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1. Introduction. 
 
This paper will take up three of  Patrick Suppes’s favourite topics: representation, 
invariance and causality. I begin not immediately with Suppes’s own work but with that 
of his Stanford colleague, Michael Friedman. Friedman argues that various high level 
claims of physics theories are not empirical laws at all but rather constitutive principles, 
principles without which the concepts of the theory would lack empirical content. I do 
not disagree about the need for constitutive principles. Rather I think Friedman has 
mislocated them, and entirely at the wrong end of the scale of abstraction. It is 
representation theorems, as Pat pictures them, that are the true constitutive principles, and 
that is true for theories far beyond physics. 
 
My disagreement with Friedman has two prongs. First, the high-level principles he calls 
constitutive are not (at least in many cases). Second, representations theorems are. The 
first half of my claim depends on a quite different view of theory that I have from 
Friedman, a view  I believe I share at least in part with Pat. But it is not the central part of 
his work I want to connect with today. Here I shall focus on the second half, in favour of 
representation theorems. I begin by explaining Friedman’s view and describing why I 
think representation theorems are better candidates than his own for constitutive 
principles. Then I shall illustrate by looking at some simple representation theorems in a 
subject that Pat has made an important revolution in: causality. I shall discuss briefly a 
representation theorem of Judea Pearl’s about causes and counterfactuals that illustrates 
how worries about a particular representation can be reinforced by investigating a related 
representation theorem.  But, because of Pat’s championing of invariance, my primary 
example will be a representation theorem that links causality with invariance. I want to 
illustrate the role of representation theorems as constitutive principles by showing that the 
theorem on invariance is indeed a presupposition for (one kind of ) empirical 
meaningfulness of the abstract concept of a causal law.       
 
 
2. Constitutive principles 
 
For the Kantian, part of the job of ensuring that our empirical knowledge fits the world of 
experience is done by the synthetic a priori. This provides the rational framework within 
which we experience the world. As Michael Friedman puts it, “synthetic a priori 
knowledge (typified by geometry and mechanics) …functions as the presupposition or 
condition of possibility of all properly empirical knowledge.” (Dynamics of Reason, 
1999, Stanford, California: CSLI Publications, p. 26) Michael Friedman is keen to 
resurrect the role of the synthetic a priori, but not as a once-and-for-all framework 
necessary for empirical experience. Rather each proper theory in modern physics has its 



own framework that is held, relative to it, as a priori and that makes possible the 
genuinely empirical knowledge within that theory. 
 
One of Friedman’s principal examples are the three laws of Newtonian mechanics, which 
are a priori in his sense in the Newtonian scheme as currently understood. The law of 
universal gravitation – “that there is a force of attraction or approach, directly 
proportional to the two masses and inversely proportional to the square of the distance 
between them, between any two pieces of matter in the universe” (Dynamics, p. 36) – is 
the one empirical law in the scheme.  This, he points out, talks about acceleration. 
Newton defined acceleration relative to absolute space. Since we do not believe in 
absolute space, we cannot do this. We say rather that the law of universal gravitation 
holds in any inertial frame, “where an inertial frame of reference is simply one in which 
the Newtonian laws hold (the center of mass frame of the solar system, for example, is a 
very close approximation to such a frame.” (p. 36) This is why in our current rendering of 
Newtonian theory Newton’s three laws must be taken as a priori: 
 

It follows that without the Newtonian laws of mechanics the law of universal 
gravitation would not even make empirical sense, let alone give a correct account 
of the empirical phenomena. For the concept of universal acceleration that figures 
essentially in this law would then have no empirical meaning or application: we 
would simply have no idea what the relevant frame of reference might be in 
relation to which such accelerations are defined. (p. 36) 
 

A priori here can have a very local meaning: prior to the empirical laws, though perhaps 
posterior to other theories, claims, operations and definitions. Friedman argues for 
something more general. He maintains that these principles cannot be warranted in the 
same way that genuine empirical laws can. Whether that is so for the claims he counts as 
constitutive, those I want to count under this label – representation theorems –  certainly 
are a priori in a straightforward sense: they are meant to be provable. 
 
According to Friedman constitutive principles, like those defining the frame of reference 
of the concept of acceleration, make the “empirical application of the theories in question 
first possible”.1( p. 49) I think this is a misdescription. The principles that Friedman calls 
‘constitutive’ make the concepts intelligible, not empirically applicable. They provide 
univocal and precise definitions that fit the concepts into the relevant high theory but they 
are not the principles that make possible the empirical application of these concepts. 
When it come to the presuppositions for empirical knowledge, as opposed to 
presuppositions for fitting these concepts into a highly abstract theory, representation 
theorems are a far better candidate. 
 
 
3. Representation theorems. We represent features of the empirical world with specific 
mathematical forms that have specific properties. These forms tend to be far more 
universal across applications than is any (univocal) interpretation or definition of the 
                                                 
1 This of course, as he points out, does not guarantee that the empirical principles that we formulate using 
them will be true, just that they are candidates for truth or falsity. 



related concept. Acceleration for instance: no matter what frame of reference we define it 
relative to, we almost always represent it as d2x/dt2. So length itself must be represented 
as a quantity twice-differentiable with respect to time. But it also has a number of other 
built-in features as well. Probably the simplest is that length is represented by an additive 
measure. Can a mathematical representation with these characteristics adequately 
represent the phenomena to be associated with “length”? 
 
The answer depends on the structure of the phenomena to be represented. In the case of 
length, the phenomena might include what happens to sets of measuring rods. For 
instance, as Suppes puts it2, the collection A of rods is longer than B “if and only if the 
set A of rods, when laid end-to-end in a straight line, is judged longer than the set B of 
rods also so laid out.”3 Formalizing that fact, along with a couple of other obvious 
features we ascribe to the empirical concept of length (for instance, that any collection of 
rods is at least as long as the empty set), we can characterize the structure consisting of 
the set of rods and the longer-than relation as a finite equally-spaced extensive structure.  
 
Now we are in a position to show that an additive measure is an appropriate 
representation for length by proving a representation theorem. In this case the theorem 
tells us that for any finite equally-spaced extensive structure, there is an additive measure 
µ such that for every pair of sets of rods, A and B,  µ (A)≥  µ(B) iff A is longer than B. 
That is only a start of course. In order to guarantee the empirical applicability of the 
concept of length as we represent it in mathematical physics,  we need a representation 
theorem relating all the qualitative features we assign to length to its mathematical 
representation. And similarly for all the quantities of empirical reality and their features 
for which we provide mathematical representations.  
 
It is, then, I urge, in the representation theorems for the concepts we offer in use in 
modern science that we find our best candidates for “constitutive principles”. These are 
the preconditions for the application of our concepts to empirical reality. Our 
representations are consistent with the features we ascribe to empirical reality only if the 
appropriate representation theorems are true. 
 
4. Causality and  invariance: a representation theorem. I consider here only linear causal 
systems, where 
 
{V,≤,L,C} is a linear causal system iff  
 

V is a finite set of variables, x1,…,xn 

≤ is a complete, antisymmetric, transitive ordering on V 
L is a finite set of linear equations over V of form xi = Σajxj, j≠i 
C ⊂ L   
 

                                                 
2 Representation and Invariance of Scientific Structures, 2002, Stanford, California: CSLI Publications. 
3 P. 64 



such that the following axioms hold: 
 
1.  L-Consistency: Members of L are mutually consistent. 
 
2. L-completeness: All linear combinations of members of L are in L.  
 
3. Causal precedence and antireflexivity: xi = Σajxj  ε C  xj<xi

4. 
 
4. Causal antisymmetry: xi = Σajxj (jεN) ε C ∀jεN, ∀a≠0, xj = axi + … ∉ C. 
 
5. Causal numerical transitivity: xi = Σajxj (jεN) ε C and xj = Σbkxk (kεM) ε C ΣΣajbkxk 
(jεN, kεM) ε C 
 
6. Causal independence: Members of C are independent (i.e., not linear combinations) of 
each other except for numerical transitivity. 
 
7.  Supervenience:  xi = Σajxj ε L iff it is a linear combination of equations in C.5 
 
 
 
Define: a C-intervention on xi ε V creates a new linear causal system identical to the first 
but where C is replaced by C’: C’ = the closure under numerical transitivity of C – {all 
equations ε C of form xi = Σ…} ∪ {xi = X}, for any value X in the range of xi. 
 
 
Invariance Theorem: For any linear causal system {V,≤,L,C}, an equation xi = Σajxj for 
jεN and xj<xi ε C iff it is in C’ under all C-interventions on xj ∀jεN, that is, iff it is 
invariant under C-interventions on right-hand-side variables.6 
 
Notice that the set C of causal laws relative to any set V of variables and set L of 
functional laws over them is not unique. There are many subsets of L that have the right 
form to count as a causal basis for L, even once the causal order among the quantities 
represented by V is fixed. Which is the right set – the set of ‘true’ causal laws for a 
situation – is pinned down by the invariance theorem coupled with a physical 
interpretation of “intervention”. If we suppose that we have a set of physical operations 
that count as interventions on the quantities represented by x1,…,xn, relative to the true 
causal laws – then xn+1 = Σajxj  (for j = 1,…,n) is a true causal law iff it is invariant under 
all those interventions. 
 

                                                 
4 a<b =df a≤b and ¬b≤a 
5 This should guarantee that whenever two laws for the same effect appear in C, the ‘connecting’ equation 
that gets from one to the other by numerical transitivity is itself in C since the connector must itself be in C 
or be a linear combination of equations in C. (This is needed for the proof.) 
6 For a proof see my “Two Theorems…” HELP 



Consider now the formal characterization of a linear causal system on the one hand and 
the operational characteristic of invariance under intervention on the one other. The 
operational characterization does provide a concept of causal law that is immediately 
empirically meaningful. But it faces the same problems as do operational definitions in 
general. First, it is too narrow, picking out just one operation to characterize the concept, 
thus requiring a host of additional empirical laws to guarantee the connection of what is 
so characterized with the other operations we use to measure the concept and with the 
predictions we expect to make from it. Second, it is ad hoc. How do we know that this 
operation measures the concept we are concerned with?  The representation theorem 
shows that it must: the invariance theorem must hold if the formal characteristics of 
‘causal laws’ are to hold.   
 
On the other hand, the formal characteristics by themselves are not enough. What it is to 
be a causal law is empirically underdetermined by these features, even though they 
include the central claim that causal laws are the ‘ontological basis’ for all functionally 
true laws plus the presupposition of some particular causal order. The tie to the 
invariance test provides empirical content. But again, it is ad hoc simply to assert the 
connection between the formal characteristics and an operation of choice for measuring 
it. The representation theorem shows that the choice is not ad hoc. The representation 
theorem is a presupposition of the empirical meaningfulness of the concept of causal law. 
That is, as I said in my introduction, the representation theorem is the true site of 
constitutive principles. 


