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Abstract. Suppose K = W (k)[1/p], where W (k) is the ring of
Witt vectors with coefficients in algebraically closed field k of char-
acteristic p 6= 2. We discuss an explicit construction of p-adic
semi-stable representations of the absolute Galois group of K with
Hodge-Tate weights from [0, p). This theory is applied to projec-
tive algebraic varieties over Q with good reduction outside 3 and
semi-stable reduction modulo 3.

Introduction

In this expository paper we discuss the following result in the spirit
of the Shafarevich conjecture about non-existence of non-trivial abelian
schemes over Z.

Theorem 0.1. If Y is a projective algebraic variety over Q with good
reduction outside 3 and semi-stable reduction modulo 3 then h2(YC) =
h1,1(YC).

In particular, above Theorem implies that there are no such (non-
trivial) abelian varieties Y (first proved in [13, 27]). Our result also
eliminates a great deal of other varieties, e.g. all K3-surfaces.

The proof of Theorem 0.1 is given in [11] and is based on a:
— study of torsion subquotients of the Galois module H2

et(YQ̄,Q3);
— modification of Breuil’s torsion theory of semi-stable p-adic rep-

resenations with HT (Hodge-Tate) weights from [0, p − 1] over W (k),
where k is algebraically closed field of characteristic p;

— formalism of pre-abelian categories (short exact sequences, 6-
terms Hom−Ext exact sequences, p-divisible group objects, devissage);

— study of the group of fundamental units in Q( 3
√

3, e2πi/9) (via the
computing package SAGE).

The strategy of the proof is very close to the strategy used in the
following “crystalline case” of the Shafarevich conjecture [23, 7].
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Theorem 0.2. Suppose X is a projective algebraic variety over Q with
everywhere good reduction. Then

a) h1(XC) = 0, h2(XC) = h1,1(XC) and h3(XC) = 0;
b) h4(XC) = h2,2(XC) under Generalized Riemann Hypothesis (GRH).

Part a) of this Theorem was obtained in [7] by studying the finite
subquotients of the Galois modules H i

et(XQ̄,Q5) with 1 6 i 6 3. These
Galois modules are unramified outside 5 and their local behaviour at 5
is described by the Fontaine-Laffaille theory [19] of p-adic torsion crys-
talline representations with HT weights from [0, p−2]. The approach in
[7] is essentially similar to the approach from [23] but Fontaine consid-
ers etale cohomology with coefficients in Q7. (Of course, these results
would be not possible without great achievements of Fontaine’s theory
of p-adic periods.)

Part b) was proved by the author in [7]. The proof requires the study
of the Galois module H4

et(XQ̄,Q5), where the tools of the Fontaine-
Laffaille theory are not sufficient. For this reason, we developed in [6]
a modification of the Fontaine-Laffaille theory for crystalline represen-
tations with HT weights from [0, p− 1]. Note that our modification of
Breuil’s theory works also in the context of crystalline representations
and can be applied to reprove part b) of Theorem 0.2 (and similar
results for varieties over Q(i),Q(

√
−3) and Q(

√
5) from [7]). The ap-

propriate comments will be given in due course below.
The constructions in [11] are very technical and we just sketch and

discuss their basic steps. Most of them can be illustrated by earlier
results related to the Shafarevich Conjecture, cf. Subsection 1.

In Subsections 2–4 we work with a local field K = FracW (k), where
W (k) is the ring of Witt vectors with coefficients in algebracally closed
field k of characteristic p, p > 2. Let K̄ be an algebraic closure of K
and ΓK = Gal (K̄/K). In Subsection 2 we outline the construction of
the functor V∗ from an appropriate category of filtered modules to the
category of Fp[ΓK ]-modules. This construction is based on the intro-
duction of a modulo p “truncated” version of Fontaine’s ring of p-adic
semi-stable periods. We associate to V∗ the functor CV∗ with values in
the category of co-filtered Fp[ΓK ]-modules and prove that this functor
is fully faithful. In Subsection 3 we obtain the ramification estimates
for the Galois modules H from the image of V∗: if v > 2 − 1/p then

the higher ramification subgroups Γ
(v)
K act trivially on H. We also

obtain the ramification estimate for the Galois modules which are as-
sociated with the modulo p subquotients of crystalline representations
with HT weights from [0, p) and prove that both estimates are sharp.
The methods we use here are close to the methods from [8, 9, 10]; one
can use also our constructions to show that the estimates from [24] are
sharp if e = n = 1. In Subsection 4 we explain the construction of our
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modification of Breuil’s functor Vft. In fact, it is very close to the con-
struction of the modification of the Fontaine-Laffaille functor from [6]
but it can be developed in a simpler way due to advantages of Breuil’s
theory. One of main features of this construction is that on the level
of modulo p subquotients, Vft essentially coincides with the functor V∗
from Subsection 2. This gives the ramification estimates for modulo
p subquotients of semi-stable and crystalline representations with HT
weights from [0, p). Finally, in Subsection 5 we outline the proofs of
Theorems 0.1 and 0.2.

1. The Shafarevich conjecture

Conjecture (I. R. Shafarevich, 1962). There are no projective alge-
braic curves over Q of genus g > 1 with everywhere good reduction,
[29].

The case g = 1 was considered by Shafarevich himself. He has just
listed explicitly 22 elliptic curves over Q with good reduction outside 2
and verified that all these curves have bad reduction at 2. Later his PhD
student (Volynsky) studied the case of curves of genus 2. This approach
resulted in enormous calculations and was not published. In both cases
the approach was based on the study of canonical equations for these
curves. It became clear later that one should study the problem in a
more general setting.

Conjecture. There are no abelian varieties A over Q of dimension
g ≥ 1 with everywhere good reduction.

This statement is easier to approach. The existence of such abelian
variety would have provided examples of non-trivial p-divisible groups
over Z (for all prime numbers p). The question about the existence of
such p-divisible groups was asked by J.Tate in [31]. On this way the
conjecture was proved in [21, 3] in 1985. Main features of used methods
will be described below.

1.1. Small values of g. In [1, 2] it was proved that any 2-divisible
group over Z of height h 6 6 is isogeneous to the trivial 2-divisible
group. This gave the cases g = 2 and g = 3 of the Shafarevich conjec-
ture. The method can be explained as follows.

Suppose G is a f.f.g.s. (finite flat group scheme) over Z such that
2idG = 0. Then

a) if the order |G| = 2 then G is either etale (Z/2)Z = Spec(Z⊕ Z)
or multiplicative µ2 = SpecZ[x]/(x2 − 1) f.f.g.s. over Z, [31];

b) if |G| = 4 and G = SpecA(G) is not a product of f.f.g.s. of order
2 then there is a short exact sequence of f.f.g.s.

0 −→ µ2 −→ G −→ (Z/2)Z −→ 0
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and A(G) = A(µ2) ⊕ Z[i], [1]. In particular, A(G)Q 6= Q ⊕ K, where
[K : Q] = 3. (Use that A(G)Q is etale over Q and there are no cube
field extensions K/Q unramified outside 2.)

c) there are similar short exact sequences for f.f.g.s. G over Z of order
2n with n = 3, 4, 5, 6,

0 −→ µa2 −→ G −→ (Z/2)bZ −→ 0,

where a + b = n, [2]. This statement is highly non-trivial because the
Galois group of the field-of-definition Q(G) of Q̄-points of f.f.g.s. of
order 2n is not generally soluble if n > 4. On the one hand, we used
the Tate formula for the discriminant of A(G) from [31], v2(D(A(G)) =
d2n, where d = dim(G⊗F2) (it implies that v2(D(A(G))) 6 192 because
we can assume that d 6 3 by switching, if necessary, from G to its
Cartier dual). On the other hand, we used the Odlyzko lower bounds
for the minimal discriminants of algebraic number fields, cf. [30, 18, 25];

d) in the special pre-abelian category of f.f.g.s. G over Z such that
2idG = 0, one has

Ext(µ2, (Z/2)Z) = Ext((Z/2)Z, (Z/2)Z) = Ext(µ2, µ2) = 0.

Therefore, the above exact sequences for G and devissage in the pre-
abelian category of finite flat 2-group schemes over Z give the following
exact sequence of 2-divisible groups over Z

(1.1) 0 −→ {µ2n}an≥1 −→ G −→ (Q2/Z2)b −→ 0,

where G is of height a + b 6 6 (for more details about devissage in
pre-abelian categories cf. Appendix, especially Theorem A.1);

e) such 2-divisible group G never comes from a non-trivial abelian
scheme A over Z. Otherwise, looking at dimensions we obtain b 6= 0,
but the exact sequence of 2-divisible groups from d) splits over F2 and,
therefore, A has infinitely many F2-points. The contradiction.

The above method does not work in higher dimensions.
Indeed, suppose A is an abelian scheme over Z and G = Ker(2idA)

is a group scheme of points of order 6 2 on A. Then |G| = 22g,
dim(G⊗ F2) = g and Tate’s formula gives v2(D(A(G))1/2g) = g. Note
that A(G)⊗Q is the product of algebraic number fields (because G⊗Q
is etale) and these fields are unramified outside 2 (because G ⊗ Zl is
etale if l 6= 2). Therefore, the normalized discriminant of A(G) equals
2g and tends to infinity if g →∞.

On the other hand, if Q(G) is the field-of-definition of Q̄-points of
G, then Gal(Q(G)/Q) ⊂ SL(2g,F2) is not generally soluble if g > 2,
and the only global idea we can use in this situation is related to lower
bounds of minimal discriminants of algebraic number fields. The best
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known bounds are the Odlyzko estimates and they are given by the
tables of real numbers {dN | N ∈ N} such that if [K : Q] = N then
|D(K/Q)|1/N ≥ dN . For large N , dN ≈ d∞ ≈ 22.3; under GRH there
are better estimates {d∗N | N ∈ N} in this case d∗∞ ≈ 44.76, [30, 18, 25].

Unfortunately, an analogue of Odlyzko estimates under additional
assumption that K/Q is ramified only over 2, does not exist. Nonethe-
less, A(G) is considerably smaller than its integral closure and Tate’s
formula can be replaced by much better upper estimate for the 2-adic
valuation of the normalised discriminant of Q(G). The evidence for its
existence is illustrated in the next Subsection.

1.2. The Shafarevich Conjecture, the ordinary case. Suppose
our abelian variety A has good ordinary reduction at 2. Then:

a) G := Ker(2idA) is a f.f.g.s. over Z of order 22g;
b) there is a short exact sequence of f.f.g.s. over Z2

0 −→ Hmult −→ G⊗Z Z2 −→ Het −→ 0,

where Hmult is multiplicative and Het is etale group schemes over Z2

of order 2g;
c) because Het ⊗ W (F̄2) =

∏
j(Z/2)W (F̄2) and Hmult ⊗ W (F̄2) =∏

i µ2,W (F̄2), we have

G⊗W (F̄2) =
∑
i,j

Gij ∈ ⊕i,jExt((Z/2)W (F̄2), µ2,W (F̄2)),

where for all i, j, there are short exact sequences of f.f.g.s.

0 −→ µ2,W (F̄2) −→ Gij −→ (Z/2)W (F̄2) −→ 0;

d) the field-of-definition of geometric points of Gij over the maximal
unramified extension Q2,ur of Q2, is Q2,ur(

√
vij), where all vij are prin-

cipal units in Q2,ur, cf. Appendix by J.Tate in [26]. Therefore, for all

v > 1, the higher ramification subgroups Γ
(v)
Q2

of ΓQ2 = Gal(Q̄2/Q2) act

trivially on the field-of-definition Q2(G) of all Q̄2-points of G;

e) the triviality of Γ
(v)
Q2

-action, where v > 1, implies the inequality

|D(Q(G)/Q)|1/[Q(G):Q] < 22 (e.g. use Prop 9.4 of Ch. 1, [12]). But the
Odlyzko estimate d4 < 4 and we obtain [Q(G) : Q] < 4. Therefore,
Q(G) ⊂ Q(i), we can use devissage to obtain exact sequence (1.1) for
a = b = g and finish the proof similarly to the case of small g.

In the above discussion, the prime number 2 can be replaced by
arbitrary prime number p. If A ⊗ Fp is ordinary and G = Ker(p idA)

then for v > 1/(p− 1), the ramification subgroups Γ
(v)
Qp

act trivially on

Qp(G) and using the Odlyzko estimates we can see that for 3 6 p 6 17,

Q(G) ⊂ Q( p
√

1). This implies that G is the product of constant etale
and multiplicative f.f.g.s. over Z, the corresponding p-divisible group
of A will be just the product of several copies of trivial etale (Qp/Zp)Z
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and multiplicative {µ2n,Z}n>1 p-divisible groups over Z and, therefore,
such abelian variety does not exist.

The above case of the Shafarevich Conjecture was not published but
gave a right direction towards the proof of the general case.

1.3. The Shafarevich Conjecture, the general case. In this case
the same ramification estimates are proved in general situation [21, 5]:
if G is a finite flat group scheme over W (k), where k is a perfect field
of characteristic p, p idG = 0 and Frac W (k) = K then the higher

ramification subgroups Γ
(v)
K act trivially on the field-of-definition of K̄-

points of G for all v > 1/(p− 1).
Essentially, Fontaine found ramification estimates for any finite flat

p-group schemes over the valuation ring OL of complete discrete valua-
tion field L ⊃ Qp. His method uses the rigidity properties of p-divisible
groups defined over valuation rings and a very elegant interpretation
of Krasner’s Lemma. The methods in [3, 5] are much more compu-
tational and use Fontaine’s theory of f.f.g.s. over Witt vectors, [20].
In Subsection 3 we present an alternative proof of ramification esti-
mates. It works also equally well for the subquotients of crystalline
and semi-stable p-adic representations.

In our approach from [3, 5] we treated systematically also the case
p = 2. Here the category of f.f.g.s. over W (k) is not abelian con-
trary to the case p 6= 2, but one can still proceed with the devissage.
This gave us not only the bigger list of algebraic number fields where
the Shafarevich conjecture about the non-existence of abelian varieties
with everywhere good reduction holds. Our main idea [4] of remov-
ing the restriction to unipotent objects in Fontaine’s classification of
2-group schemes in [20] gave later a right approach to the constructions
of modifications of the Fontaine-Laffaille [6] and Breuil [11] functors.
These modifications allow us to obtain the ramification estimates for all
modulo p subquotients of representations with HT weights from [0, p).
They also provide us with the nulity of some groups of extensions in
the category of Galois modules appeared as such subquotients. As a
matter of fact, these two key ingredients resulted finally in proving
Theorem 0.1 and part b) of Theorem 0.2.

2. The functor CV∗

Let W1 = k[[u]], where u is an indeterminate. Denote by σ the
automorphism of k induced by the p-th power map on k and agree
to use the same symbol for the continuous extension of σ to W1 such
that σ(u) = up. Denote by N : W1 −→ W1 the unique continuous
k-differentiation such that N(u) = −u.
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2.1. Categories of filtered modules. Introduce the following cate-
gories:

• the category L̃
∗
0 — its objects are L = (L, F (L), ϕ), where L and

F (L) are W1-modules, L ⊃ F (L) and ϕ : F (L) −→ L is a σ-linear
morphism ofW1-modules; the morphisms areW1-linear maps of filtered
modules which commute with the corresponding σ-linear maps ϕ;

• the category L̃
∗

— its objects are L = (L, F (L), ϕ,N), where

(L, F (L), ϕ) ∈ L̃
∗
0 and N : L −→ L/upL is such that for w ∈ W1 and

l ∈ L, N(wl) = N(w)l + wN(l) (we use the same notation l for the

image of l in L/upL); the morphisms are the morphisms from L̃
∗
0 which

commute with the corresponding differentiations N ;

• the category L∗0 is a full subcategory of L̃
∗
0 consisting of L =

(L, F (L), ϕ) such that the module L is free of finite rank, up−1L ⊂ F (L)
and the natural embedding ϕ(F (L)) ⊂ L induces the identification
ϕ(F (L))⊗σ(W1)W1 = L;

• the category L∗ is a full subcategory of L̃
∗

consisting of L =
(L, F (L), ϕ,N) such that (L, F (L), ϕ) ∈ L∗0, for any l ∈ F (L), one
has uN(l) ∈ F (L) modupL and N(ϕ(l)) = ϕ(uN(l)) (we use the same
notation ϕ for the morphism ϕmodupL).

The above categories are analogs of the categories of filtered modules
from [14], Subsection 2.1.2, but we work with the category of W1-
modules. (Breuil uses modules over the appropriate divided power
envelope of W (k)[[u]]).) Note that in the context of W1-modules the
monodromy operator N can’t be defined as a map with values in L.
In [11], Subsection 1.1, we proved that N can be defined as a map
from L to L/u2pL and it appears as a unique lift of its reduction N1 =
NmodupL. (We used the existence of such lift when proving in [11]
that the category L∗ is pre-abelian; we also need this property when
defining the functor V∗ in Subsection 2.3 below.) In this paper we use
the notation N for this (modup)-map N1;

• the category L∗cr is a full subcategory in L∗ consisting of the objects
(L, F (L), ϕ,N) such that N(ϕ(F (L))) = 0.

For obvious reasons, (L, F (L), ϕ,N) ∈ L∗cr is completely determined
by (L, F (L), ϕ) ∈ L∗0. Note that the category L∗cr is very closely related
to the category of Fontaine-Laffaille modules, cf. [11], Subsection 1.3.

According to above definitions the objects of the categories L∗0, L∗
and L∗cr are filtered free W1-modules with additional structures. The
category of filtered free W1-modules is a typical example of a special
pre-abelian category, i.e. it is additive category with kernels and cok-
ernels and nicely behaving bifunctor Ext, cf. Appendix. In Subsection
1.1 of [11] we verified that L∗0, L∗ and L∗cr inherit the property to be
special pre-abelian.
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There are the concepts of etale, unipotent, connected and multiplica-
tive objects in our categories defined in the following way, for more
details cf. Subsection 1.2 of [11].

Suppose L = (L, F (L), ϕ,N) ∈ L∗.
Introduce a σ-linear map φ : L −→ L via φ : l 7→ ϕ(up−1l). The mod-

ule L is etale (resp., connected) if φmodu is invertible (resp., nilpotent)
on L/uL. Denote by L∗et (resp, L∗c) the full subcategory of L∗ con-
sisting of etale (resp. connected) objects. Then any L ∈ L∗ contains
a unique maximal etale subobject (Let, iet) and a unique maximal con-
nected quotient object (Lc, jc) and the sequence

0 −→ Let iet−→ L jc−→ Lc −→ 0

is short exact.
Note that ϕ(F (L)) is a σ(W1)-module and L = ϕ(F (L))⊗σ(W1)W1.

If l ∈ L and for 0 6 i < p, the elements l(i) ∈ F (L) are such that
l =

∑
06i<p ϕ(l(i)) ⊗ ui, set V (l) = l(0). Then Vmodu is a σ−1-linear

endomorphism of the k-vector space L/uL.
The module L is multiplicative (resp., unipotent) if V mod u is in-

vertible (resp., nilpotent) on L/uL. Denote by L∗m (resp, L∗u) the
full subcategory of L∗ consisting of multiplicative (resp. unipotent)
objects. Then any L ∈ L∗ contains a unique maximal multiplicative
quotient object (Lm, jm) and a unique maximal unipotent subobject
(Lu, iu) and the sequence

0 −→ Lu iu−→ L jm−→ Lm −→ 0

is short exact.
Note that L∗c and L∗u are abelian categories: it follows easily from

the description of simple objects of L∗ in Subsection 1.4 of [11].

2.2. The object R0
st ∈ L̃

∗
. Let R = lim←−

n

(Ō/p)n be Fontaine’s ring;

it has a natural structure of k-algebra via the map k −→ R given by
α 7→ lim←−

n

([σ−nα]mod p), where [γ] ∈ W (k) ⊂ Ō denotes the Teichmüller

representative of γ ∈ k. Let mR be the maximal ideal of R.

Choose x0 = (x
(n)
0 mod p)n>0 ∈ R and ε = (ε(n)mod p)n>0 such that

for all n > 0, x
(n+1)p
0 = x

(n)
0 and ε(n+1)p = ε(n) with x

(0)
0 = −p, ε(0) = 1

but ε(1) 6= 1. Denote by vR the valution on R such that vR(x0) = 1.
Let Y be an indeterminate.
Consider the divided power envelope R〈Y 〉 of R[Y ] with respect to

the ideal (Y ). If for j > 0, γj(Y ) is the j-th divided power of Y then
R〈Y 〉 = ⊕j>0Rγj(Y ). Denote by Rst the completion

∏
j>0Rγj(Y ) of

R〈Y 〉 and set, FilpRst =
∏

j>pRγj(Y ). Define the σ-linear morphism of

the R-algebra Rst by the correspondence Y 7→ xp0Y ; it will be denoted
below by the same symbol σ.
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Introduce a W1-module structure on Rst by the k-algebra morphism
W1 −→ Rst such that u 7→ ι(u) := x0 exp(−Y ) = x0

∑
j>0(−1)jγj(Y ).

Set F (Rst) =
∑

06i<p x
p−1−i
0 Rγi(Y ) + FilpRst.

Define the continuous σ-linear morphism ofR-modules ϕ : F (Rst) −→
Rst by setting for 0 6 i < p, ϕ(xp−1−i

0 γi(Y )) = γi(Y )(1 − (i/2)xp0Y ),
and for i > p, ϕ(γi(Y )) = 0.

Let N be a unique R-differentiation of Rst such that N(Y ) = 1.

Note that (Rst, F (Rst), ϕ,N) is not an object of L̃
∗
, e.g. ϕ is not a

σ-linear morphism of W1-modules. Nevertheless, all appropriate com-
patibilities between above introduced additional structures on Rst hold
modulo x2p

0 Rst, cf. Proposition 2.1 in [11], and we can introduce

R0
st = (R0

st, F (R0
st), ϕ,N) ∈ L̃

∗
,

where R0
st = Rstmodxp0mR and F (R0

st) = F (Rst)modxp0mR with the
appropriate induced maps ϕ and N .

In our theory R0
st plays a role of the ring Âst from the theory of

p-adic semi-stable representations [14], Subsection 3.1.1. In particular,
R0
st can be provided with continuous Galois action as follows. For any

τ ∈ ΓK , let k(τ) ∈ Z be such that τ(x0) = εk(τ)x0 and let l̃og(1 +X) =
X −X2/2 + · · · −Xp−1/(p− 1) be the truncated logarithm. Define a
map τ : Rst −→ Rst by extending the natural action of τ on R and
setting for all j > 0,

τ(γj(Y )) :=
∑

06i6min{j,p−1}

γj−i(Y )γi(l̃ogε).

Then the correspondences γj(Y ) 7→ τ(γj(Y )) induce a ΓK-action on the
W1-algebra R0

st which extends the natural ΓK-action on R and respects

the structure of R0
st as an object of the category L̃

∗
, cf. Proposition

2.2 in [11].

2.3. The functor V∗. For any L = (L, F (L), ϕ,N) ∈ L∗, consider the
ΓK-module V∗(L) = HomL̃∗(L,R

0
st). Note that in this definition we

need N to be defined slightly better than just modulo upL (we work
modulo xp0mR rather than modulo xp0R) but such lift exists and unique,
cf. Subsection 2.1. The Galois module V∗(L) can be studied via the
following method from [15], Subsection 2.3.

Let R0 = (R0, F (R0), ϕ) ∈ L̃
∗
0, where R0 = R/xp0mR, F (R0) =

xp−1
0 R0, the W1-module structure on R0 is given via u 7→ x0 and φ is

induced by the map r 7→ rp/x
p(p−1)
0 , r ∈ xp−1

0 R.
If f ∈ V∗(L) and i > 0, introduce k-linear morphisms fi : L −→ R0

such that for any l ∈ L, f(l) =
∑

i>0 fi(l)γi(Y ). The correspondence
f 7→ f0 gives the homomorphism of abelian groups pr0 : V∗(L) −→
V∗0 (L) := HomL̃∗0

(L,R0). Then, cf. Subsection 2.2 of [11],

— pr0 is isomorphism of abelian groups;



10 VICTOR ABRASHKIN

— if rkW1L = s then |V∗0 (L)| = ps.

Therefore, V∗ is exact functor from L∗ to the category of finite
Fp[ΓK ]-modules.

Introduce the ideal J̃ =
∑

06i<p x
p−i
0 mRγi(Y ) + FilpR0

st in R0
st. Then

F (R0
st) ⊃ J̃ and ϕ|J̃ is nilpotent. Therefore, we can introduce R̃0

st =

(R0
st/J̃, F (R0

st)/J̃, ϕmod J̃) ∈ L̃
∗
0, there is a natural projection R0

st −→
R̃0
st in L̃

∗
0 and for any L ∈ L∗0, HomL̃∗0

(L,R0
st) = HomL̃∗0

(L, R̃0
st). This

implies the following description of the ΓK-modules V∗(L), L ∈ L∗,

(2.1) V∗(L) =

{∑
06i<p

N∗i(f0)γi(Y ) mod J̃ | f0 ∈ V∗0 (L)

}
Note that for i > 1, it is sufficient to know the maps N∗i(f0) modulo

xp0 and this requires just the (modup)-version of N , cf. discussion in
Subsection 2.1. For future applications also notice the following two
special cases of above general description (2.1).

a) Let ΓK,1 = Gal(K̄/K( p
√
p) ⊂ ΓK . Then this group acts trivially

on Ymod J̃ and x0modxp0mR. Therefore, for any L ∈ L∗, the map
pr0 : V∗(L) −→ V∗0 (L) is isomorphism of ΓK,1-modules.

b) Suppose L = (L, F (L), ϕ,N) ∈ L∗cr. Then there is a W1-basis
l1, . . . , ls ∈ ϕ(F (L)) and integers 0 6 a1, . . . , as 6 p − 1 such that
l′1 = ua1l1, . . . , l

′
s = uasls is a W1-basis of F (L), cf. Subsection 1.4 of

[11]. Then there is a matrix A ∈ GLs(k) such that

(ϕ(l′1), . . . , ϕ(l′s)) = (l1, . . . , ls)AmodupL,

and for f ∈ V∗(L), f0 = pr0(f) and all i, we have

— f(li) ≡ f0(li) mod J̃ ;

— xai0 f0(li) ≡ f(uail) mod J̃ .

Let bi = p − 1 − ai, where 1 6 i 6 s. Then the Galois module
V∗(L) is isomorphic to the Galois module of all (r1, . . . , rs) modxp0mR ∈
Rsmodxp0mR such that

(rp1/x
pb1
0 , . . . , rps/x

pbs
0 ) ≡ (r1, . . . , rs)(σA) mod xp0mR.

2.4. The category CMΓK and the functor CV∗. Let MΓK be the
category of continuous Zp[ΓK ]-modules. The objects of the category
CMΓK are the triples H = (H,H0, j), where H,H0 ∈ MΓK are finite,
ΓK acts trivially on H0 and j : H −→ H0 is an epimorphic map in
MΓK . If H1 = (H1, H

0
1 , j1) ∈ CMΓK then HomCMΓK

(H1,H) consists
of the couples (f, f 0), where f : H1 −→ H and f 0 : H0

1 −→ H0 are
morphisms in MΓK such that jf = f 0j1.
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The category CMΓK is special pre-abelian and its objects have a
natural group structure.

Definition. Suppose L ∈ L∗ and iet : Let −→ L is the maximal
etale subobject. Then CV∗ : L∗ −→ CMΓK is the functor such that
CV∗(L) = (V∗(L),V∗(Let),V∗(iet)).

The simple objects in CMΓK are of the form either (H, 0, 0), where
H is a simple Zp[ΓK ]-module, or (Fp,Fp, id), where Fp is provided with
the trivial ΓK-action. The functor CV∗ establishes a bijection of the
families of simple objects in L∗ and CMΓK , cf. Proposition 2.8 of [11].

In particular, let L0 = (W1, u
p−1W1, ϕ) ∈ L∗cr be such that ϕ(up−1) =

1, and Lp−1 = (W1,W1, ϕ) ∈ L∗cr be such that ϕ(1) = 1. Then
CV∗(L0) = F0 := (Fp,Fp, id) and CV∗(Lp−1) = Fp−1 := (Fp, 0, 0).

The functor CV∗ is fully faithful, cf. Proposition 2.13 in [11].
By devissage the proof of this result is reduced to the fact that

for any two simple objects L′,L′′ ∈ L∗, CV∗ induces an injective map
from ExtL∗(L′,L′′) to ExtCMΓK

(CV∗(L′′), CV∗(L′)). The first group was
explicitly described in Subsection 1.5 of [11] and the corresponding
objects of CMΓK were studied in Subsections 2.5-2.8 of [11] by the use
of (2.1).

Example. One can verify that (remind that p > 2)

ExtL∗(Lp−1,L0) = ExtL∗cr(Lp−1,L0) ' k

Explicitly this isomorphism is described via L[γ] 7→ γ, where for γ ∈ k,
L[γ] = (L, F (L), ϕ,N) ∈ L∗cr is such that L = W1l0 ⊕W1l1, F (L) =
W1(up−1l0) +W1(l1 + γl0), ϕ(up−1l0) = l0 and ϕ(l1 + γl0) = l1.

Then CV∗ : ExtL∗(Lp−1,L0) −→ ExtCMΓF
(F0,Fp−1) is injective.

Indeed, for any γ ∈ k, CV∗(L[γ]) = (V [γ],Fp, j) ∈ CMΓK , where
the Galois module V [γ] is identified with the module of all vectors
r̄ = (r0, r1)modxp0mR ∈ R2 modxp0mR such that rp0 ≡ r0 modxp0mR and

(r1/x
p
0)− (r1/x

p
0)p ≡ γprp0/x

p2

0 mod mR.
Then V [γ] can be included into the short exact sequence of ΓK-

modules 0 −→ Fph1 −→ V [γ]
j−→ Fpj(h0) −→ 0, where h0, h1 ∈ V [γ]

are such that h0 = (1, α) modxp0mR, h
1 = (0, xp0) modxp0mR. Here α ∈

R is such that α−αp = γp/xp
2

0 . So, V [γ] can be described as an element
of ExtMΓK

(Fpj(h0),Fph1) via the cocycle Θγ ∈ Hom(ΓK ,Fp) such that
Θγ(τ) = (τα− α) mod mR. Clearly, Θγ = 0 iff γ = 0.

3. Ramification estimates

3.1. Ramification estimates. For any rational number v > 0, denote

by Γ
(v)
K the higher ramification subgroup of ΓK in upper numbering,

[28]. In this Section we prove the following Theorem.

Theorem 3.1. a) If L ∈ L∗ and v > 2− 1
p

then Γ
(v)
K acts trivially on

V∗(L).
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b) If L ∈ L∗cr and v > 1 then Γ
(v)
K acts trivially on V∗(L).

c) The above ramification estimates are sharp.

The proof of part a) was only outlined in Subsection 2.9 of [11]. In
Subsections 3.3–3.5 we shall give a proof based on our characteristic p
approach from [8, 9, 10]. One can also apply the methods from [24].

3.2. Review of ramification theory. The following brief sketch of
ramification theory of complete discrete valuation fields with perfect
residue field is based on the papers [17, 32, 33].

Let E be a complete discrete valuation field with perfect residue field
kE and the maximal ideal mE. Let Esep be a separable closure of E.
Denote by vE a unique extension of the normalized valuation on E to
Esep.

Let IE be the group of all continuous automorphisms of Esep which
are compatible with vE and induce the identity map on the residue
field of Esep. If F is a finite extension of E in Esep then we always
assume that Fsep = Esep and, therefore, we have a natural identification
IE = IF .

Note that ΓE = Gal(Esep/E) ⊃ {ι ∈ IE | ι|E = id} and if E is
unramified over Qp then IE is identified with the inertia subgroup of
ΓE. If characteristic of E is p then IE is considerably bigger: it contains
the subgroup Aut0

EEsep = { ι ∈ IE | ι(E) = E} which is mapped onto
the group of “analytic” automorphisms Aut0E of E via ι 7→ ι|E.

Denote by IF/E the set of all continuous embeddings of F into Esep
which induce the identity map on E and kF . For v > 0, let

I(v)
F/E = {ι ∈ IF/E | vF (ι(a)− a) > 1 + v ∀a ∈ mF}.

If ι1, ι2 ∈ IF/E then they are v-equivalent iff for any a ∈ mF , it holds
vF (ι1(a)− ι2(a)) > 1 + v. The number of v-equivalent classes in IF/E
we shall denote by (IF/E : I(v)

F/E). Then the Herbrand function can be

defined as ϕF/E(x) =
∫ x

0
(IF/E : I(v)

F/E)−1dv, x > 0. It has the following
properties:

• ϕF/E is a piece-wise linear function with finitely many edges;

• if L ⊃ F ⊃ E is a tower of finite field extensions then for any
x > 0, ϕL/E(x) = ϕF/E(ϕL/F (x)).

We define the ramification filtration {I(v)
E }v>0 on IE as follows:

Definition. The subset I(v)
E of IE consists of ι ∈ IE such that for any

finite extension F of E in Esep and a ∈ mF , vF (ι(a)−a) > 1+ϕ−1
F/E(v).

Remark. a) If ϕF/E(v1) = v then I(v)
E = I(v1)

F (with respect to the

natural identification IE = IF ); b) Γ
(v)
E = ΓE ∩ I(v)

E is just the usual
higher ramification subgroup of ΓE with upper number v.
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The ramification theory is perfectly compatible with the field-of-

norms functor of Fontaine-Wintenberger, [32]. Suppose Ẽ/E is an infi-
nite strictly APF-extension in Esep. Then one can define the Herbrand
function ϕ̃ = ϕẼ/E as the limit of Herbrand functions of all finite ex-

tensions of E in Ẽ. In this situation the field-of-norms functor X gives
a complete discrete valuation field E = X (E) of characteristic p, its
separable closure Esep = X (Esep) and the embedding X : IE −→ IE .

With the above notation, the compatibility of the field-of-norms
functor X with the ramification filtration means that for any v > 0,

X (I(ϕ̃(v))
E ) = X (IE) ∩ I(v)

E .

We apply this general theory in the following situation.
Fix an algebraic closure K̄ of K and set for n > 0, Kn = K( pn

√
p) ⊂

K̄. Then K̃ =
⋃
nKn is a strictly APF-extension and by [32],

— K = X (K̃) = k((x0)) ⊂ FracR;

— X (K̄) = Ksep is a separable closure of K in FracR;

— X transforms the action of ΓK on K̄ to the natural action of ΓK
on FracR and ΓK ' X (ΓK) ⊂ IK (remind that the residue field k of K
is assumed to be algebraically closed).

Note that for the derivative of the Herbrand function ϕK̃/K it holds

ϕ′
K̃/K

(x) =

{
1, if 0 < x < p/(p− 1)

1/p, if p(p− 1) < x < p2/(p− 1).

Therefore,

(3.1) X (Γ
(2−1/p)
K ) = X (ΓK) ∩ I(p−1)

K , X (Γ
(1)
K ) = X (ΓK) ∩ I(1)

K .

3.3. Proof of part a) of Theorem 3.1. Consider a filtered module
L = (L, F (L), ϕ,N) ∈ L∗. Then its structure can be specified as
follows.

Choose a W1-basis f1, . . . , fs of F (L), let li = ϕ(fi) for 1 6 i 6 s,
and set f̄ = (f1, . . . , fs) and l̄ = (l1, . . . , ls). Let C ∈ Ms(W1) be such
that f̄ = l̄C. Note thatW1 is identified with a subring of R by u 7→ x0.
Therefore, C can be considered as (s × s)-matrix with coefficients in
k[[x0]] ⊂ R. Note, C divides the scalar matrix xp−1

0 Is.

Let H = V∗(L). Because ΓK,1 = Gal(K̄/K( p
√
p)) ⊃ Γ

(2−1/p)
K , we can

assume that H = V∗0 (L).

Lemma 3.2. There is a natural identification of Fp[ΓK,1]-modules

H = {r̄ ∈ Rs modx0mR | σ(r̄)C ≡ xp−1
0 r̄modxp0mR}.
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Proof of Lemma. Indeed, if h ∈ H, then h(l̄) = r̄∗modxp0mR, where
r̄∗ ∈ Rs is such that

σ(r̄∗)σ(C)

x
p(p−1)
0

≡ r̄∗modxp0mR.

Then σ−1(r̄∗) = r̄ satisfies the congruence σ(r̄)C ≡ xp−1
0 r̄modxp0mR.

It remains to verify that h 7→ r̄ gives the required identification. �

On the other hand, for any τ ∈ I(v)
K with v > p− 1, it holds τ(C) ≡

C modxp0mR and this implies (use Lemma 3.2) for any h ∈ H, that
τ(h) ∈ H. Therefore, our proposition will be proved if we show that
for any such τ and any h ∈ H, τ(h) = h.

From the left-continuity of the ramification filtration {I(v)
K | v > 0} it

follows the existence of a minimal v∗ = v∗(H) such that for any v > v∗

and τ ∈ I(v)
K , τ |H = id.

If v∗ 6 p− 1 there is nothing to prove.
Otherwise, choose r∗ ∈ (p− 1, v∗) such that vp(r

∗) = 0. Such r∗ can
be always written in the form r∗ = m/(q − 1), where m ∈ N is prime
to p and q is an integral power of p. For the following Lemma cf. [8],
Subsection 1.5.

Lemma 3.3. With above chosen r∗ and q there is a field extension
K′ = k((x′0)) of K = k((x0)) such that

a [K′ : K] = q;

b) ϕ′K′/K(x) =

{
1, if 0 < x < r∗

1/p, if x > r∗

c) x0 ≡ x′ q0 (1− x′r
∗(q−1)

0 ) mod x
′ q+2r∗(q−1)
0 .

Note that for above chosen r∗, the appropriate m and q are not
defined uniquely, e.g. for any a ∈ N, it holds aslo that r∗ = ma/(q

a−1),
where ma = m(1+q+· · ·+qa−1). Therefore, we can assume additionally
that q is large enough to provide us with the following inequality

(3.2) r∗(1− 1/q) > p− 1.

Choose a field isomorphism κ : K −→ K′ such that κ(x0) = x′0
and κ|k = σ−q. Note that by Lemma 3.3 c) and assumption (3.2), for
any γ ∈ k[[x0]], κ(γ)q ≡ γmod xp0 mR. The isomorphism κ can be
extended to an isomorphism of separable closures of these fields in R.
Therefore, we have the bijection κ∗ : IK −→ IK′ such that for any

v > 0, κ∗(I(v)
K ) = I(v)

K′ . In particular, if

h′ ∈ H ′ = {r̄′ ∈ Rs modx′0mR | σ(r̄′)κ(C) ≡ x′ p−1
0 r̄′modx′ p0 mR}

then for any v > v∗ and τ ∈ I(v)
K′ , τ(h′) = h′.
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On the other hand, from Lemma 3.3 c) it follows that

H = {r̄ ∈ Rs modx0mR | σ(r̄)σq(κ(C)) ≡ xp−1
0 r̄modxp0mR}.

Therefore, the map r̄′ 7→ σq(r̄′) establishes a Galois equivariant bijec-

tion of H ′ and H. Because, I(v∗)
K′ = I(ϕK′/K(v∗))

K , this implies that for

any τ ∈ I(v)
K with v > ϕK′/K(v∗), τ |H = id. But ϕK′/K(v∗) < v∗. The

contradiction.

3.4. Prove that the ramification estimate from Theorem 3.1 a) is sharp.

Introduce L = (L, F (L), ϕ,N) ∈ L̃
∗

such that:

— L =
∑

p>i>0W1li;

— F (L) =
∑

p>i>0W1fi, where for p > i > 1, fi = ui(lp−1 + · · ·+ li)

and f0 = u
∑

p−1>i>2(i− 1)li + l1 + l0;

— for all i, ϕ(fi) = li;

— N(lp−1) = 0, if p − 1 > i > 1 then N(li) = li+1 modupL, and
N(l0) = −l2 modupL.

A direct verification shows that L ∈ L∗. In particular:

— for p > i > 2, ϕ(uN(fi)) = ϕ(fi+1) = li+1 = N(li) = N(ϕ(fi));

— N(f0) = −u(lp−1+· · ·+l2) and, therefore, ϕ(uN(f0)) = ϕ(−f2) =
−l2 = N(l0) = N(ϕ(f0)).

By Lemma 3.2, the ΓK,1-module V∗0 (L) = H is identified with the
ΓK,1-module of all r̄ = (rp−1, . . . , r1, r0) ∈ Rp modx0mR such that

rpp−1 ≡ rp−1 modx0mR

rpp−1 + rpp−2 ≡ x0rp−2 modx2
0mR

. . .

rpp−1 + · · ·+ rp1 ≡ xp−2
0 r1 modxp−1

0 mR

rpp−1(p− 2)x0 + · · ·+ rp2x0 + rp1 + rp0 ≡ xp−1
0 r0 modxp0mR

Let v∗ > 0 be the minimal such that for all v > v∗, I(v)
K acts trivially

on H. We must prove that v∗ = p− 1.
Suppose v∗ < p− 1.
Choose r∗ ∈ (v∗, p − 1) such that vp(r

∗) = 0. As earlier, we can
assume that r∗ = m/(q − 1), where m ∈ N, q is a power of p and
r∗(1− 1/q) > p− 2.

Apply Lemma 3.3 and consider the appropriate fields isomorphism
κ : K −→ K′. If κ(x0) = x′0 then for i > 2, x ′iq0 ≡ xi0 modxp0mR,

x′q0 ≡ x0 + x
′ q+r∗(q−1)
0 modxp0mR and x

′ q+r∗(q−1)
0 ∈ xp−1

0 mR.
This implies that for p − 1 > i > 1, ri ≡ σq(r′i) modx0mR and

rpi ≡ σq(r′i)
p modxp0mR. Therefore,

r̄ ≡ σq(r̄′) + (0, . . . , 0, Y0) modx0mR,
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where xp−1
0 Y0 − Y p

0 ≡ (rpp−1(p− 2) + · · ·+ rp2)x
′ q+r∗(q−1)
0

≡ rp−1x
′ q+r∗(q−1)
0 modxp0mR.

Note that this relation can be rewritten in the following form

(Y0/x0)− (Y0/x0)p ≡ rp−1x
′−a
0 mod mR,

where ϕK′/K(a) = p− 1. Therefore, I(a)
K′ = I(p−1)

K acts non-trivially on
Y0 modx0mR.

On the other hand, we assumed that v∗ < p − 1 and, therefore,

for τ ∈ I(p−1)
K′ , we have τ(r̄′) = r̄′. But a > p − 1 and this implies

I(p−1)
K = I(a)

K′ ⊂ I
(p−1)
K′ . Therefore, any τ ∈ I(p−1)

K acts trivially on
(r̄ − σq(r̄′)) modx0mR = (0, . . . , Y0) modx0mR. The contradiction.

3.5. Proof of estimate b) of Theorem 3.1. Suppose L ∈ L∗cr is
given in notation of Subsection 2.3 b). By (3.1) we must prove that

I(v)
K acts trivially on H = V∗0 (L) if v > 1.

Let v∗ be the maximal such that I(v∗)
K acts non-trivially on H.

Assume that v∗ > 1. Choose r∗ ∈ (1, v∗) such that r∗ = m/(q − 1),
where m ∈ N, q is a power of p and r∗(1 − 1/q) > 1. Consider the
appropriate field isomorphism κ : K −→ K′ and its extension to Ksep =
K′sep. Let x′0 = κ(x0) and r̄′ = (r′1, . . . , r

′
s) = κ(r̄). If

H ′ =

{
r̄′modx ′p0 mR |

(
r ′p1

x ′pb10

, . . . ,
r ′ps

x ′pbs0

)
= r̄′(σ1−qA) modx ′p0 mR

}
then for any v > v∗, I(v)

K′ acts trivially on H ′.

Note that the assumption r∗(1 − 1/q) > 1 implies that x
′r∗(q−1)
0 ∈

x0mR and for all 1 6 i 6 s,

rpi
xpbi0

≡ (σqr′i)
p

x ′qpbi0

modxp0mR.

Therefore, r̄′ 7→ σqr̄′ induces Aut0
KKsep-equivariant isomorphism of H ′

and H.
If v′ > 0 is such that ϕK′/K(v′) = v∗ then v′ > v∗ and I(v′)

K′ = I(v∗)
K

acts trivially on H ′ but not on H. The contradiction.

3.6. The example in Subsection 2.4 shows that for all γ 6= 0, I(1)
K acts

non-trivially on h0 ∈ V [γ] = V∗(L[γ]). Therefore, the estimate from b)
is sharp.
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4. A construction of modification of Breuil’s functor.

Generalize slightly the initial data from Section 2 as follows.
Let W = W (k)[[u]], where u is an indeterminate. Denote by σ the

automorphism of W (k) induced by the p-th power map on k and agree
to use the same symbol for the continuous extension of σ to W such
that σ(u) = up. Denote by N :W −→W the unique continuous W (k)-
differentiation such that N(u) = −u. We denote by S the divided
power envelope of W with respect to the ideal (u+ p).

4.1. Breuil’s functor. We work with Breuil’s theory of semi-stable
p-adic representations of ΓK = Gal(K̄/K), [14]-[16]. This theory al-
lows to construct ΓK-invariant lattices in semi-stable Qp[ΓK ]-modules
with Hodge-Tate weights from [0, p). The construction is done via
Breuil’s functor Sp−1 −→ MΓK , where Sp−1 is a suitable category
of free S-modules M with filtration by a submodule F (M) and ad-
ditional structures involving σ-linear morphisms ϕ : F (M) −→ M
and differentiations N : M −→ M , [16], Subsection 2.2. The objects
of Sp−1 satisfy the properties similar to those from the definition of
the category L∗ from Subsection 2.1. Breuil’s functor appears in the
form M 7→ HomF,ϕ,N(M, Âst), where Âst is the ring of semi-stable

p-adic periods [14], Subsection 3.1. Note that Âst is provided with
the appropriate S-module structure, filtration, morphisms ϕ and N ,
and ΓK-module structure. The notation HomF,ϕ,N means the set of
all S-linear homomorphisms compatible with filtrations and the mor-
phisms ϕ and N . Breuil’s theory allows also to construct crystalline
representations of ΓK with HT weights from [0, p) by the use of the
appropriate subcategory Scrp−1 of Sp−1. (The objects of Scrp−1 come from
the Fontaine-Laffaille modules with filtration of length p.)

Similarly to the Fontaine-Laffaille theory the Breuil theory perfectly
describes all ΓK-invariant lattices of semi-stable representations with
HT weights from [0, p− 2] but does not give generally all such lattices
for representations with weights from [0, p).

4.2. Modification of Breuil’s functor. In Subsection 4 of [11] we
constructed a modification of Breuil’s functor which allows us to con-
struct all Galois invariant lattices and study all subquotients modulo
p of semi-stable representations with weights from [0, p). We shall give
below a brief explanation of our construction from Subsection 4 of [11]
together with a modelled example.

4.2.1. As a first step, we prove that Breuil’s category of filtered S-
modules Sp−1 can be replaced by a similar category Lf of free filtered
W-modules (M,F (M)) with σ-linear maps ϕ : F (M) −→ M and
differentiations N : M −→M⊗WS. Then we define a torsion analogue
Lt of the category Lf . As a result, we can use Breuil’s functor in
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the form V t : M 7→ HomF,ϕ,N(M, Ast,∞), where M ∈ Lt and Ast,∞
is a torsion analogue of Fontaine’s ring of semi-stable periods, [14],
Subsection 3.1. Note that Lt contains the full subcategory Lft whose
objects are subquotients of objects of Lf and this subcategory is strictly
smaller than Lt. This is very special feature of “semi-stable” theory:
if we start with the subcategory Scrp−1 then the appropriate categories

Ltcr and Lftcr coincide. Denote the restriction of V t to Lft by Vft.
Following general formalism we prove that Lt is special pre-abelian

and there is a concept of p-divisible object in Lt (just mimic Tate’s
definition of p-divisible groups in the pre-abelian category of group
schemes). Such p-divisible objects will be called p-divisible groups if
there is no risk of confusion. Then the objects of Lf can be recovered
as “Tate’s modules” associated with p-divisible groups in Lt. In partic-
ular, a p-divisible group in Lt is inductive limit of objects from Lft. As
we have just noted, there is no similar problem for the appropriate sub-
category Ltcr of “crystalline” filtered modules in Lt: any such module
comes as a subquotient of a “crystalline” module from Lfcr ⊂ Lf .

4.2.2. If M = (M,F (M)) ∈ Lt then it is called multiplicative if M =
F (M) and etale if F (M) = up−1M . As usually, any M ∈ Lt has
a unique maximal etale subobject ιet : Met −→ M and a unique
maximal multiplicative quotient object ιm : M −→ Mm. We call
M∈ Lt unipotent if Mm = 0.

By compairing V t and the functor V∗ from Subsection 2.3 we deduce
that V t is fully faithful on the subcategory Lt,u of unipotent objects of
Lt. Quite oppositely, if M∈ Lt, pM = 0 and

0 −→Mu −→M −→Mm −→ 0

is the standard short exact sequence with unipotent Mu and multi-
plicative Mm, then the corresponding exact sequence

0 −→ V t(Mm) −→ V t(M) −→ V t(Mu) −→ 0

has a functorial splitting in MΓK . Denote the appropriate splitting

maps by Θ : V t(Mu) −→ V t(M) and Θ̃ : V t(M) −→ V t(Mm).

Example. Let Acr be Fontaine’s crystalline ring. It is the p-adic clo-
sure of the DP -envelope of W (R) with respect to the ideal ([x0] + p).
Let F (Acr) be the (p−1)-st divided power of ([x0]+p) and ψ : Acr −→
Acr be the map induced by σ : R −→ R. Set ϕ = ψ/pp−1. No-
tice that Acr is provided with the natural continuous ΓK-action. Then
Acr,1 = Acr/pAcr is provided with induced filtration F (Acr,1), mor-

phism ϕ and ΓK-action, and we obtain Acr,1 = (Acr,1, F (Acr,1), ϕ) ∈ L̃
∗
0

by defining the W1-module structure on Acr,1 via u 7→ [x0].
If Ast is Fontaine’s ring of semi-stable periods then Ast is obtained

from Acr in the same way as R0
st was obtained from R0 in Subsections

2.2 and 2.3. Therefore, if L ∈ Lt and pL = 0 then we can illustrate
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the splitting phenomenon by studying the abstract module V0(L) =
HomL̃∗0

(L,Acr,1). Even more, we can treat L∗cr as a full subcategory of

Lt and then for L ∈ L∗cr, V0(L) = V t(L) even as Galois modules.
From the definition of Acr it follows that Acr,1 = (R/xp0)[T1, T2, . . . ],

where for all i > 1, Ti comes from the divided powers γpi([x0] + p)
and T pi = 0. Let J be the ideal in Acr,1 generated by T 2

1 and Ti with

i > 2. Then Ãcr,1 = Acr,1/J = (R/xp0)T1 ⊕ (R/xp0) is provided with

the induced filtration F (Ãcr,1) = (R/xp0)T1 ⊕ (xp−1
0 R/xp0) and σ-linear

ϕ : F (Ãcr,1) −→ Ãcr,1 such that ϕ(xp−1
0 ) = 1 − T1 and ϕ(T1) = 1.

This gives the object Ãcr,1 in L̃
∗
0 together with the natural projection

jcr,1 : Acr,1 −→ Ãcr,1. Using that ϕ(J) = 0 we obtain that jcr,1∗ induces

the identification V0(L) = HomL̃∗0
(L, Ãcr,1).

Consider L[γ] ∈ L∗cr from Subsection 2.4.
Then we have the following standard exact sequence

0 −→ L0 −→ L[γ]→ Lp−1 → 0

where L0 = (W1l0, u
p−1W1l0, ϕ) is a simple etale subobject in L[γ] and

Lp−1 = (W1l̄1,W1l̄1, ϕ) is its simple multiplicative quotient object.
Consider the corresponding short exact sequence of Fp[ΓK ]-modules

0 −→ Hp−1 −→ H −→ H0 −→ 0

where Hp−1 = V0(Lp−1), H = V0(L[γ]), H0 = V0(L0). Note that
H0 = Hp−1 ' Fp are trivial ΓK-modules.

Lemma 4.1. For any α ∈ R, there is a unique r∗(α) ∈ Rmodxp0 such

that r∗(α)p/x
p(p−1)
0 − r∗(α) ≡ αmodxp0R.

Proof. It follows from the congruence Ap − A = αx−p0 modR, where
A = r∗(α)x−p0 ∈ FracR. �

Now direct calculations show that:

• H0 = HomL̃∗0
(L0, Ãcr,1) consists of h : l0 7→ r−1T1 + r0 such that

r0 = −r−1 = f , where f0 runs over all elements of Fp ⊂ R/xp0;

• Hp−1 = HomL̃∗0
(Lp−1, Ãcr,1) consists of h : l1 7→ r−1T1 + r0 such

that r0 = r∗(f1) and r−1 = −(r∗(f1) + f1), where f1 runs over Fp;

• H = HomL̃∗0
(L[γ], Ãcr,1) consists of

h : (l0, l1) 7→ (−f0T1 + f0, r−1T1 + r0),

where r0 = −(r−1 + f1) = r∗(f1)− r∗(γpf0/x
p(p−1)
0 ) and f0, f1 ∈ Fp;

• the splitting Θ is defined via the submodule Θ(H0) of H consisting
of h ∈ H such that f1 = 0.
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Let A0
cr,1 = {r−1T1 + r0 | r−1 = −r0} ⊂ Ãcr,1 with the induced

filtration and the morphism ϕ, and denote by A0
cr,1 the appropriate

object of L̃
∗
0. Then

(4.1) Θ(H0) = HomL̃∗0
(L[γ],A0

cr,1)

Remark. Relation (4.1) determines the splitting Θ for any L ∈ L∗cr.

4.2.3. For M∈ Lft, let M′ ∈ Lft be such that pM′ =M and let

Cp = Coker p|M′ :M′ −→ pM′, Kp = Ker p|M′ :M′
p −→M′.

Consider the following sequence of objects and maps in MΓK

Vft(pM′u)
Θ−→ Vft(pM′)

Vft(Cp)−→ Vft(M′)
Vft(Kp)−→ Vft(M′

p)
Θ̃−→ Vft(M′m

p )

Then:

— Θ̃ ◦ V ft(Kp) ◦ V ft(Cp) ◦Θ = 0;

— ΓK-module Ṽft(M) := Ker(Θ̃ ◦ Vft(Kp))/Im (Vft(Cp) ◦ Θ) does
not depend on a choice of M′;

— Ṽft(Mu) = Vft(Mu), Ṽft(Mm) = Vft(Mm);

— there is a canonical epimorphism Ṽft(iet) : Ṽft(M) −→ Ṽft(Met).

Definition. The modification of Breuil’s functor C̃V
ft

: Lft −→ CMΓK
is induced by the correspondence M 7→ (Ṽft(M), Ṽft(Met), Ṽft(iet)).

Example. Having in mind that Acr is related to the DP -envelope of
W (R) we can describe explicitly Acr,2 = Acr/p

2Acr and similarly to the

case of Acr,1 introduce an appropriate simpler object Ãcr,2 as follows:

— the elements of Ãcr,2 are written in the form

[r−1]T1 + [r0] + p[r1],

where r−1, r1 ∈ R/xp0 and r0 ∈ R/x2p
0 ; the operations are induced by

those on the Teichmuller representatives of r−1, r0, r1 via the relations
pT = [x0]p and p2 = 0;

— the W-module structure on Ãcr,2 is induced by the W (k)-algebra
morphism W −→ W (R) such that u 7→ [x0] + p;

— F (Ãcr,2) is generated over W (R) by f1 = T1 and f2 = [x0]p−1 −
p[x0]p−2;

— ϕ : F (Ãcr,2) −→ Ãcr,2 is uniquely determined by ϕ(f1) = 1 + [x0]p

and ϕ(f2) = −T1 + 1.

Note that pÃcr,2 = Ãcr,1.
Consider again L[γ] ∈ L∗cr from Subsection 2.4. Choose L′ ∈ Lft

such that pL′ = L[γ]. For simplicity assume that the corresponding
W-module is (W/p2)l0 ⊕ (W/p2)l1. In this case Cp : L′ −→ pL′ is just
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the natural projection L′ −→ L′/pL′ = L and Kp : L′p −→ L′ is just
the natural embedding L = pL′ −→ L′. Therefore,

• Ker(Θ̃ ◦ V0(Kp)) appears as the kernel of the map

V0(L′) −→ V0(L′)/pV0(L′) = V0(L) = H
Θ̃−→ H1

and equals HomF,ϕ(L′,A0
cr,2) ⊂ HomF,ϕ(L′, Ãcr,2) = V0(L′).

• Im(V0(Cp) ◦Θ) appears as the image of the map

H0
Θ−→ H = pV0(L′) ⊂ V0(L′)

and equals HomF,ϕ(L′, pA0
cr,2) ⊂ HomF,ϕ(L′, Ãcr,2).

• Ṽft(L) = HomL̃∗0
(L,A0

cr,2/pA0
cr,2).

Note that the correspondence

[r0 modxp0]T1 + [r0] + p[r1] 7→ (r0 + xp0r1) modxp0mR

determines epimorphic map A0
cr,2/pA0

cr,2 −→ R0 in the category L̃
∗
0 and

this map induces isomorphism of ΓK-modules Ṽft(L[γ]) and V∗(L[γ]).

4.3. Properties of modified functor. The following property was
our main target.

Theorem 4.2. C̃V
ft

is fully faithful.

Proof. By devissage it will be sufficient to verify this statement on
the level of the subcategories of killed by p objects. The corresponding

restriction of C̃V
ft

is equivalent then to the functor CV∗ from Subsection

2 (cf. also the example in Subsection 4.2.3) but the functor C̃V
∗

is fully
faithful, cf. Subsection 2.4. �

Suppose V is a finite dimensional vector space over Qp with contin-
uous ΓK-action and H a ΓK-invariant lattice in V .

Corollary 4.3. If V is semi-stable (resp., crystalline) with HT weights

from [0, p) then the higher ramification subgroups Γ
(v)
K act trivially on

H/pH for all v > 2− 1/p (resp., v > 1).

Proof. As it was noted in Subsections 4.1–4.2, Breuil’s functor allows
us to obtain a Galois invariant lattice H0 in V in the form H0 =
lim←−
n

V t(Mn), where {Mn}n>0 is a p-divisible group in the category Lft.

Then H1 = lim←−
n

Ṽft(Mn) is again a Galois invariant lattice in V . (Use

that the p-divisible group {Ṽft}n>0 is isogeneous to {V t(Mn)}n>0, cf.
Subsection 4.2.3.) We can assume that H1 ⊃ H ⊃ pH ⊃ pmH1 with
some m ∈ N. Then by Theorem 4.2 there is a suibquotient modulo p,
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M ∈ Lft of Mm, such that C̃V
ft

(M) = (H/pH, Ṽft(Met), Ṽft(iet)).
Therefore, the ΓK-module H/pH belongs to the image of the functor
V∗ and we can apply Theorem 3.1a). If V is crystalline then M∈ Lftcr
and our assertion follows from Theorem 3.1b). �

Remark. If in the above Corollary V has HT weights from [0, A],

where 2 6 A 6 p − 2. Then Γ
(v)
K acts trivially on H/pH for all v >

1 + A/(p − 1) − 1/p in the semi-stable case and for v > A/(p − 1) in
the crystalline case. These ramification estimates have been proved in
[24, 23, 7] and can be also obtained via methods from Subsection 3.

Let CMΓst1,K , resp., CMΓcr1,K , be the full subcategory in CMΓK con-

sisting of C̃V
∗
(L) where L runs over the family of all objects of the

category L∗, resp., L∗cr.
Consider the simple objects Fj ∈ CMΓcr1,K ⊂ CMΓst1,K such that for

j = 0, F0 = (Fp,Fp, id) and for 1 6 j 6 p− 1, Fj = (Fp(j), 0, 0), where
Fp(j) is the j-th Tate twist. (The objects F0 and Fp−1 have already
appeared in Subsection 2.4.)

Corollary 4.4. a) If j1 > j2 then ExtCMΓcr
1,K

(Fj1 ,Fj2) = 0.

b) If j1 = 0 or j2 = p− 1 then ExtCMΓst
1,K

(Fj1 ,Fj2) = 0.

Proof. This follows from the appropriate statements in L∗cr and L∗. As
a matter of fact, the cases j1 = 0 or j2 = p− 1 are just the existence of
a maximal etale subobject and a maximal multiplicative quotient. In
the case a), the appropriate statements in L∗cr are just easy exercises
or one can use very general approach from Subsection 1.5 of [11]. �

Remark. An analogue of property a) for CMΓst1,K is false because there
are appropriate non-trivial extensions in the category L∗. Nevertheless,
there is a chance to have such analogue in smaller category CMΓ0,st

1,K of

the objects C̃V
ft

(L) such that L ∈ Lft[1] := {L ∈ Lft | pL = 0}. A
partial evidence for this is given in Subsection 5.5 below.

5. Generalization of the Shafarevich conjecture

As earlier, p is a fixed prime number, p > 2. Suppose k = F̄p,
K = W (k)[1/p], MΓK and MΓQ are the categories of Zp-modules with
continuous action of ΓK and, resp., ΓQ. Choose an extension of the
p-adic valuation to Q̄ and use it to identify ΓK with a subgroup of ΓQ.

5.1. The category MΓp,crQ . The objects of the category MΓp,crQ are

the pairs HQ = (H, H̃cr) such that

• H ∈ MΓQ is unramified outside of p;
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• H̃cr = (Hcr, H
0, j) ∈ CMΓcrK — the full subcategory in CMΓK of

the objects of the form C̃V
ft

(L), where L ∈ Lftcr ;

• H|ΓK
= Hcr.

• morphisms in MΓp,crQ are compatible morphisms of Galois modules.

Clearly, MΓp,crQ is a special pre-abelian category.
Let MΓp,crQ [1] be the subcategory in MΓp,crQ consisting of all HQ =

(H, H̃cr) such that pH = 0. Denote by Qcr(p) the field-of-definition of

all H ∈ MΓQ such that HQ = (H, H̃cr) ∈ MΓp,crQ [1]. In other words,

τ ∈ Gal(Q̄/Qcr(p)) iff τ acts trivially on the first components H of all
HQ ∈ MΓp,crQ [1].

Let HQ = {(H(n), H̃
(n)
cr )}n>0 be a p-divisible group in MΓp,crQ . Then

H = {H(n)}n>0 is a p-divisible group in MΓQ.

Proposition 5.1. If Qcr(p) is totally ramified at p then there are p-
divisible groups H = H0 ⊃ H1 ⊃ · · · ⊃ Hp−1 ⊃ Hp = 0 in MΓQ such
that for all 0 6 i < p, Hi/Hi+1 is the product of several copies of the
Tate twist Qp/Zp(i) of the trivial p-divisible group Qp/Zp.

Proof. We have Gal(Qcr(p)/Q) = Gal(Qcr(p)K/K). Therefore, we can
apply local results about Galois modules from CMΓcr1,K to the objects
of the category MΓp,crQ [1]. In particular, the tamely ramified part of
Gal(Qcr(p)K/K) comes from Gal(Q(ζp)/Q) where ζp is a primitive p-
th root of unity. (Indeed, it is a quotient of prime to p order of the
Galois group of the maximal abelian extension of Q unramified outside

of p.) Therefore, any simple subquotient of (H(1), H̃
(1)
cr ) ∈ MΓp,crQ comes

from simple subquotients Fj, 0 6 j < p, of H̃
(1)
cr (cf. Subsection 4.3 for

the definition of Fj). It remains to apply Corollary 4.4 and Theorem
A.1 from Appendix. �

5.2. The category MΓp,stQ . The objects of the category MΓp,stQ are

the pairs HQ = (H, H̃st) such that

• H ∈ MΓQ is unramified outside of p;

• H̃st = (Hst, H
0, j) ∈ CMΓ0,st

K — the full subcategory in CMΓK

consisting of C̃V
ft

(L) such that L ∈ Lft;

• H|ΓK
= Hst;

• morphisms in MΓp,stQ are compatible morphisms of Galois modules.

Clearly, MΓp,stQ is a special pre-abelian category.
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Let MΓp,stQ [1] be the subcategory in MΓp,stQ consisting of all HQ =

(H, H̃st) such that pH = 0. Denote by Qst(p) the field-of-definition of

all H ∈ MΓQ such that HQ = (H, H̃st) ∈ MΓp,stQ [1].

Let HQ = {(H(n), H̃
(n)
cr )}n>0 be a p-divisible group in MΓp,crQ . Simi-

larly to Proposition 5.1 we obtain the following property.

Proposition 5.2. If Qst(p) is totally ramified at p then there are p-
divisible groups H = H0 ⊃ H1 ⊃ H2 in MΓQ such that H0/H1 is the
product of several copies of Qp/Zp, H2 is the product of several copies
of (Qp/Zp)(p − 1) and all simple subquotients in H1/H2 come from
objects Fj = (Fp(j), 0, 0) with 1 6 j 6 p− 2.

5.3. General criterion. Suppose X/Q is a projective variety, p is a
prime number and N ∈ N. Then V = HN

et (XQ̄,Qp) is a finite dimen-
sional Qp-vector space with continuous ΓQ-action.

Proposition 5.3. Suppose there is a filtration of Qp[ΓQ]-modules

V = V0 ⊃ V1 ⊃ · · · ⊃ VN ⊃ VN+1 = 0

such that for all i, Vi/Vi+1 ' Qp(i)
si, where si > 0 and Qp(i) is the

Tate twist. Then ha,b(XC) = 0 if a+ b = N and a 6= b.

Proof. The relation between the etale and de Rham cohomology of X
implies that ha,b(XC) = sa. Choose a prime l 6= p such that the variety
X has good reduction modulo l. Then the corresponding Frobenius
σl acts on V with eigenvalues λ such that |λ| = lN/2. But for any i,
σl acts on Qp(i) via the multiplication by li. Therefore, ha,b(YC) with
a+ b = N can be different from 0 only if la = lN/2. �

5.4. Crystalline case. Suppose X has everywhere good reduction.
Consider Q5[ΓQ]-module V = H4

et(XQ̄,Q5). All subquotients of V come
from appropriate filtered modules associated with de Rham cohomol-
ogy of X via Breuil’s functor. Therefore, any finite subquotient H of V

appears as the first component of an appropriate object HQ = (H, H̃cr)
of the category MΓ5,cr

Q . In particular, if T is a Galois invariant lat-
tice in V then the 5-divisible group {T/5n}n>0 appears as the first
component of the appropriate 5-divisible group in MΓ5,cr

Q . Therefore,
part b) of Theorem 0.2 is implied by the following Proposition. (This
Proposition was stated without proof in the end of [7].)

Lemma 5.4. Modulo GRH (Generalised Riemann Hypothesis) the field
Qcr(5) is totally ramified at 5.

Proof. Because the higher ramification subgroup Γ
(1)
K acts trivially on

Qcr(5) the normalized discriminant of any subfield L in Qcr(5), which is
finite over Q, is less than 25 < d∗340, cf. [25]. Here for N ∈ N, d∗N is the
Odlyzko estimate for the normalized discriminant of algebraic number
fields of given degree N under GRH. Therefore, [Qcr(5) : Q] < 340.
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The maximal abelian extension of Q in Qcr(5) equals Q(ζ25), where
ζ25 is a 25-th primitive root of unity. Let L2 be the maximal abelian
extension of L1 inside Qcr(5). The class number h(L1) = 1 implies that
L2 is totally ramified at 5 over Q and L2/L1 is a 5-extension. Because
the total degree is less than 340 we have [L2 : L1] 6 5 and one can

see that L2 = L1(
5
√

2 +
√

5). Then the maximal upper ramification
number of this field extension is 1 and the maximal lower number is 8,
therefore, the normalized discriminant of L2 equals 21.6288... < d∗160,
cf. [25]. This implies that h(L2) = 1, the maximal abelian extension L3

of L2 inside Qcr(5) is totally ramified at 5 and L3/L2 is a 5-extension.
But [L3 : L2] 6 3 implies that L3 = L2. �

Remark. a) For part a) of Theorem 0.2 take V = H3(XQ̄,Q5). Then
the corresponding ramification estimates are better, cf. Subsection 4.3.
As a result, one can use unconditional Odlyzko estimates to find that

all modulo 5 subquotients of V are defined over Q(ζ5,
5
√
ζ5 + ζ−1

5 ), cf.
[7], Subsection 7.5.1, where this field was denoted by Q(5, 3).

b) Unconditional Odlyzko estimates are still sufficient to prove that
h2(XC) = h1,1(XC), when X has everywhere good reduction and is
defined over Q(

√
−3), Q(

√
−1) or Q(

√
5), cf. Section 7 of [7].

5.5. Semi-stable case. Suppose X has semi-stable reduction mod-
ulo 3 and good reduction modulo all primes l 6= 3. Consider V =
H2
et(XQ̄,Q3) and proceed similarly to Subsection 5.4. We need the

following lemma.

Lemma 5.5. Qst(3) is totally ramified at 3.

Proof. For a complete proof cf. [11], Lemma 5.2. Note that the upper
estimate for the normalized discriminant of Qst(3)/Q is 33−1/3 < d238,
therefore [Qst(3) : Q] < 238. Because K1 = Q( 3

√
3, exp(2πi/9)) is

contained in Qst(3), the group Gal(Qst(3)/Q) is soluble. Then the
proof that Qst(3) = K1 requires calculations with fundamental units
inside K1. Namely, we need that:
• the class number of K1 is 1;
• for any unit u ∈ K∗1 \K∗31 , 3

√
u /∈ Qst(3).

The both properties were verified via the computing package SAGE,
cf. www.sagemath.org and Appendix B of [11]. �

Note that under the condition that Qst(p) is totally ramified at p we
can identify MΓp,stQ with full subcategories in MΓQ and in CMΓ0,st

K .
Apply Proposition 5.2. Theorem 0.1 will be proved if we show

that the 3-divisible group H1/H2 is the product of 3-divisible groups
(Q3/Z3)(1).

This would follow from ExtMΓ3,st
Q [1](F1,F1) = 0. Most natural way is

to verify this in the category CMΓ0,st
1,K or, equivalently, in the category
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Lft[1] = {L ∈ Lft | pL = 0}. Here we come again to the principal
difference between the theories of torsion crystalline and torsion semi-
stable Galois modules. In the semi-stable case we can efficiently work
only with the Galois modules obtained from the objects of Lt[1] =
{L ∈ Lt| pL = 0} (which can be identified with L∗), and this category
is strictly bigger than Lft[1]. (In the crystalline case Ltcr = Lftcr , cf.
Subsection 4.2.1.)

If L1 ∈ Lt is such that V t(L1) = F1, then ExtLt[1](L1,L1) 6= 0
and the question about ExtLft[1](L1,L1) = 0 is still open. We did not

resolve this issue in [11] but treated it in the following simpler situation.
Remind that all points of the Galois modules coming from MΓ3,st

Q are
defined over relatively small field KQst(3). This allows us to replace the
category Lt[1] by a smaller one LtQ[1], where ExtLtQ[1](L1,L1) = Z/3Z
is generated by one object L11 (we use in [11], Subsection 5.4, slightly
different notation). Then we prove that any object of LtQ[1], which
has only subquotients of the form L1, is isomorphic to the product of
several copies of L1 and L11.

Now come back to our 3-divisible groupH1/H2 viewed as a 3-divisible
group in the category CMΓ0,st

K . If any subquotient of this group con-
tains H11 = CV∗(L11) then we apply the devissage from Appendix A to
deduce the existence of a 3-divisible group H = {H(n)}n>0 in CMΓ0,st

K

such that H(1) = H11. The height of this 3-divisible group is 2 and
it determines a 2-dimensional semi-stable Q3[ΓK ]-module. But the ex-
istence of such 2-dimensional representation contradicts to Theorem
6.1.1.2 from [14]. Therefore, all L ∈ Lft[1] with simple subquotients
isomorphic to L1 are just the products of copies of L1. In particular,
ExtLft[1](L1,L1) = 0 and H2/H1 is the product of copies of the trivial

3-divisible group (Q3/Z3)(1).

Remark. The situation from Theorem 0.1 is quite exceptional. For
semi-stable Qp[ΓK ]-modules with p > 3 and 2 6 N < p, the appropri-
ate estimates for normalized discriminants of the fields-of-definition of
their subquotients modulo p are bigger than the appropriate Odlyzko
estimates (even under GRH). In addition, any explicit calculations with
elements of algebraic number fields of degree bigger, say, 100 are al-
ready very difficult (if possible).

Appendix A. Formalism of pre-abelian categories

This is expository version of Appendix A of [11].
A pre-abelian category C is an additive category such that any its

morphism has kernel and cokernel. A morphism u of C is strict if
the canonical map Coim u := Coker Keru −→ Im u := Ker Cokeru
is isomorphism. Then 0 −→ A

u−→ B
v−→ C −→ 0 is a short exact

sequence in C if u is strict monomorphism, v is strict epimorphism and
Cokeru = Ker v.
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A pre-abelian category C is special if the group of classes of equiv-
alent short exact sequences is functorial in both arguments and there
are standard 6-terms Hom− Ext exact sequences.

A typical example of special pre-abelian category is the category
FModR of free modules over a ring R with filtration F (H) ⊂ H.
The morphisms HomFModR

((H,F (H), (H1, F (H1)) are morphisms f :
H −→ H1 of R-modules such that f(F (H)) ⊂ F (H1). The morphism
f is a strict monomorphism iff H1/f(H) has no R-torsion and f is a
strict epimorphism iff f(H) = H1 and f(F (H)) = F (H1).

Denote by C(1) the full subcategory of killed by p (i.e. such that
pidA = 0) objects A of a special pre-abelian category C.

Mimicing Tate’s definition [31] introduce the concept of a p-divisible
object (or just p-divisible group if there is no risk of confusion) in C.

Suppose C = {C(n)}n>1 is a p-divisible group in C. The following
result provides us with very convenient devissage technique in C. (For a
complete proof of these statements see Theorems A.1 and A.2 of [11].)

Theorem A.1. a) Suppose

0 −→ D1 −→ C(1) −→ D2 −→ 0

is a short exact sequence in C(1) and ExtC(1)(D1, D2) = 0. Then there
is a short exact sequence of p-divisible groups

0 −→ C1 −→ C −→ C2 −→ 0

such that C
(1)
1 = D1 and C

(1)
2 = D2.

b) Suppose ExtC(1)(C
(1), C(1)) = 0 then any p-divisible group D in C

such that D(1) ' C(1) is isomorphic to C.
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