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1 Institut für Mathematik, Technische Universität Berlin, Germany.
Email: {felsner,mustata}@math.tu-berlin.de

2 School of Engineering and Computing Sciences, Durham University, UK.
Email: george.mertzios@durham.ac.uk

Abstract. Orthogonal ray graphs are the intersection graphs of hor-
izontal and vertical rays (i.e. half-lines) in the plane. If the rays can
have any possible orientation (left/right/up/down) then the graph is a
4-directional orthogonal ray graph (4-DORG). Otherwise, if all rays are
only pointing into the positive x and y directions, the intersection graph
is a 2-DORG. Similarly, for 3-DORGs, the horizontal rays can have any
direction but the vertical ones can only have the positive direction. The
recognition problem of 2-DORGs, which are a nice subclass of bipartite
comparability graphs, is known to be polynomial, while the recognition
problems for 3-DORGs and 4-DORGs are open. Recently it has been
shown that the recognition of unit grid intersection graphs, a superclass
of 4-DORGs, is NP-complete. In this paper we prove that the recogni-
tion problem of 4-DORGs is polynomial, given a partition {L,R,U,D} of
the vertices of G (which corresponds to the four possible ray directions).
For the proof, given the graph G, we first construct two cliques G1, G2

with both directed and undirected edges. Then we successively augment
these two graphs, constructing eventually a graph G̃ with both directed
and undirected edges, such that G has a 4-DORG representation if and
only if G̃ has a transitive orientation respecting its directed edges. As a
crucial tool for our analysis we introduce the notion of an S-orientation
of a graph, which extends the notion of a transitive orientation. We ex-
pect that our proof ideas will be useful also in other situations. Using
an independent approach we show that, given a permutation π of the
vertices of U (π is the order of y-coordinates of ray endpoints for U),
while the partition {L,R} of V \ U is not given, we can still efficiently
check whether G has a 3-DORG representation.

1 Introduction

Segment graphs, i.e. the intersection graphs of segments in the plane, have been
the subject of wide spread research activities (see e.g. [2, 12]). More tractable
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subclasses of segment graphs are obtained by restricting the number of directions
for the segments to some fixed positive integer k [4,11]. These graphs are called
k-directional segment graphs. For the easiest case of k = 2 directions, segments
can be assumed to be parallel to the x- and y-axis. If intersections of parallel
segments are forbidden, then 2-directional segment graphs are bipartite and the
corresponding class of graphs is also known as grid intersection graphs (GIG),
see [9]. The recognition of GIGs is NP-complete [10].

Since segment graphs are a fairly complex class, it is natural to study the
subclass of ray intersection graphs [1]. Again, the number of directions can be
restricted by an integer k, which yields the class of k-directional ray intersection
graphs. Particularly interesting is the case where all rays are parallel to the x-
or y-axis. The resulting class is the class of orthogonal ray graphs, which the
subject of this paper. A k-directional orthogonal ray graph, for short a k-DORG
(k ∈ {2, 3, 4}), is an orthogonal ray graph with rays in k directions. If k = 2
we assume that all rays point in the positive x- and the positive y-direction, if
k = 3 we additionally allow the negative x-direction.

The class of 2-DORGs was introduced in [19], where it is shown that the class
of 2-DORGs coincides with the class of bipartite graphs whose complements are
circular arc graphs, i.e. intersection graphs of arcs on a circle. This characteriza-
tion implies the existence of a polynomial recognition algorithm (see [13]), as well
as a characterization based on forbidden subgraphs [5]. Alternatively, 2-DORGs
can also be characterized as the comparability graphs of ordered sets of height
two and interval dimension two. This yields another polynomial recognition al-
gorithm (see e.g. [7]), and due to the classification of 3-interval irreducible posets
([6], [21, sec 3.7]) a complete description of minimally forbidden subgraphs. In a
very nice recent contribution on 2-DORGs [20], a clever solution has been pre-
sented for the jump number problem for the corresponding class of posets and
shows a close connection between this problem and a hitting set problem for axis
aligned rectangles in the plane.

4-DORGs in VLSI design. In [18] 4-DORGs were introduced as a mathe-
matical model for defective nano-crossbars in PLA (programmable logic arrays)
design. A nano-crossbar is a rectangular circuit board with m× n orthogonally
crossing wires. Fabrication defects may lead to disconnected wires. The bipartite
intersection graph that models the surviving crossbar is an orthogonal ray graph.

We briefly mention two problems for 4-DORGs that are tackled in [18]. One
of them is that of finding, in a nano-crossbar with disconnected wire defects,
a maximal surviving square (perfect) crossbar, which translates into finding a
maximal k such that the balanced complete bipartite graph Kk,k is a subgraph of
the orthogonal ray graph modeling the crossbar. This balanced biclique problem
is NP-complete for general bipartite graphs but turns out to be polynomially
solvable on 4-DORGs [18]. The other problem, posed in [16], asks how difficult
it is to find a subgraph that would model a given logic mapping and is shown
in [18] to be NP-hard.

4-DORGs and UGIGs. A unit grid intersection graph (UGIG) is a GIG that
admits an orthogonal segment representation with all segments of equal (unit)
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Fig. 1. (a) A nano-wire crossbar with disconnected wire defects, (b) the bipartite graph
modeling this crossbar, and (c) a 4-DORG representation of this graph. Note that
vertex t is not present, since the corresponding wire is not connected to the crossbar
boundary, hence with the remaining circuit.

length. Every 4-DORG is a GIG. This can be seen by intersecting the ray repre-
sentation with a rectangle R, that contains all intersections between the rays in
the interior. To see that every 4-DORG is a UGIG, we first fix an appropriate
length for the segments, e.g. the length d of the diagonal of R. If we only keep the
initial part of length d from each ray we get a UGIG representation. Essentially
this construction was already used in [18].

Unit grid intersection graphs were considered in [15]. There it is shown that
UGIG contains P6-free bipartite graphs, interval bigraphs and bipartite permu-
tation graphs. Actually, these classes are already contained in 2-DORG. An-
other contribution of [15] is to provide an example showing that the inclusion
of UGIG in GIG is proper. In [17] it is shown that interval bigraphs belong to
UGIG. Hardness of Hamiltonian cycle for inputs from UGIG and hardness of
graph isomorphism for inputs from GIG have been shown in [22]. Very recently
it was shown that the recognition of UGIGs is NP-complete [14]. With this last
result we find 4-DORG nested between 2-DORG and UGIG with easy and hard
recognition, respectively. This fact was central for our motivation to attack the
open recognition problem for 4-DORGs [19].

Our contribution. In this paper we prove that, given a graph G along with
a partition {L,R,U,D} of its vertices, it can be efficiently checked whether G
has a 4-DORG representation such that the vertices of L (resp. the vertices of
R, U , D) correspond to the rays pointing leftwards (resp. rightwards, upwards,
downwards). To obtain our result, we first construct two cliques G1, G2 that
have both directed and undirected edges. Then we iteratively augment G1 and
G2, constructing eventually a graph G̃ with both directed and undirected edges.
As we prove, the input graph G has a 4-DORG representation if and only if G̃
has a transitive orientation respecting its directed edges. As a crucial tool for
our results, we introduce the notion of an S-orientation of an arbitrary graph,
which extends the notion of a transitive orientation. By setting D = ∅, our
results trivially imply that, given a partition {L,R,U} of the vertices of G, it
can be efficiently checked whether G has a 3-DORG representation according to
this partition. With an independent approach, we show that if we are given a
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permutation π of the vertices of U (which represents the order of y-coordinates
of ray-endpoints for the set U) but the partition {L,R} of V \ U is unknown,
then we can still efficiently check whether G has a 3-DORG representation.
The method we use to prove this result can be viewed as a particular partition
refinement technique. Such techniques have various applications in string sorting,
automaton minimization, and graph algorithms (see [8] for an overview).

Notation. We consider in this article simple undirected and directed graphs. For
a graph G, we denote its vertex and edge set by V (G) and E(G), respectively. In
an undirected graphG, the edge between vertices u and v is denoted by uv, and in
this case u and v are said to be adjacent in G. The set N(v) = {u ∈ V : uv ∈ E}
is called the neighborhood of the vertex v of G. If the graph G is directed, we
denote by 〈uv〉 the oriented arc from u to v. If G is the complete graph (i.e. a
clique), we call an orientation λ of all (resp. of some) edges of G a (partial)
tournament of G. If in addition λ is transitive, then we call it a (partial) tran-
sitive tournament. Given two matrices A and B of size n × n each, we call by
O(MM(n)) the time needed by the fastest known algorithm for multiplying A
and B; currently this can be done in O(n2.376) time [3].

Let G be a 4-DORG. Then, in a 4-DORG representation of G, every ray is
completely determined by one point on the plane and the direction of the ray.
We call this point the endpoint of this ray. Given a 4-DORG G along with a
4-DORG representation of it, we may not distinguish in the following between a
vertex of G and the corresponding ray in the representation, whenever it is clear
from the context. Furthermore, for any vertex u of G we will denote by ux and
uy the x-coordinate and the y-coordinate of the endpoint of the ray of u in the
representation, respectively.

2 4-Directional Orthogonal Ray Graphs

In this section we investigate some fundamental properties of 4-DORGs and their
representations, which will then be used for our recognition algorithm. The next
observation on a 4-DORG representation is crucial for the rest of the section.

Observation 1 Let G = (V,E) be a graph that admits a 4-DORG representa-
tion, in which L (resp. R,U,D) is the set of leftwards (resp. rightwards, upwards,
downwards) oriented rays. If u ∈ U and v ∈ R (resp. v ∈ L), then uv ∈ E if
and only if ux > vx (resp. ux < vx) and uy < vy. Similarly, if u ∈ D and v ∈ R
(resp. v ∈ L), then uv ∈ E if and only if ux > vx (resp. ux < vx) and uy > vy.

For the remainder of the section, let G = (V,E) be an arbitrary input graph
with vertex partition V = L ∪R ∪ U ∪D, such that E ⊆ (L ∪R)× (U ∪D).

The oriented cliques G1 and G2. In order to decide whether the input graph
G = (V,E) admits a 4-DORG representation, in which L (resp. R, U , D) is the
set of leftwards (resp. rightwards, upwards, downwards) oriented rays, we first
construct two auxiliary cliques G1 and G2 with |V | vertices each. We partition
the vertices of G1 (resp. G2) into the sets Lx, Rx, Ux, Dx (resp. Ly, Ry, Uy, Dy).
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The intuition behind this notation for the vertices of G1 and G2 is that, if G
has a 4-DORG representation with respect to the partition {L,R,U,D}, then
each of these vertices of G1 (resp. G2) corresponds to the x-coordinate (resp. y-
coordinate) of the endpoint of a ray of G in this representation.

We can now define some orientation of the edges of G1 and G2. The intuition
behind these orientations comes from Observation 1: if the input graph G is a 4-
DORG, then it admits a 4-DORG representation such that, for every u ∈ U ∪D
and v ∈ L ∪R, we have that ux > vx (resp. uy > vy) in this representation if
and only if 〈uxvx〉 (resp. 〈uyvy〉) is an oriented edge of the clique G1 (resp. G2).
That is, since all x-coordinates (resp. y-coordinates) of the endpoints of the rays
in a 4-DORG representation can be linearly ordered, these orientations of the
edges of G1 (resp. G2) build a transitive tournament.

Therefore, the input graph G admits a 4-DORG representation if and only
if some edges of G1, G2 are forced to have specific orientations in these tran-
sitive tournaments of G1 and G2, while some pairs of edges of G1, G2 are not
allowed to have a specific pair of orientations in these tournaments. Motivated
by this, we introduce in the next two definitions the notions of type-1-mandatory
orientations and of forbidden pairs of orientations, which will be crucial for our
analysis in the remainder of Section 2.

Definition 1 (type-1-mandatory orientations). Let u ∈ U ∪ D and v ∈
L ∪R, such that uv ∈ E. If u ∈ U and v ∈ R (resp. v ∈ L) then the orientations
〈uxvx〉 (resp. 〈vxux〉) and 〈vyuy〉 of G1 and G2 are called type-1-mandatory.
If u ∈ D and v ∈ R (resp. v ∈ L) then the orientations 〈uxvx〉 (resp. 〈vxux〉)
and 〈uyvy〉 of G1 and G2 are called type-1-mandatory. The set of all type-1-
mandatory orientations of G1 and G2 is denoted by M1.

Definition 2 (forbidden pairs of orientations). Let u ∈ U ∪ D and
v ∈ R ∪ L, such that uv /∈ E. If u ∈ U and v ∈ R (resp. v ∈ L) then the
pair {〈uxvx〉 , 〈vyuy〉} (resp. the pair {〈vxux〉 , 〈vyuy〉}) of orientations of G1

and G2 is called forbidden. If u ∈ D and v ∈ R (resp. v ∈ L) then the pair
{〈uxvx〉 , 〈uyvy〉} (resp. the pair {〈vxux〉 , 〈uyvy〉}) of orientations of G1 and G2

is called forbidden.

For simplicity of notation in the remainder of the paper, we introduce in the
next definition the notion of optional edges.

Definition 3 (optional edges). Let {〈pq〉 , 〈ab〉} be a pair of forbidden orien-
tations of G1 and G2. Then each of the (undirected) edges pq and ab is called
optional edges.

The augmented oriented cliques G∗1 and G∗2. We iteratively augment the
cliques G1 and G2 into the two larger cliques G∗1 and G∗2, respectively, as follows.
For every optional edge pq of G1 (resp. of G2), where p ∈ Ux∪Dx and q ∈ Lx∪Rx

(resp. p ∈ Uy ∪Dy and q ∈ Ly ∪ Ry), we add two vertices rp,q and rq,p and we
add all needed edges to make the resulting graph G∗1 (resp. G∗2) a clique. Note
that, if the initial graph G has n vertices and m non-edges (i.e.

(
n
2

)
−m edges),
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then G∗1 and G∗2 are cliques with n + 2m vertices each. We now introduce the
notion of type-2-mandatory orientations of G∗1 and G∗2.

Definition 4 (type-2-mandatory orientations). For every optional edge pq
of G∗1, the orientations 〈prp,q〉 and 〈qrq,p〉 of G∗1 are called type-2-mandatory
orientations of G∗1. For every optional edge pq of G∗2, the orientations 〈rp,qp〉
and 〈rq,pq〉 of G∗2 are called type-2-mandatory orientations of G∗2. The set of all
type-2-mandatory orientations of G∗1 and G∗2 is denoted by M2.

The coupling of G∗1 and G∗2 into the oriented clique G∗. Now we iteratively
construct the clique G∗ from the cliques G∗1 and G∗2, as follows. Initially G∗ is
the union of G∗1 and G∗2, together with all needed edges such that G∗ is a clique.
Then, for every pair {〈pq〉 , 〈ab〉} of forbidden orientations of G∗1 and G∗2 (where
pq ∈ E(G1) and ab ∈ E(G2), cf. Definition 2), we merge in G∗ the vertices rb,a
and rp,q, i.e. we have rb,a = rp,q in G∗. Recall that each of the cliques G∗1 and
G∗2 has n + 2m vertices. Therefore, since G∗1 and G∗2 have m pairs {〈pq〉 , 〈ab〉}
of forbidden orientations, the resulting clique G∗ has 2n+ 3m vertices. We now
introduce the notion of type-3-mandatory orientations of G∗.

Definition 5 (type-3-mandatory orientations). For every pair {〈pq〉 , 〈ab〉}
of forbidden orientations of G∗1 and G∗2, the orientation 〈rq,pra,b〉 is called a type-
3-mandatory orientation of G∗. The set of all type-3-mandatory orientations of
G∗ is denoted by M3.

Whenever the orientation of an edge uv of G∗ is type-1 (resp. type-2, type-3)-
mandatory, we may say for simplicity that the edge uv (instead of its orientation)
is type-1 (resp. type-2, type-3)-mandatory. An example for the construction of
G∗ from G∗1 and G∗2 is illustrated in Figure 2, where it is shown how two optional
edges pq ∈ E(G∗1) and ab ∈ E(G∗2) are joined together inG∗, where {〈pq〉 , 〈ab〉} is
a pair of forbidden orientations of G∗1 and G∗2. For simplicity of the presentation,
only the optional edges pq and ab, the type-2-mandatory edges prp,q, qrq,p, ara,b,
brb,a, and the edges rp,qrq,p and ra,brb,a are shown in Figure 2. Furthermore, the
type-2-mandatory orientations 〈prp,q〉, 〈qrq,p〉, 〈ra,ba〉, and 〈rb,ab〉, as well as
the type-3-mandatory orientation 〈rq,pra,b〉, are drawn with double arrows in
Figure 2 for better visibility.

p

qa

b

ra,b rq,p

rb,a = rp,q

Fig. 2. An example of joining in G∗ the pair of optional edges {pq, ab}, where pq ∈
E(G1) and ab ∈ E(G2).

In the next theorem we provide a characterization of 4-DORGs in terms of a
transitive tournament λ∗ of the clique G∗. The main novelty of the characteriza-

6



tion of Theorem 1 is that it does not rely on the forbidden pairs of orientations.
This characterization will be used in Section 4, in order to provide our main re-
sult of the paper, namely the recognition of 4-DORGs with respect to the vertex
partition {L,R,U,D}.

Theorem 1. The next two conditions are equivalent:

1. The graph G = (V,E) with n vertices has a 4-DORG representation with
respect to the vertex partition {L,R,U,D}.

2. There exists a transitive tournament λ∗ of G∗, such that M1∪M2∪M3 ⊆ λ∗,
and in addition:
(a) let pq be an optional edge of G∗1 and pw /∈M2 be an incident edge of pq

in G∗1; then 〈wrp,q〉 ∈ λ∗ implies that 〈wp〉 ∈ λ∗,
(b) let pq be an optional edge of G∗2 and pw /∈M2 be an incident edge of pq

in G∗2; then 〈rp,qw〉 ∈ λ∗ implies that 〈pw〉 ∈ λ∗,
(c) let pq be an optional edge of G∗1 (resp. G∗2), where p ∈ Ux∪Dx (resp. p ∈

Uy ∪Dy); then we have:
(i) either 〈pq〉 , 〈rp,qq〉 , 〈rp,qrq,p〉 ∈ λ∗ or 〈qp〉, 〈qrp,q〉, 〈rq,prp,q〉 ∈ λ∗,

(ii) for any incident optional edge pq′ of G∗1 (resp. G∗2), either
〈pq〉 , 〈rp,q′q〉 ∈ λ∗ or 〈qp〉 , 〈qrp,q′〉 ∈ λ∗,

(iii) for any incident optional edge p′q of G∗1 (resp. G∗2), either
〈rp,qq〉 , 〈rp,qrq,p′〉 ∈ λ∗ or 〈qrp,q〉 , 〈rq,p′rp,q〉 ∈ λ∗.

Furthermore, as we can prove, given a transitive tournament λ∗ of G∗ as in
Theorem 1, a 4-DORG representation of G can be computed in O(n2) time. An
example of the orientations of condition 2(c) in Theorem 1 (for the case of G∗1)
is shown in Figure 3. For simplicity of the presentation, although G∗1 is a clique,
we show in Figure 3 only the edges that are needed to illustrate Theorem 1.

3 S-orientations of graphs

In this section we introduce a new way of augmenting an arbitrary graph G
by adding a new vertex and some new edges to G. This type of augmentation
process is done with respect to a particular edge ei = xiyi of the graph G, and
is called the deactivation of ei in G. In order to do so, we first introduce the
crucial notion of an S-orientation of a graph G (cf. Definition 7), which extends
the classical notion of a transitive orientation. For the remainder of this section,
G denotes an arbitrary graph, and not the input graph discussed in Section 2.

Definition 6. Let G = (V,E) be a graph and let (xi, yi), 1 ≤ i ≤ k, be k ordered
pairs of vertices of G, where xiyi ∈ E. Let Vout, Vin be two disjoint vertex subsets
of G, where {xi : 1 ≤ i ≤ k} ⊆ Vout ∪ Vin. For every i = 1, 2, . . . , k:

– a special neighborhood of xi is a vertex subset S(xi) ⊆(
N(xi) ∩

(⋂
xj=xi

N(yj)
))
\ {xj : 1 ≤ j ≤ k},

– the forced neighborhood orientation of xi is:
• the set F (xi) = {〈xiz〉 : z ∈ S(xi)} of oriented edges of G, if xi ∈ Vout,
• the set F (xi) = {〈zxi〉 : z ∈ S(xi)} of oriented edges of G, if xi ∈ Vin.
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Fig. 3. An example of the orientations of the clique G∗1 in the transitive tournament
λ∗, where p ∈ Ux∪Dx (cf. condition 2(c) in Theorem 1): (a) both possible orientations
where the optional edges pq and pq′ are incident and (b) both possible orientations
where the optional edges pq and p′q are incident. In both (a) and (b), the orientations
of the type-2-mandatory edges are drawn with double arrows. The case for G2 is the
same, except that the orientation of the type-2-mandatory edges is the opposite.

Definition 7. Let G = (V,E) be a graph. For every i = 1, 2, . . . , k let S(xi) be
a special neighborhood in G. Let T be a transitive orientation of G. Then T is
an S-orientation of G on the special neighborhoods S(xi), 1 ≤ i ≤ k, if for every
i = 1, 2, . . . , k:

1. F (xi) ⊆ T and
2. for every z ∈ S(xi), 〈xiyi〉 ∈ T if and only if 〈zyi〉 ∈ T .

Definition 8. Let G = (V,E) be a graph. For every i = 1, 2, . . . , k let S(xi) be a
special neighborhood in G. Let T be an S-orientation of G on the sets S(xi), 1 ≤
i ≤ k. Then T is consistent if, for every i = 1, 2, . . . , k, it satisfies the following
conditions, whenever zw ∈ E, where z ∈ S(xi) and w ∈ (N(xi)∩N(yi)) \S(xi):

– if xi ∈ Vout, then 〈wz〉 ∈ T implies that 〈wxi〉 ∈ T ,
– if xi ∈ Vin, then 〈zw〉 ∈ T implies that 〈xiw〉 ∈ T .

In the next definition we introduce the notion of deactivating an edge ei =
xiyi of a graph G, where S(xi) is a special neighborhood in G. In order to
deactivate edge ei of G, we augment appropriately the graph G, obtaining a new
graph G̃(ei) that has one new vertex.

Definition 9. Let G = (V,E) be a graph and let S(xi) be a special neighborhood

in G. The graph G̃(ei) obtained by deactivating the edge ei = xiyi (with respect
to Si) is defined as follows:

1. V (G̃(ei)) = V ∪ {ai} (i.e. add a new vertex ai to G),

2. E(G̃(ei)) = E ∪ {zai : z ∈ N(xi) \ S(xi)}.
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Algorithm 1 Recognition of 4-DORGs

Input: An undirected graph G = (V,E) with a vertex partition V = L ∪R ∪ U ∪D
Output: A 4-DORG representation for G, or the announcement that G is not a 4-

DORG graph

1: n← |V |; m←
(
n
2

)
− |E| {m is the number of non-edges in G}

2: Construct from G the clique G1 with vertex set Lx∪Rx∪Ux∪Dx and the clique G2

with vertex set Ly ∪Ry ∪ Uy ∪Dy

3: Construct the set M1 of type-1-mandatory orientations in G1 and G2

4: Construct the m forbidden pairs of orientations of G1 and G2

5: Construct from G1, G2 the augmented cliques G∗1, G
∗
2 and the set M2 of type-2-

mandatory orientations
6: Construct from G∗1, G

∗
2 the clique G∗ and the set M3 of type-3-mandatory orienta-

tions

7: for i = 1 to m do
8: Let piqi ∈ E(G1), aibi ∈ E(G2) be the optional edges in the ith pair of forbidden

orientations, where pi ∈ Ux ∪Dx, qi ∈ Lx ∪Rx, ai ∈ Uy ∪Dy, bi ∈ Ly ∪Ry

9: (x2i−1, y2i−1)← (pi, qi); (x2i, y2i)← (qi, rpi,qi)
10: (x2m+2i−1, y2m+2i−1)← (ai, bi); (x2m+2i, y2m+2i)← (bi, rai,bi)
11: S(xi)← {rxj ,yi : xj = xi}

12: Construct the graph G̃∗ by iteratively deactivating all edges xiyi, 1 ≤ i ≤ 4m

13: if G̃∗ has a transitive orientation T̃ such that M1 ∪M2 ∪M3 ⊆ T̃ then
14: return the 4-DORG representation of G computed by Theorem 1
15: else
16: return “G is not a 4-DORG graph with respect to the partition {L,R,U,D}”

After deactivating the edge ek of G, obtaining the graph G̃(ek), we can con-
tinue by sequentially deactivating the edges ek−1, ek−2, . . . , e1, obtaining even-

tually the graph G̃.

Theorem 2. Let G = (V,E) be a graph and S(xi), 1 ≤ i ≤ k, be a set of k
special neighborhoods in G. Let M0 be an arbitrary set of edge orientations of
G, and let G̃ be the graph obtained after deactivating all edges ei = xiyi, where
1 ≤ i ≤ k.

– If G has a consistent S-orientation T on S(x1), S(x2), . . . , S(xk) such that

M0 ⊆ T , then G̃ has a transitive orientation T̃ such that M0 ∪ F (xi) ⊆ T̃
for every i = 1, 2, . . . , k.

– If G̃ has a transitive orientation T̃ such that M0 ∪ F (xi) ⊆ T̃ for every
i = 1, 2, . . . , k, then G has an S-orientation T on S(x1), S(x2), . . . , S(xk)
such that M0 ⊆ T .

4 Efficient Recognition of 4-DORGs

In this section we complete our analysis in Sections 2 and 3 and we present our 4-
DORG recognition algorithm (cf. Algorithm 1). Let G = (V,E) be an arbitrary

9



input graph that is given along with a vertex partition V = L ∪R ∪ U ∪D,
such that E ⊆ (L ∪R)× (U ∪D). Assume that G has n vertices and m non-
edges (i.e.

(
n
2

)
−m edges). First we construct from G the cliques G1, G2, then we

construct the augmented cliques G∗1, G
∗
2, and finally we combine G∗1 and G∗2 to

produce the clique G∗ (cf. Section 2). Then, for a specific choice of 4m ordered
pairs (xi, yi) of vertices, where 1 ≤ i ≤ 4m (cf. Algorithm 1), and for particular
sets S(xi) and neighborhood orientations F (xi), 1 ≤ i ≤ 4m (cf. Definitions 6
and 7), we iteratively deactivate the edges xiyi, 1 ≤ i ≤ 4m (cf. Section 3),

constructing thus the graph G̃∗. Then, we can prove that for a specific partial
orientation of the graph G̃∗, G̃∗ has a transitive orientation that extends this
partial orientation if and only if the input graph G has a 4-DORG representation
with respect to the vertex partition {L,R,U,D}. The proof of correctness of
Algorithm 1 and the timing analysis are given in the next theorem.

Theorem 3. Let G = (V,E) be a graph with n vertices, given along with a ver-
tex partition V = L ∪R ∪ U ∪D, such that E ⊆ (L ∪R)× (U ∪D). Then Al-
gorithm 1 constructs in O(MM(n2)) time a 4-DORG representation for G with
respect to this vertex partition, or correctly announces that G does not have a
4-DORG representation.

5 Recognizing 3-DORGs with partial representation
restrictions

In this section we consider a bipartite graph G = (A,B,E), where |A| = m and
|B| = n, given along with an ordering π = (v1, v2, . . . , vm) of the vertices of A.
The question we address is the following: “Does G admit a 3-DORG represen-
tation where A (resp. B) is the set of rays oriented upwards (resp. horizontal,
i.e. either leftwards or rightwards), such that, whenever 1 ≤ i < j ≤ m, the
y-coordinate of the endpoint of vi ∈ A is greater than that of vj ∈ A?” Our ap-
proach uses the adjacency relations in G to recursively construct an x-coordinate
ordering of the endpoints of the rays in the set A. If during the process we do not
reach a contradiction, we eventually construct a 3-DORG representation for G,
otherwise we conclude that such a representation does not exist.

Definition 10. Let P1, P2 be two ordered partitions of the same base set S.
Then P1 and P2 are compatible if there exists an ordered partition R of S which
is refining and order preserving for both P1 and P2. A linear order L respects
an ordered partition P of S, if L and P are compatible.

Here we provide the main ideas and an overview of our algorithm. We start
with the trivial partition of the set A (consisting of a single set including all
elements of A). During the algorithm we process each vertex of V = A∪B once,
and each time we process a new vertex we refine the current partition of the
vertices of A, where the final partition of A implies an x-coordinate ordering of
the rays of A. In particular, the algorithm proceeds in |A| = m phases, where
during phase i we process vertex vi ∈ A (the sequence of the vertices in A is
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v1

v2

v3

v4

v5

u1

u2

u3

u4

u5

v4 v1 v3 v2 v5

v4 v1 v3 v2 v5

For v1: u1

For v2: u2

For v3: u4

For v4: u5

For v5:

(4)(1)(235)

(4)(1)(3)(2)(5)

(4)(1)(3)(2)(5)

(4)(1)(3)(2)(5)

(4)(1)(3)(2)(5)

v4 v1 v3 v2 v5

u1
u2

u3
u4

u5

Color chart:

v ∈ A with neighbors currently processed

Neighbor of the currently processed u ∈ B

Non-neighbor of the currently processed u ∈ B

v ∈ A with all neighbors previously processed

v4 v1 v3 v2 v5

v4 v1 v3 v2 v5

v4 v1 v3 v5 v2

v4 v1 v3 v2 v5

Partitions:

(4)(1)(3)(52)

u3

Fig. 4. Construction of a 3-DORG representation. Top left of the figure: the bipartite
graph G with the given vertex ordering π = (v1, v2, v3, v4, v5). Top-right: the chain of
partition refinements. Bottom left: The 3-DORG representation of G as read from the
partition chain.

according to the given ordering π). During phase i, we process sequentially every
neighbor u ∈ N(vi) ⊆ B that has not been processed in any previous phase j < i.

For every i = 1, 2, . . . ,m let Ai = {vi, vi+1, . . . , vm} be the set of vertices
of A that have not been processed before phase i. At the end of every phase i,
we fix the position of vertex vi ∈ A in the final partition of A, and we ignore
vi in the subsequent phases (i.e. during the phases j > i we consider only the
restriction of the current partition to the vertices of Ai+1). Phase i starts with
the partition of Ai that results at the end of phase i−1. For any vertex u ∈ N(vi)
that we process during phase i, we check whether the current partition P of Ai is
compatible with at least one of the ordered partitions Q1 = (N(u), Ai\N(u)) and
Q2 = (Ai \N(u), N(u)). If not, then we conclude that G is not a 3-DORG with
respect to the given ordering π of A. Otherwise we refine the current partition P
into an ordered partition that is also a refinement of Q1 (resp. Q2). In the case
where P is compatible with both Q1 and Q2, it does not matter if we compute
a common refinement of P with Q1 or Q2. If we can execute all m phases of this
algorithm without returning that a 3-DORG representation does not exist, then
we can compute a 3-DORG representation of G in which the y-coordinates of
the endpoints of the rays of A respect the ordering π. In this extended abstract
this construction is illustrated in the example of Figure 4.

Theorem 4. Given a bipartite graph G = (V,E) with color classes A,B and an
ordering π of A, we can decide in O(|V |2) time whether G admits a 3-DORG
representation where A are the vertical rays and the y-coordinates of their end-
points respect the ordering π.
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