.76, [30, 18, 25].

Unfortunately, an analogue of Odlyzko estimates under additional
assumption that K/Q is ramified only over 2, does not exist. Nonethe-
less, A(G) is considerably smaller than its integral closure and Tate’s
formula can be replaced by much better upper estimate for the 2-adic
valuation of the normalised discriminant of Q(G). The evidence for its
existence is illustrated in the next Subsection.

1.2. The Shafarevich Conjecture, the ordinary case. Suppose
our abelian variety A has good ordinary reduction at 2. Then:

a) G := Ker(2id,) is a f.f.g.s. over Z of order 2%;

b) there is a short exact sequence of f.f.g.s. over Zy

0 — H™ — G®yZy — H — 0,
where H™"* is multiplicative and H® is etale group schemes over Zs,
of order 29; B B
c) because H" @ W(F2) = [[,(Z/2)w@, and H™" @ W(F,) =
[T: fo0(y)> We have

G@W(Fy) =Y Gij € BijExt((Z/2)w 5y tiow(Fa)):
i3
where for all 7, j, there are short exact sequences of f.f.g.s.
0— Mo w (Fy) — Gij — (Z/Q)W(]Fz) — 0;

d) the field-of-definition of geometric points of G;; over the maximal
unramified extension Qs of Qoa, is Qy,ur(/V;), Where all vy; are prin-
cipal units in Qs,,, cf. Appendix by J.Tate in [26]. Therefore, for all
v > 1, the higher ramification subgroups F&) of g, = Gal(Q2/Qy) act
trivially on the field-of-definition Q5(G) of all Q,-points of G

e) the triviality of I‘&—aetion, where v > 1, implies the inequality
|D(Q(G)/Q)|V/IE)C < 22 (e.g.use Prop9.4 of Ch.1, [12]). But the
Odlyzko estimate dy < 4 and we obtain [Q(G) : Q] < 4. Therefore,
Q(G) € Q(i), we can use devissage to obtain exact sequence (1.1) for
a = b = g and finish the proof similarly to the case of small g.

In the above discussion, the prime number 2 can be replaced by
arbitrary prime number p. If A ®F, is ordinary and G = Ker(pida)
then for v > 1/(p — 1), the ramification subgroups F(UP) act trivially on
Q,(G) and using the Odlyzko estimates we can see that for 3 < p < 17,
Q(G) € Q(¥/1). This implies that G is the product of constant etale
and multiplicative f.f.g.s. over Z, the corresponding p-divisible group
of A will be just the product of several copies of trivial etale (Q,/Z,)z
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and multiplicative {pan 7 }n>1 p-divisible groups over Z and, therefore,
such abelian variety does not exist.

The above case of the Shafarevich Conjecture was not published but
gave a right direction towards the proof of the general case.

1.3. The Shafarevich Conjecture, the general case. In this case
the same ramification estimates are proved in general situation [21, 5]:
if G is a finite flat group scheme over W (k), where k is a perfect field
of characteristic p, pidg = 0 and Frac W(k) = K then the higher

ramification subgroups F(Ig) act trivially on the field-of-definition of K-
points of G for all v > 1/(p — 1).

Essentially, Fontaine found ramification estimates for any finite flat
p-group schemes over the valuation ring Oy, of complete discrete valua-
tion field L D Q,. His method uses the rigidity properties of p-divisible
groups defined over valuation rings and a very elegant interpretation
of Krasner’s Lemma. The methods in [3, 5] are much more compu-
tational and use Fontaine’s theory of f.f.g.s. over Witt vectors, [20].
In Subsection 3 we present an alternative proof of ramification esti-
mates. It works also equally well for the subquotients of crystalline
and semi-stable p-adic representations.

In our approach from [3, 5] we treated systematically also the case
p = 2. Here the category of f.f.g.s. over W (k) is not abelian con-
trary to the case p # 2, but one can still proceed with the devissage.
This gave us not only the bigger list of algebraic number fields where
the Shafarevich conjecture about the non-existence of abelian varieties
with everywhere good reduction holds. Our main idea [4] of remov-
ing the restriction to unipotent objects in Fontaine’s classification of
2-group schemes in [20] gave later a right approach to the constructions
of modifications of the Fontaine-Laffaille [6] and Breuil [11] functors.
These modifications allow us to obtain the ramification estimates for all
modulo p subquotients of representations with HT weights from [0, p).
They also provide us with the nulity of some groups of extensions in
the category of Galois modules appeared as such subquotients. As a
matter of fact, these two key ingredients resulted finally in proving
Theorem 0.1 and part b) of Theorem 0.2.

2. THE FUNCTOR CV*

Let W) = k[[u]], where u is an indeterminate. Denote by o the
automorphism of &k induced by the p-th power map on k£ and agree
to use the same symbol for the continuous extension of o to W; such
that o(u) = uP. Denote by N : W — W), the unique continuous
k-differentiation such that N(u) = —u.
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2.1. Categories of filtered modules. Introduce the following cate-
gories:

e the category é; — its objects are £ = (L, FI(L), ), where L and
F(L) are Wi-modules, L D F(L) and ¢ : F(L) — L is a o-linear
morphism of WW;-modules; the morphisms are VW;-linear maps of filtered
modules which commute with the corresponding o-linear maps ¢;

e the category L — its objects are £ = (L, F(L),,N), where

(L,F(L),p) € ZS and N : L — L/uPL is such that for w € W; and
l € L, N(wl) = N(w)l +wN(l) (we use the same notation [ for the

image of [ in L/u”L); the morphisms are the morphisms from Z; which
commute with the corresponding differentiations /V;

e the category L is a full subcategory of Q; consisting of £ =
(L, F(L), ¢) such that the module L is free of finite rank, u?~'L C F(L)
and the natural embedding ¢(F(L)) C L induces the identification
P(P(L)) @y Wi = L i

e the category L* is a full subcategory of é* consisting of £ =
(L,F(L),p,N) such that (L, F(L),p) € L§, for any [ € F(L), one
has uN(l) € F(L)moduPL and N(¢(l)) = ¢(uN(l)) (we use the same
notation ¢ for the morphism ¢ mod u?L).

The above categories are analogs of the categories of filtered modules
from [14], Subsection 2.1.2, but we work with the category of W;-
modules. (Breuil uses modules over the appropriate divided power
envelope of W (k)[[u]]).) Note that in the context of W;-modules the
monodromy operator N can’t be defined as a map with values in L.
In [11], Subsection 1.1, we proved that N can be defined as a map
from L to L/u*L and it appears as a unique lift of its reduction N, =
NmoduPL. (We used the existence of such lift when proving in [11]
that the category L£* is pre-abelian; we also need this property when
defining the functor V* in Subsection 2.3 below.) In this paper we use
the notation N for this (modu?)-map Ni;

e the category L, is a full subcategory in L£* consisting of the objects
(L,F(L),, N) such that N(eo(F(L))) = 0.

For obvious reasons, (L, FI(L),p, N) € L, is completely determined
by (L, F(L), ) € L. Note that the category L., is very closely related
to the category of Fontaine-Laffaille modules, cf. [11], Subsection 1.3.

According to above definitions the objects of the categories Lj, L*
and L, are filtered free Wi-modules with additional structures. The
category of filtered free WW;-modules is a typical example of a special
pre-abelian category, i.e. it is additive category with kernels and cok-
ernels and nicely behaving bifunctor Ext, cf. Appendix. In Subsection
1.1 of [11] we verified that £j, £* and L, inherit the property to be
special pre-abelian.



8 VICTOR ABRASHKIN

There are the concepts of etale, unipotent, connected and multiplica-
tive objects in our categories defined in the following way, for more
details cf. Subsection 1.2 of [11].

Suppose L = (L, F(L),p, N) € L".

Introduce a o-linear map ¢ : L — L via ¢ : | — p(uP~*l). The mod-
ule £ is etale (resp., connected) if ¢ mod u is invertible (resp., nilpotent)
on L/uL. Denote by L£*" (resp, £*) the full subcategory of £L* con-
sisting of etale (resp. connected) objects. Then any £ € L* contains
a unique maximal etale subobject (£¢,i®) and a unique maximal con-
nected quotient object (£, j¢) and the sequence

0—sct ey

is short exact.

Note that ¢(F (L)) is a o(W;)-module and L = ¢(F (L)) @xon,) Wh.
If ] € L and for 0 < i < p, the elements [) € F(L) are such that
L= ocicpy o) @ ul, set V(1) = 1. Then Vmodu is a o~ '-linear
endomorphism of the k-vector space L/uL.

The module £ is multiplicative (resp., unipotent) if V mod u is in-
vertible (resp., nilpotent) on L/uL. Denote by L£*" (resp, L) the
full subcategory of L£* consisting of multiplicative (resp. unipotent)
objects. Then any £ € L* contains a unique maximal multiplicative
quotient object (L™, ;™) and a unique maximal unipotent subobject
(L£*,7") and the sequence

0— Lt S lhrm —o
is short exact.

Note that £*¢ and £ are abelian categories: it follows easily from
the description of simple objects of £* in Subsection 1.4 of [11].

2.2. The object RY, € L. Let R = @(O/p)n be Fontaine’s ring;

it has a natural structure of k-algebra Vi?i the map k — R given by
a — lim(lo™"aJmod p), where [y] € W(k) C O denotes the Teichmiiller

represgntative of v € k. Let mp be the maximal ideal of R.

Choose zy = (:13(()") mod p),so € R and € = (6™ mod p),»¢ such that
for all n > 0, 2P = 20" and P = 0 with 2 = —p, £© =1
but e # 1. Denote by vg the valution on R such that vg(zg) = 1.

Let Y be an indeterminate.

Consider the divided power envelope R(Y') of R[Y] with respect to
the ideal (Y). If for j > 0, v;(Y) is the j-th divided power of Y then
R(Y) = @®;20R;(Y). Denote by Ry the completion [];., Rv;(Y) of
R(Y) and set, Fil" Ry, = [, R7;(Y). Define the o-linear morphism of
the R-algebra Ry by the correspondence Y — z8Y’; it will be denoted
below by the same symbol o.
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Introduce a Wi-module structure on Ry by the k-algebra morphism
Wi — Ry such that u i (u) 1= zgexp(—Y) = 20,0 (—1)7;(Y).

Set F(Ry) = Y ocicp@h Ry (Y) + Fil’ Ry,

Define the continuous o-linear morphism of R-modules ¢ : F(Rgs) —
Ry by setting for 0 < i < p, p(z8" 7 (Y)) = %(Y)(1 = (i/2)zhY),
and for i > p, p(1:(Y)) = 0.

Let N be a unique R-differentiation of Ry such that N(Y) = 1.

Note that (R, F'(Rst), @, N) is not an object of L, eg pisnota
o-linear morphism of Wi-modules. Nevertheless, all appropriate com-
patibilities between above introduced additional structures on R, hold
modulo x?)p R, cf. Proposition 2.1 in [11], and we can introduce

Rgt = (RgtvF(Rgt)7<Pa N) € Zk,

where RY, = Rymodzhmp and F(RY) = F(Rg)mod zfmpg with the
appropriate induced maps ¢ and N.

In our theory RY plays a role of the ring Ay from the theory of
p-adic semi-stable representations [14], Subsection 3.1.1. In particular,
RY, can be provided with continuous Galois action as follows. For any
7 € 'k, let k(7) € Z be such that 7(zy) = "z and let log(1+ X) =
X — X?/24 ... — XP71/(p — 1) be the truncated logarithm. Define a
map 7 : Ry — Ry by extending the natural action of 7 on R and
setting for all j > 0,

T(y(Y)) = > ymi(V)v(loge).
0<i<min{j,p—1}
Then the correspondences v;(Y) +— 7(7;(Y)) induce a I x-action on the
Wi-algebra R, which extends the natural I'kx-action on R and respects

the structure of RY, as an object of the category z*, ct. Proposition
2.2 in [11].

2.3. The functor V*. For any £ = (L, F(L),p, N) € L*, consider the
I'-module V*(£) = Homz (L, RY,). Note that in this definition we
need N to be defined slightly better than just modulo u?L (we work
modulo xfmpg rather than modulo 2 R) but such lift exists and unique,
cf. Subsection 2.1. The Galois module V*(L£) can be studied via the
following method from [15], Subsection 2.3.

Let RO = (R°, F(R),p) € L,, where R® = R/a’mp, F(R°) =
xg_lRO, the Wi-module structure on R is given via u +— zy and ¢ is
induced by the map r — r?/22®V € 227'R.

If f € V*(L) and 7 > 0, introduce k-linear morphisms f; : L — R°
such that for any [ € L, f(I) = > ., fi(l)7:(Y). The correspondence
f — fo gives the homomorphism of abelian groups pr, : V*(£) —
Vi(L) = Homgz- (£, R"). Then, cf. Subsection 2.2 of [11],

— pry is isomorphism of abelian groups;
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— if rkyy, L = s then |Vi(L£)| = p*

Therefore, V* is exact functor from L* to the category of finite
[F, [ k]-modules.

Introduce the ideal J = > _o<i<p 2P 'mp;(Y) + FilP R, in RY,. Then
F(R%) > J and ¢|> 7 is mlpotent Therefore, we can introduce RY, =
(R‘;t/J F(Rgt)/J pmod J) € EO, there is a natural projection R?, —

RY, in L, and for any £ € L}, Hom (L, RY,) = Homy- (L, RY,). This
implies the following description of the T x-modules V*(E) LeLl

21 V(L) = { Y N (fo)u(Y)mod T | fy € VS(ﬁ)}

0<i<p

Note that for i > 1, it is sufficient to know the maps N*(f;) modulo
xf and this requires just the (moduP)-version of N, cf. discussion in
Subsection 2.1. For future applications also notice the following two
special cases of above general description (2.1).

a) Let T'x; = Gal(K /K (yp) C T'x. Then this group acts trivially
on Ymod J and zgmod zimpg. Therefore, for any £ € L*, the map
ry s V(L) — V(L) is isomorphism of I'k ;-modules.

b) Suppose £ = (L, F(L),p,N) € L;.. Then there is a W;-basis
li,...,ls € (F(L)) and integers 0 < ay,...,a; < p — 1 such that
I = u™ly, ..., I, = u™ls is a Wy-basis of F(L), cf. Subsection 1.4 of
[11]. Then there is a matrix A € GL4(k) such that

(e(l})y - yo(ll) = (lh,...,ls) Amod uPL,
and for f € V*(L), fo = pry(f) and all i, we have
— f(l) = fol;) mod J;
28 fo(l;) = f(ul) mod J.
Let b, = p—1 — a;, where 1 < 7 < s. Then the Galois module

V*(L) is isomorphic to the Galois module of all (rq, ..., ;) mod zhmpg €
R*mod zfmpg such that
(r?Jab P faP) = (.. 1) (0 A) mod 2fmp.

2.4. The category CMI',. and the functor CV*. Let ML), be the
category of continuous Z,[I'x]-modules. The objects of the category
CMT '}, are the triples H = (H, H, j), where H, H® € ML, are finite,
Ik acts trivially on H° and j : H — HY is an epimorphic map in
MTy. If Hy = (Hy, HY, ji) € CMI'y then Homewr, (H1,H) consists
of the couples (f, fY), where f : Hi — H and f° : HY — H° are
morphisms in MI'j- such that jf = fj;.
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The category CMI', is special pre-abelian and its objects have a
natural group structure.

Definition. Suppose £ € L£* and ¢ : L% — L is the maximal
etale subobject. Then CV* : L* — CMI'j is the functor such that
CV*(L) = (V*(£), V*(£LS), V(i)

The simple objects in CMI'j are of the form either (H,0,0), where
H is a simple Z,[I'x]-module, or (F,, F,,id), where F, is provided with
the trivial I'g-action. The functor CV* establishes a bijection of the
families of simple objects in £* and CMI' ., cf. Proposition 2.8 of [11].

In particular, let Lo = (W, uP"' W, @) € L, be such that p(uP~!) =
I, and £,y = Wi, Wi, ¢) € L, be such that p(1) = 1. Then
CV*(QO) = .7"0 = (]FP7FP7 ld) and CV*<£p_1) = fp_l = (Fp, 0, O)

The functor CV* is fully faithful, ¢f. Proposition 2.13 in [11].

By devissage the proof of this result is reduced to the fact that
for any two simple objects £/, £L” € L*, CV* induces an injective map
from Extz« (L', L") to Extemr, (CV*(L"),CV*(L')). The first group was
explicitly described in Subsection 1.5 of [11] and the corresponding
objects of CMI ), were studied in Subsections 2.5-2.8 of [11] by the use
of (2.1).

Example. One can verify that (remind that p > 2)

EXté* (;Cp,l, ﬁo) = EXtéZT (ﬁpfl, Eo) ~k
Explicitly this isomorphism is described via L[] — ~y, where for v € k,
Lly] = (L,F(L),p,N) € L, is such that L = Wilo & Wyly, F(L) =
Wi (uP o) + Wil + 7o), (M) = lo and ¢(l + 7o) = .

Then CV* : Extg«(Ly-1, Lo) — Extemr,, (Fo, Fp—1) is injective.

Indeed, for any v € k, CV*(L[y]) = (V[7].F,,j) € CMLy, where
the Galois module V] is identified with the module of all vectors
7 = (ro,r1)modzhmp € R?mod #fmpg such that 7§ = romodafmp and
(ri/ab) — (ri/af)? = fyprg/xgz mod mg.

Then V[y] can be included into the short exact sequence of I'k-
modules 0 — F,ht — V]y] =% F,j(h°) — 0, where 1%, h' € V5]
are such that h° = (1, «) mod zhmp, h' = (0, z5) mod zhmp. Here a €
R is such that a—a? = ~P/ a;gQ. So, V[7] can be described as an element
of Extyr,. (Fpj(h°),Fyh') via the cocycle ©, € Hom(I'k,F,) such that
O,(7) = (Ta — @) mod mp. Clearly, ©, =0 iff v = 0.

3. RAMIFICATION ESTIMATES

3.1. Ramification estimates. For any rational number v > 0, denote
by Fg) the higher ramification subgroup of I'x in upper numbering,
[28]. In this Section we prove the following Theorem.

Theorem 3.1. a) If L€ L" andv > 2 — % then Fg) acts trivially on
V*(L).
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b) If L € L. and v > 1 then Fg) acts trivially on V*(L).
¢) The above ramification estimates are sharp.

The proof of part a) was only outlined in Subsection 2.9 of [11]. In
Subsections 3.3-3.5 we shall give a proof based on our characteristic p
approach from [8, 9, 10]. One can also apply the methods from [24].

3.2. Review of ramification theory. The following brief sketch of
ramification theory of complete discrete valuation fields with perfect
residue field is based on the papers [17, 32, 33].

Let E be a complete discrete valuation field with perfect residue field
kg and the maximal ideal mpg. Let Ey., be a separable closure of E.
Denote by vg a unique extension of the normalized valuation on E to
Eep.

Let Zg be the group of all continuous automorphisms of E,., which
are compatible with vg and induce the identity map on the residue
field of E,.,. If F'is a finite extension of E in F, then we always
assume that F., = Fy, and, therefore, we have a natural identification
I =Ip.

Note that I'y = Gal(Es,/E) D {¢ € Ig | t|g = id} and if E is
unramified over Q, then Zg is identified with the inertia subgroup of
['g. If characteristic of E is p then Z is considerably bigger: it contains
the subgroup Aut)Ey., = { ¢ € Zg | «(E) = E} which is mapped onto
the group of “analytic” automorphisms Aut’E of E via ¢+ |g.

Denote by Zp,g the set of all continuous embeddings of F' into E,
which induce the identity map on E and kpr. For v > 0, let

I}(71’)/)13 ={t€Zpp |vr(a) —a) =2 14+v VYacmp}.

If 11,12 € Tp/p then they are v-equivalent iff for any a € mp, it holds
vp(u(a) — t2(a)) = 1+ v. The number of v-equivalent classes in Zr/p
we shall denote by (Zp/g : II(;)/)E). Then the Herbrand function can be
defined as ¢p/p(z) = [ (Zr/E : Il(,v/)E)_ldv, x > 0. Tt has the following
properties:

® pp/E is a piece-wise linear function with finitely many edges;

o if L D F D F is a tower of finite field extensions then for any
20, or/p() = vr/E(eLr(T)).

We define the ramification filtration {Ig})}@o on Zg as follows:

Definition. The subset I](;) of Zg consists of « € Zg such that for any
finite extension F of E in E,., and a € mp, vp(t(a) —a) > 1+<,0;}E(v).

Remark. a) If ¢p/p(v1) = v then Ig) = I}Ul) (with respect to the
natural identification Zp = Zp); b) F(Ev) =TgnN I](;) is just the usual
higher ramification subgroup of I'g with upper number v.
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The ramification theory is perfectly compatible with the field-of-
norms functor of Fontaine-Wintenberger, [32]. Suppose E/FE is an infi-
nite strictly APF-extension in F,.,. Then one can define the Herbrand
function ¢ = ¢z /g 88 the limit of Herbrand functions of all finite ex-
tensions of F in E. In this situation the field-of-norms functor X" gives
a complete discrete valuation field £ = X(FE) of characteristic p, its
separable closure &, = X' (FEsp) and the embedding X : ZTp — Z¢.

With the above notation, the compatibility of the field-of-norms
functor X with the ramification filtration means that for any v > 0,

X (TP = x(Tp) NI,
We apply this general theory in the following situation.

Fix an algebraic closure K of K and set for n > 0, K,, = K(»/p) C
K. Then K =J, K,, is a strictly APF-extension and by [32],

— K = X(K) = k((z0)) C Frac R;

— X(K) = Ky, is a separable closure of K in Frac R;

— X transforms the action of T'x on K to the natural action of Ty
on FracR and 'y ~ X (I'x) C Zx (remind that the residue field k of K
is assumed to be algebraically closed).

Note that for the derivative of the Herbrand function ¢z /i it holds

)= 1, ifo<z<p/(p—1)
PRI TV p, ifplp— 1) < < p?/(p— 1),

Therefore,

(31)  XTE)=xT) NV, 2(1Y) = Xk NI,

3.3. Proof of part a) of Theorem 3.1. Consider a filtered module
L = (L,F(L),p,N) € L. Then its structure can be specified as
follows.

Choose a Wi-basis fi,..., fs of FI(L), let [; = ¢(f;) for 1 < i < s,
and set f = (f1,...,fs) and [ = (I1,...,l,). Let C € M;(W),) be such
that f = [C. Note that W, is identified with a subring of R by u — .
Therefore, C' can be considered as (s x s)-matrix with coefficients in
k[[xo]] € R. Note, C divides the scalar matrix 28" I,.

Let H = V*(L). Because 'k = Gal(K/K(¢/p)) D Fg_l/p), we can
assume that H = Vi (L).

Lemma 3.2. There is a natural identification of F,[I'k 1]-modules

H ={r € RPmodzxompg | o(7)C = xg_lfmodxng}.
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Proof of Lemma. Indeed, if h € H, then h(l) = 7 mod zfjmg, where
" € R? is such that
o(r)o(C)

— p* p
o =T mod zympg.

7o
Then ¢~!(7*) = 7 satisfies the congruence o(7)C' = 28~ '7mod 25mp.
It remains to verify that h — 7 gives the required identification. O

On the other hand, for any 7 € I,(Cv) with v > p — 1, it holds 7(C) =
C'mod z{mp and this implies (use Lemma 3.2) for any h € H, that
7(h) € H. Therefore, our proposition will be proved if we show that
for any such 7 and any h € H, 7(h) = h.

From the left-continuity of the ramification filtration {Z\") | v > 0} it
follows the existence of a minimal v* = v*(H) such that for any v > v*
and 7 € I,(Cv), Tl = id.

If v* < p — 1 there is nothing to prove.

Otherwise, choose r* € (p — 1,v*) such that v,(r*) = 0. Such r* can
be always written in the form r* = m/(q — 1), where m € N is prime
to p and ¢ is an integral power of p. For the following Lemma cf. [8],
Subsection 1.5.

Lemma 3.3. With above chosen r* and q there is a field extension
K'=k((z()) of K =k((z0)) such that

a [K': K] =gq;

1 if O<xz<r®
b) () =4 7
) #eel@) {1/p, oo
¢) zo = 2)1(1 — 2 V) mod 21t

Note that for above chosen r*, the appropriate m and ¢ are not
defined uniquely, e.g. for any a € N, it holds aslo that r* = m,/(¢*—1),
where m, = m(14+q+---+¢*!). Therefore, we can assume additionally
that ¢ is large enough to provide us with the following inequality

(3.2) r*(1—-1/q) >p—1.

Choose a field isomorphism x : K — K’ such that x(zy) = xj
and k|, = 079 Note that by Lemma 3.3¢) and assumption (3.2), for
any v € k[[xo]], k(7)? = ymod 25 mg. The isomorphism k can be
extended to an isomorphism of separable closures of these fields in R.
Therefore, we have the bijection x* : Iy —> Zxs such that for any

v >0, K" (Z,(Cv)) = I,(éi). In particular, if
W e H ={# € R°modzimg | o(7)k(C) = 2,77 mod z’mp}

then for any v > v* and 7 € I, 7(h) = I’
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On the other hand, from Lemma 3.3 ¢) it follows that
H = {7 € R*mod zompg | o(7)0?(k(C)) = = 'Fmod 27mp}.
Therefore, the map 7 +— o9(7) establishes a Galois equivariant bijec-
tion of H' and H. Because, I,(Cv,*) = I,(CSD'C'/ ’C(v*)), this implies that for

any 7 € I,(Cv) with v > @r/c(v*), 7|g = id. But i c(v*) < v*. The
contradiction.

3.4. Prove that the ramification estiiliate from Theorem 3.1 a) is sharp.

Introduce £ = (L, F(L),p, N) € L such that:

— L= ino Whli;

— F(L) =3 oin0 Wifi, where for p > i > 1, fi = w'(l, 1 + -+ 1)
and fo = u Zp_1>i>2(i — D+ 1+ lo;

— for all i, o(f;) = 1;;

— N(l,—1) = 0,iff p—1 >4 > 1 then N(/;) = l;4; modu”L, and
N(ly) = —lymod uP L.

A direct verification shows that £ € L£*. In particular:

—forp>i 22, p(uN(f;) = ¢(fir1) = lisi = N(l) = N(p(f);

— N(fo) = —u(l,—1+- - -+I2) and, therefore, (uN(fy)) = ¢(—f2) =
—lo = N(lo) = N(#(fo))-

By Lemma 3.2, the 'k ;-module V}(£) = H is identified with the
'k 1-module of all 7 = (r_1,...,71,70) € RPmod zomp such that

Tﬁ,l = rp—1 mod Tomp

T‘p

_ 2
b1 Ty g = Terpgmod zymp

p _ p—2 p—1
Tp1t -+ =xy rimodz; mpg

_ —1
rg—l(p - 2)1’0 +- TZQJxO + ,,,.117 + Ty = l‘g To mod xgrnR

Let v* > 0 be the minimal such that for all v > v*, I,(Cv) acts trivially
on H. We must prove that v* =p — 1.

Suppose v* < p — 1.

Choose r* € (v*,p — 1) such that v,(r*) = 0. As earlier, we can
assume that ™ = m/(q — 1), where m € N, ¢ is a power of p and
r™(1—1/q) >p—2.

Apply Lemma 3.3 and consider the appropriate fields isomorphism
kK — K. If k(o) = ) then for i > 2, 2/ = 2z}, mod2¥mp,
2 = 2o + 20 mod afmp and 2,V € 2l 'mp.

This implies that for p —1 > i > 1, r; = 0%(r}) modzompg and
r? = o9(r})? mod z{mpg. Therefore,

7 =0i() 4+ (0,...,0,Yy) mod zompg,



16 VICTOR ABRASHKIN

where 277'Y, — YP = (P (p—2)++ r:g)méqﬂ"*(qfl)
= rp_1x(l)q+r*(q_1) mod zhmg.

Note that this relation can be rewritten in the following form

(Yo/x0) — (Yo/x0)? = rp_125 “ mod mpg,
where @i/ /k(a) = p — 1. Therefore, I,(g) = I,(Cp_l) acts non-trivially on
Yb mod Tollpg.

On the other hand, we assumed that v* < p — 1 and, therefore,
for 7 € I(iifl), we have 7(') = . But @ > p — 1 and this implies
I,(é?_l) = I,(Ca,) c %Y, Therefore, any 7 € I,(Cp_l) acts trivially on
(7 — o9(7")) mod xomp = (0, ..., Yy) mod zompg. The contradiction.

3.5. Proof of estimate b) of Theorem 3.1. Suppose L € L], is
given in notation of Subsection 2.3 b). By (3.1) we must prove that
I,(CU) acts trivially on H = Vj(£) if v > 1.

Let v* be the maximal such that I,(CU*) acts non-trivially on H.

Assume that v* > 1. Choose r* € (1,v*) such that r* = m/(q — 1),
where m € N, g is a power of p and r*(1 — 1/q) > 1. Consider the
appropriate field isomorphism « : L — K’ and its extension to Ky, =
K., Let xy = k(zo) and 7 = (r],...,7) = k(7). If

sep* ’ s

'p p
r r
1) = p 1 s - p
H —{7’ mod z, mp | ( et /pbs) =7 (0" "94) mod z mR}
x x
0 0

then for any v > v*, I,(Cv,) acts trivially on H'.
Note that the assumption 7*(1 — 1/¢) > 1 implies that xér*(q_l) €
romp and for all 1 < i < s,

D 401 \P
ri _ (o) »
= mod zymp
pb; /qpb;
Lo Lo

Therefore, 7 + 97 induces Aut{-K,,-equivariant isomorphism of H’
and H. / )

If " > 0 is such that px//kc(v') = v* then v' > v* and I,(C”,) = I,(C” )
acts trivially on H' but not on H. The contradiction.

3.6. The example in Subsection 2.4 shows that for all v # 0, I,(Cl ) acts
non-trivially on h° € V[y] = V*(L[7]). Therefore, the estimate from b)
is sharp.
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4. A CONSTRUCTION OF MODIFICATION OF BREUIL’S FUNCTOR.

Generalize slightly the initial data from Section 2 as follows.

Let W = W(k)[[u]], where u is an indeterminate. Denote by o the
automorphism of W (k) induced by the p-th power map on k and agree
to use the same symbol for the continuous extension of o to W such
that o(u) = uP. Denote by N : W — W the unique continuous W (k)-
differentiation such that N(u) = —u. We denote by S the divided
power envelope of W with respect to the ideal (u + p).

4.1. Breuil’s functor. We work with Breuil’s theory of semi-stable
p-adic representations of 'y = Gal(K/K), [14]-[16]. This theory al-
lows to construct I'g-invariant lattices in semi-stable Q,[I'x]-modules
with Hodge-Tate weights from [0,p). The construction is done via
Breuil’s functor S,_; — MI'), where S,_; is a suitable category
of free S-modules M with filtration by a submodule F(M) and ad-
ditional structures involving o-linear morphisms ¢ : F(M) — M
and differentiations N : M — M, [16], Subsection 2.2. The objects
of §,_1 satisfy the properties similar to those from the definition of
the category L£* from Subsection 2.1. Breuil’s functor appears in the
form M — Hompg, n(M, Ast), where Ay is the ring of semi-stable
p-adic periods [14], Subsection 3.1. Note that Ay, is provided with
the appropriate S-module structure, filtration, morphisms ¢ and N,
and I'g-module structure. The notation Homp, y means the set of
all S-linear homomorphisms compatible with filtrations and the mor-
phisms ¢ and N. Breuil’s theory allows also to construct crystalline
representations of I'x with HT weights from [0, p) by the use of the
appropriate subcategory S;”; of S,_1. (The objects of ;" come from
the Fontaine-Laffaille modules with filtration of length p.)

Similarly to the Fontaine-Laffaille theory the Breuil theory perfectly
describes all I'g-invariant lattices of semi-stable representations with
HT weights from [0, p — 2] but does not give generally all such lattices
for representations with weights from [0, p).

4.2. Modification of Breuil’s functor. In Subsection 4 of [11] we
constructed a modification of Breuil’s functor which allows us to con-
struct all Galois invariant lattices and study all subquotients modulo
p of semi-stable representations with weights from [0, p). We shall give
below a brief explanation of our construction from Subsection 4 of [11]
together with a modelled example.

4.2.1. As a first step, we prove that Breuil’s category of filtered S-
modules §,, ; can be replaced by a similar category L7 of free filtered
W-modules (M, F(M)) with o-linear maps ¢ : F(M) — M and
differentiations N : M — M ®y,.S. Then we define a torsion analogue
L' of the category £/. As a result, we can use Breuil’s functor in
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the form V' : M + Homp, n(M, Ag00), where M € L' and Ag o
is a torsion analogue of Fontaine’s ring of semi-stable periods, [14],
Subsection 3.1. Note that £’ contains the full subcategory £* whose
objects are subquotients of objects of £/ and this subcategory is strictly
smaller than £'. This is very special feature of “semi-stable” theory:
if we start with the subcategory Sy, then the appropriate categories

L and LS coincide. Denote the restriction of V! to £ by V/*.
Following general formalism we prove that £' is special pre-abelian
and there is a concept of p-divisible object in £’ (just mimic Tate’s
definition of p-divisible groups in the pre-abelian category of group
schemes). Such p-divisible objects will be called p-divisible groups if
there is no risk of confusion. Then the objects of £/ can be recovered
as “Tate’s modules” associated with p-divisible groups in £'. In partic-
ular, a p-divisible group in £! is inductive limit of objects from £/, As
we have just noted, there is no similar problem for the appropriate sub-
category L' of “crystalline” filtered modules in £': any such module
comes as a subquotient of a “crystalline” module from éfr c L’

4.2.2. f M = (M,F(M)) € L' then it is called multiplicative if M =
F(M) and etale if F(M) = uP~'M. As usually, any M € L' has
a unique maximal etale subobject (¢ : M* — M and a unique
maximal multiplicative quotient object (/™ : M — M™. We call
M € L' unipotent if M™ = 0.

By compairing V* and the functor V* from Subsection 2.3 we deduce
that V! is fully faithful on the subcategory £“* of unipotent objects of
L'. Quite oppositely, if M € L, pM =0 and

Oo— M4 —M-—M"—0

is the standard short exact sequence with unipotent M" and multi-
plicative M™, then the corresponding exact sequence

0 — V{(M™) — VI (M) — VI(M™) — 0
has a functorial splitting in MI'j.. Denote the appropriate splitting
maps by © : V{(MY) — V{(M) and © : VI (M) — VH(M™).

Example. Let A.. be Fontaine’s crystalline ring. It is the p-adic clo-
sure of the D P-envelope of W(R) with respect to the ideal ([zo] + p).
Let F(A.,) be the (p—1)-st divided power of ([zo] +p) and ¥ : A, —>
A, be the map induced by ¢ : R — R. Set ¢ = 9/p*~'. No-
tice that A., is provided with the natural continuous I'x-action. Then
Ayq = A, /pA. is provided with induced filtration F(A..;), mor-
phism ¢ and I'k-action, and we obtain A1 = (A1, F(Aer1), @) € z;
by defining the W;-module structure on A..; via u +— [zo].

If A,; is Fontaine’s ring of semi-stable periods then A,; is obtained
from A, in the same way as R, was obtained from R® in Subsections
2.2 and 2.3. Therefore, if £ € L' and pL = 0 then we can illustrate
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the splitting phenomenon by studying the abstract module Vy(L£) =
Hong(ﬁ, Acr1). Even more, we can treat £, as a full subcategory of

L' and then for £ € L, Vo(L) = VY(L) even as Galois modules.

= =cr?

From the definition of A, it follows that A..1 = (R/xf)[T1, T, . .],
where for all i > 1, T; comes from the divided powers 7, ([xo] + p)

and TP = 0. Let J be the ideal in A1 generated by T12 and T; with
i > 2. Then chl = Aya1/J = (R/z()T1 @ (R/xf) is provided with
the induced filtration F(Ag.) = (R/25)Ty & (#2 ' R/2?) and o-linear
© F(ﬁcm) — Zcr,l such that gp(a:g_l) =1-T) and p(T}) = 1.
This gives the object .Zml in E; together with the natural projection
Jera : Aerg — .Zcm. Using that ¢(J) = 0 we obtain that j..1. induces
the identification Vy(L) = Hom;;(ﬁ, Auri).

Consider L[y] € L}, from Subsection 2.4.

Then we have the following standard exact sequence

0— Ly — L] —=>Ly1—0

where Lo = (Wilo, u?"'Wily, ¢) is a simple etale subobject in L[] and
L,—1 = (Wili, Wily, p) is its simple multiplicative quotient object.
Consider the corresponding short exact sequence of F,[I'x]-modules

0 — H, y — H— Hy—0

where H,—1 = Vo(L,-1), H = Vo(L[Y]), Ho = Vo(Ly). Note that
Hy = H, 1 ~F, are trivial I'g-modules.

Lemma 4.1. For any « € R, there is a unique r*(a) € Rmod ) such
that r*(a)p/xg(p_l) —r*(a) = amod z{ R.

Proof. Tt follows from the congruence A? — A = az,” mod R, where
A=r*(a)z,” € FracR. O

Now direct calculations show that:

o Hy = Hong(/lo,/lcm) consists of h : lg — r_1T7 + r9 such that
ro = —r_1 = f, where f, runs over all elements of F, C R/xf;

e H, , = Hong (Ep,l,.,zl/c,.,l) consists of h : I} — r_1T} + o such
that ro = r*(f1) and r_y = —(r*(f1) + f1), where f; runs over F;

o H = Homg: (L[], Aer.1) consists of
h:(lo, 1) = (=foTt + fo, 7111 + 710),

where ro = —(r_y + f1) =r*(f1) — r*(wpfo/xg(p_l)) and fo, f1 € Fp;

e the splitting O is defined via the submodule ©(Hy) of H consisting
of h € H such that f; = 0.
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Let A2, = {riTy + 719 | =1 = =79} C Agy with the induced
filtration and the morphism ¢, and denote by ASM the appropriate
object of zz Then

(4.1) O(Hy) = Homg- (L[], A% )

cr,1
Remark. Relation (4.1) determines the splitting © for any £ € L, .

4.2.3. For M € £/ let M’ € £* be such that pM’ = M and let
C, = Cokerp|py : M — M, K, = Kerp|ap : ./\/l; — M.

Consider the following sequence of objects and maps in ML,

VI 25 VI Y2 i) VS v vy 25 vt
Then:
— O VI(K,) o VII(C,) 00 =0;
— I'g-module V/H(M) := Ker(© o VI(K,))/Im (V/H(C,) 0 ©) does
not depend on a choice of M’;
— VM) = VM), VI(M™) = VI (M™);
— there is a canonical epimorphism V/*(i¢t) : VI{(M) — V(M.

Definition. The modification of Breuil’s functor aift LT — CMTI'x
is induced by the correspondence M > (V/H(M), VIH(M), VIL(ie)).

Example. Having in mind that A.. is related to the D P-envelope of
W (R) we can describe explicitly A..o = A, /p? A, and similarly to the
case of A, introduce an appropriate simpler object A, 2 as follows:

— the elements of Ecr,g are written in the form
[7_1]T1 + [ro] + plri],

where 7_y,7 € R/xh and 7y € R/x3’; the operations are induced by
those on the Teichmuller representatives of r_1, rg,r; via the relations
pT = [xo]P and p* = 0;

— the W-module structure on gmg is induced by the W (k)-algebra
morphism W — W(R) such that u — [zo] + p;

— F(Ae2) is generated over W(R) by fi1 = Ty and fo = [z0]P! —
plaol’~?;

—¢: F (ECT,Q) — EM is uniquely determined by ¢(f1) = 1+ [zo]P
and o) = T +1.

Note that pjcr,g = .Zcm.

Consider again £[y] € £’ from Subsection 2.4. Choose £ € L

such that pL£" = L[y]. For simplicity assume that the corresponding
W-module is (W /p?)ly & (W/p?)l;. In this case C, : L — L is just
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the natural projection £ — L'/pL’ = L and K, : L, — L' is just
the natural embedding £ = pL" — L'. Therefore,

o Ker(© o Vy(K,)) appears as the kernel of the map

Vo(L!) — Vo(L) [pVo(L) = Wo(L) = H -2 H,
and equals Homp (L', A2 ,) C Homp (L', .Zcr,g) =Vo(L).

cr,2

o Im(Vy(C,) 0 ©) appears as the image of the map
Hy -2 H = pVy(L) C Vo(L')
and equals Hompg (L', pAY ,) C Hompg (L', gcr72).

cr,2
hd ijt(ﬁ) = HOH];; ('67 Agr,Q pA(chr,Z)‘

Note that the correspondence
[ro mod aB]Ty + [ro] + plr1] — (ro + xfr1) mod zhmp

determines epimorphic map A% , /p.A° , — R in the category z; and

cr,2 cr,2

this map induces isomorphism of I x-modules V/*(£[4]) and V*(L[4]).

4.3. Properties of modified functor. The following property was
our main target.

Theorem 4.2. éT/ft 15 fully faithful.

Proof. By devissage it will be sufficient to verify this statement on
the level of the subcategories of killed by p objects. The corresponding

. 5o, ft . . .
restriction of CV" is equivalent then to the functor CV* from Subsection

2 (cf. also the example in Subsection 4.2.3) but the functor CV is fully
faithful, cf. Subsection 2.4. O

Suppose V' is a finite dimensional vector space over Q, with contin-
uous I'k-action and H a I'g-invariant lattice in V.

Corollary 4.3. If V is semi-stable (resp., crystalline) with HT weights

from [0, p) then the higher ramification subgroups F(Kv) act trivially on

H/pH for allv>2—1/p (resp., v >1).

Proof. As it was noted in Subsections 4.1-4.2, Breuil’s functor allows
us to obtain a Galois invariant lattice Hy in V' in the form H, =
l'gﬂ/t(/\/ln), where { M, },>0 is a p-divisible group in the category £/,

Then H, = I&Iﬂjf t(M,,) is again a Galois invariant lattice in V. (Use

that the p-divisible group {V/},5¢ is isogeneous to {V(M,,)}nso, cf.
Subsection 4.2.3.) We can assume that H; D H D pH D p™H; with
some m € N. Then by Theorem 4.2 there is a suibquotient modulo p,
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M € LI of My, such that CV' (M) = (H/pH, VIH (M), VIL(iet)).
Therefore, the I'x-module H/pH belongs to the image of the functor
V* and we can apply Theorem 3.1a). If V is crystalline then M € £/!
and our assertion follows from Theorem 3.1b). g

Remark. If in the above Corollary V' has HT weights from [0, A],
where 2 < A < p— 2. Then F(Kv) acts trivially on H/pH for all v >
1+ A/(p—1) — 1/p in the semi-stable case and for v > A/(p — 1) in
the crystalline case. These ramification estimates have been proved in
[24, 23, 7] and can be also obtained via methods from Subsection 3.

Let CMI'Y' ., resp., CMI'{", be the full subcategory in CMI' ) con-

sisting of CV*(E) where £ runs over the family of all objects of the
category L*, resp., L.

Consider the simple objects F; € CMI'{"; C CMI" ‘itK such that for
j=0,Fy=(F,,F,id) and for 1 <j <p—1, F; = (F,(4),0,0), where
F,(j) is the j-th Tate twist. (The objects Fy and F,_; have already
appeared in Subsection 2.4.)

Corollary 4.4. a) If j; > js then Extomrer, (Fj1, Fjn) = 0.
b) If j1 =0 or jo = p — 1 then Exteyrsr, (Fj,, Fj,) = 0.

Proof. This follows from the appropriate statements in £, and L. As
a matter of fact, the cases j; = 0 or jo = p— 1 are just the existence of
a maximal etale subobject and a maximal multiplicative quotient. In
the case a), the appropriate statements in L. are just easy exercises
or one can use very general approach from Subsection 1.5 of [11]. O

Remark. An analogue of property a) for CMI’f i 1s false because there

are appropriate non-trivial extensions in the category L*. Nevertheless,

there is a chance to have such analogue in smaller category CMF%% of
. ot

the objects CV' (L) such that £ € L£/'[1] := {£ € L™ | p£L = 0}. A

partial evidence for this is given in Subsection 5.5 below.

5. GENERALIZATION OF THE SHAFAREVICH CONJECTURE

As earlier, p is a fixed prime number, p > 2. Suppose k = F,,
K =W(k)[1/p], ML'j; and MI', are the categories of Z,-modules with
continuous action of I'x and, resp., I'y. Choose an extension of the
p-adic valuation to Q and use it to identify I'x with a subgroup of T’ Q-

5.1. The category MI{;”. The objects of the category MI'™ are
the pairs Hg = (H, H,,) such that

e H € MTI'j is unramified outside of p;
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o H, = (Her, H, j) € CMI'% — the full subcategory in CMT ;- of
the objects of the form E'T/ft(ﬁ), where £ € LI

=ecr
L4 H|FK = Hcr-

e morphisms in MI')®" are compatible morphisms of Galois modules.

Clearly, MI'G*" is a special pre-abelian category.

Let m%’cr[l] be the subcategory in M@W consisting of all Hy =
(H, H.,,) such that pH = 0. Denote by Q. (p) the field-of-definition of
all H € MI'y such that Hy = (H, H,) € MI'3™[1]. In other words,
7 € Gal(Q/Q.(p)) iff T acts trivially on the first components H of all
Hg € ML 1].

Let Ho = {(H™, ﬁc(f))}@o be a p-divisible group in MI'G™". Then

H ={H™},0 is a p-divisible group in ML,
Proposition 5.1. If Q..(p) is totally ramified at p then there are p-
divisible groups H = Ho D H1 D -+ D Hp1 D H, = 0 in ML such
that for all 0 < i < p, H;/Hi11 is the product of several copies of the
Tate twist Q,/Zy(i) of the trivial p-divisible group Q,/Z,.

Proof. We have Gal(Q.(p)/Q) = Gal(Q..(p)K/K). Therefore, we can
apply local results about Galois modules from CMI'{")c to the objects
of the category MI';”[1]. In particular, the tamely ramified part of
Gal(Q.r(p)K/K) comes from Gal(Q((,)/Q) where (, is a primitive p-
th root of unity. (Indeed, it is a quotient of prime to p order of the
Galois group of the maximal abelian extension of QQ unramified outside
of p.) Therefore, any simple subquotient of (H(1), I:fc(,})) € MG comes

from simple subquotients F;, 0 < j < p, of oy (cf. Subsection 4.3 for
the definition of F;). It remains to apply Corollary 4.4 and Theorem
A.1 from Appendix. O

5.2. The category m@St. The objects of the category m@st are
the pairs Hg = (H, Hy) such that

e H € MTI'j is unramified outside of p;

o H, = (Hy, H°,j) € CMF?;“ — the full subcategory in CMT .
consisting of E'T/ﬁ([,) such that £ € £

o Hip, = Hy;

e morphisms in M@St are compatible morphisms of Galois modules.

Clearly, Mﬁst is a special pre-abelian category.
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Let mgSt[l] be the subcategory in M@St consisting of all Hy =
(H, Hy) such that pH = 0. Denote by Q(p) the field-of-definition of
all H € MLy such that Ho = (H, Hy) € MI%™[1].

Let Ho = {(H™, HE)} oo be a p-divisible group in MIG*. Simi-
larly to Proposition 5.1 we obtain the following property.

Proposition 5.2. If Qu(p) is totally ramified at p then there are p-
divisible groups H = Ho D Hi D Hy in Mg such that Ho/H, is the
product of several copies of Q,/Z,, Ha is the product of several copies
of (Q,/Z,)(p — 1) and all simple subquotients in Hy/Ha come from
objects F; = (Fp(5),0,0) with 1 < j <p—2.

5.3. General criterion. Suppose X/Q is a projective variety, p is a
prime number and N € N. Then V = HJ(Xg,Q,) is a finite dimen-
sional Q,-vector space with continuous I'g-action.

Proposition 5.3. Suppose there is a filtration of Q,['g]-modules
V:%D%D"'DVNDVN_H:O

such that for all i, V;/Viy1 =~ Q,(4)*, where s; = 0 and Q,(i) is the
Tate twist. Then h**(Xc) =0 ifa+b= N and a # b.

Proof. The relation between the etale and de Rham cohomology of X
implies that h*(X¢) = s,. Choose a prime [ # p such that the variety
X has good reduction modulo /. Then the corresponding Frobenius
o; acts on V with eigenvalues A\ such that |[A\| = (™/2. But for any i,
o; acts on Q,(i) via the multiplication by . Therefore, h®*(Y¢) with
a+b = N can be different from 0 only if 1¢ = [V/2. O

5.4. Crystalline case. Suppose X has everywhere good reduction.
Consider Qs[I'g]-module V' = H}, (X3, Q5). All subquotients of V' come
from appropriate filtered modules associated with de Rham cohomol-
ogy of X via Breuil’s functor. Therefore, any finite subquotient H of V/
appears as the first component of an appropriate object Hg = (H, H;)
of the category Macr. In particular, if T is a Galois invariant lat-
tice in V' then the 5-divisible group {7'/5"},>0 appears as the first
component of the appropriate 5-divisible group in macr. Therefore,
part b) of Theorem 0.2 is implied by the following Proposition. (This
Proposition was stated without proof in the end of [7].)

Lemma 5.4. Modulo GRH (Generalised Riemann Hypothesis) the field
Qer (D) is totally ramified at 5.

Proof. Because the higher ramification subgroup Fg) acts trivially on

Q. (5) the normalized discriminant of any subfield L in Q.,(5), which is
finite over Q, is less than 25 < d3,,, cf. [25]. Here for N € N, d, is the
Odlyzko estimate for the normalized discriminant of algebraic number
fields of given degree N under GRH. Therefore, [Q..(5) : Q] < 340.
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The maximal abelian extension of Q in Q..(5) equals Q((s5), where
(95 is a 25-th primitive root of unity. Let L, be the maximal abelian
extension of L; inside Q.. (5). The class number A(L;) = 1 implies that
L, is totally ramified at 5 over Q and Ly/L; is a 5-extension. Because
the total degree is less than 340 we have [Ly : L] < 5 and one can

see that Ly = L;(v/2 ++/5). Then the maximal upper ramification
number of this field extension is 1 and the maximal lower number is 8,
therefore, the normalized discriminant of Ly equals 21.6288... < dj4,
cf. [25]. This implies that h(Ls) = 1, the maximal abelian extension L
of Ly inside Q.,(5) is totally ramified at 5 and Ls/Ls is a 5-extension.
But [Ls : Lo] < 3 implies that Ly = Lo. O

Remark. a) For part a) of Theorem 0.2 take V = H?*(Xg, Q5). Then
the corresponding ramification estimates are better, cf. Subsection 4.3.
As a result, one can use unconditional Odlyzko estimates to find that

all modulo 5 subquotients of V are defined over Q((s, v/Cs + ¢ 1), cf.
[7], Subsection 7.5.1, where this field was denoted by Q(5, 3).

b) Unconditional Odlyzko estimates are still sufficient to prove that
h*(X¢) = h'(Xc), when X has everywhere good reduction and is

defined over Q(v/=3), Q(v/—1) or Q(+/5), cf. Section 7 of [7].

5.5. Semi-stable case. Suppose X has semi-stable reduction mod-
ulo 3 and good reduction modulo all primes I # 3. Consider V =
H?Z,(Xp,Qs3) and proceed similarly to Subsection 5.4. We need the
following lemma.

Lemma 5.5. Q(3) is totally ramified at 3.

Proof. For a complete proof cf. [11], Lemma 5.2. Note that the upper
estimate for the normalized discriminant of Qg (3)/Q is 3371/ < dass,
therefore [Qq(3) : Q] < 238. Because K; = Q(v/3,exp(27i/9)) is
contained in Qg(3), the group Gal(Qg«(3)/Q) is soluble. Then the
proof that Q4 (3) = K; requires calculations with fundamental units
inside K. Namely, we need that:

e the class number of K is 1;

e for any unit u € K7 \ K7, Ju ¢ Qqu(3).

The both properties were verified via the computing package SAGE,
cf. www.sagemath.org and Appendix B of [11]. O

Note that under the condition that Qg (p) is totally ramified at p we
can identify m@ﬁ with full subcategories in MI'y and in CMI" 0t

Apply Proposition 5.2. Theorem 0.1 will be proved if we show
that the 3-divisible group H;/Hs is the product of 3-divisible groups
(Q3/Z3)(1).

This would follow from Extm%,st[l] (F1, F1) = 0. Most natural way is

to verify this in the category CMF?:% or, equivalently, in the category
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L] = {£ € £’ | p£ = 0}. Here we come again to the principal
difference between the theories of torsion crystalline and torsion semi-
stable Galois modules. In the semi-stable case we can efficiently work
only with the Galois modules obtained from the objects of L'[1] =
{L € L' p£ = 0} (which can be identified with £*), and this category
is strictly bigger than £7'[1]. (In the crystalline case £, = LIt cf.
Subsection 4.2.1.)

If £; € L' is such that V/(£y) = Fi, then Extpoy(Ly, L) # 0
and the question about Extgse;;(L1, £1) = 0 is still open. We did not
resolve this issue in [11] but treated it in the following simpler situation.
Remind that all points of the Galois modules coming from m%“ are
defined over relatively small field KQg(3). This allows us to replace the
category L'[1] by a smaller one Lg[1], where Exte (L1, £1) = Z/3%
is generated by one object £1; (we use in [11], Subsection 5.4, slightly
different notation). Then we prove that any object of Lg[1], which
has only subquotients of the form L, is isomorphic to the product of
several copies of £1 and L.

Now come back to our 3-divisible group H; /Hs viewed as a 3-divisible
group in the category CMTI" 2{%. If any subquotient of this group con-
tains Hy; = CV*(L41) then we apply the devissage from Appendix A to
deduce the existence of a 3-divisible group H = {H™},5¢ in CML'%™
such that H") = H;;. The height of this 3-divisible group is 2 and
it determines a 2-dimensional semi-stable Q3[I"x|-module. But the ex-
istence of such 2-dimensional representation contradicts to Theorem
6.1.1.2 from [14]. Therefore, all £ € L£[1] with simple subquotients
isomorphic to £; are just the products of copies of £;. In particular,
Ext gy (L1, £1) = 0 and Hy/H, is the product of copies of the trivial
3-divisible group (Q3/Zs)(1).

Remark. The situation from Theorem 0.1 is quite exceptional. For
semi-stable Q,[I"x]-modules with p > 3 and 2 < N < p, the appropri-
ate estimates for normalized discriminants of the fields-of-definition of
their subquotients modulo p are bigger than the appropriate Odlyzko
estimates (even under GRH). In addition, any explicit calculations with
elements of algebraic number fields of degree bigger, say, 100 are al-
ready very difficult (if possible).

APPENDIX A. FORMALISM OF PRE-ABELIAN CATEGORIES

This is expository version of Appendix A of [11].

A pre-abelian category C is an additive category such that any its
morphism has kernel and cokernel. A morphism u of C is STRICT if
the canonical map Coim u := Coker Keru — Im u := Ker Cokeru
is isomorphism. Then 0 — A —+ B — C' — 0 is a short exact
sequence in C if u is strict monomorphism, v is strict epimorphism and
Cokeru = Ker v.
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A pre-abelian category C is SPECIAL if the group of classes of equiv-
alent short exact sequences is functorial in both arguments and there
are standard 6-terms Hom — Ext exact sequences.

A typical example of special pre-abelian category is the category
FMody of free modules over a ring R with filtration F(H) C H.
The morphisms Hompyieq,, ((H, FI(H), (Hy, F(Hy)) are morphisms f :
H — H, of R-modules such that f(F(H)) C F(H;). The morphism
f is a strict monomorphism iff H,/f(H) has no R-torsion and f is a
strict epimorphism iff f(H) = Hy and f(F(H)) = F(H;).

Denote by C(1) the full subcategory of killed by p (i.e. such that
pida = 0) objects A of a special pre-abelian category C.

Mimicing Tate’s definition [31] introduce the concept of a p-divisible
object (or just p-divisible group if there is no risk of confusion) in C.

Suppose C = {C™},.5; is a p-divisible group in C. The following
result provides us with very convenient devissage technique in C. (For a
complete proof of these statements see Theorems A.1 and A.2 of [11].)

Theorem A.1l. a) Suppose
0— D —CY D, —0

is a short exact sequence in C(1) and Exteny(D1, D2) = 0. Then there
is a short exact sequence of p-divisible groups

0—C —C—0C,—0
such that C’fl) = D, and Cél) =D,.

b) Suppose Extey(CH,CW) =0 then any p-divisible group D in C
such that DY ~ CW s isomorphic to C.
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