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Abstract. Paths P 1, . . . , P k in a graph G = (V,E) are mutually in-
duced if any two distinct P i and P j have neither common vertices nor
adjacent vertices. The Induced Disjoint Paths problem is to decide
if a graph G with k pairs of specified vertices (si, ti) contains k mutu-
ally induced paths P i such that each P i starts from si and ends at ti.
This is a classical graph problem that is NP-complete even for k = 2.
We introduce a natural generalization, Induced Disjoint Connected
Subgraphs: instead of connecting pairs of terminals, we must connect
sets of terminals. We give almost-complete dichotomies of the compu-
tational complexity of both problems for H-free graphs, that is, graphs
that do not contain some fixed graph H as an induced subgraph. Finally,
we give a complete classification of the complexity of the second problem
if the number k of terminal sets is fixed, that is, not part of the input.

Keywords: induced subgraphs · connectivity · H-free graph · complex-
ity dichotomy

1 Introduction

The well-known Disjoint Paths problem is one of the problems in Karp’s list
of NP-complete problems. It is to decide if a graph has pairwise vertex-disjoint
paths P 1, . . . , P k where each P i connects two pre-specified vertices si and ti. Its
generalization, Disjoint Connected Subgraphs, plays a crucial role in the
graph minor theory of Robertson and Seymour. This problem asks for connected
subgraphs D1, . . . , Dk, where each Di connects a pre-specified set of vertices Zi.
In a recent paper [18] we classified, subject to a small number of open cases, the
complexity of both these problems for H-free graphs, that is, for graphs that do
not contain some fixed graph H as an induced subgraph.

Our Focus. We consider the induced variants of Disjoint Paths and Disjoint
Connected Subgraphs. These problems behave differently. Namely, Disjoint
Paths for fixed k, or more generally, Disjoint Connected Subgraphs, after
fixing both k and ` = max{|Z1|, . . . , |Zk|}, is polynomial-time solvable [30]. In
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contrast, Induced Disjoint Paths is NP-complete even when k = 2, as shown
both by Bienstock [2] and Fellows [5]. Just as for the classical problems [18], we
perform a systematic study and focus on H-free graphs. As it turns out, for the
restriction to H-free graphs, the induced variants actually become computation-
ally easier for an infinite family of graphs H. We first give some definitions.

Terminology. For a subset S ⊆ V in a graph G = (V,E), let G[S] denote
the induced subgraph of G by S, that is, G[S] is the graph obtained from G
after removing every vertex not in S. Let G1 +G2 be the disjoint union of two
vertex-disjoint graphs G1 and G2. We say that paths P 1, . . . , P k, for some k ≥ 1,
are mutually induced paths of G if there exists a set S ⊆ V such that G[S] =
P 1 + . . .+ P k; note that every P i is an induced path and that there is no edge
between two vertices from different paths P i and P j . A path P is an s-t-path
(or t-s-path) if the end-vertices of P are s and t.

A terminal pair (s, t) is an unordered pair of two distinct vertices s and t in
a graph G, which we call terminals. A set T = {(s1, t1), . . . , (sk, tk)} of terminal
pairs of G is a terminal pair collection if the terminals pairs are pairwise disjoint,
so, apart from si 6= ti for i ∈ {1, . . . , k}, we also have {si, ti} ∩ {sj , tj} = ∅ for
every 1 ≤ i < j ≤ k. We now define the following decision problem:

Induced Disjoint Paths
Instance: a graphG and terminal pair collection T = {(s1, t1) . . . , (sk, tk)}.
Question: does G have a set of mutually induced paths P 1,. . . ,P k such that

P i is an si-ti path for i ∈ {1, . . . , k}?

Note that as every path between two vertices s and t contains an induced path
between s and t, the condition that every P i must be induced is not strictly
needed in the above problem definition. We say that the paths P 1, . . . , P k, if
they exist, form a solution of Induced Disjoint Paths.

We now generalize the above notions from pairs and paths to sets and con-
nected subgraphs. Subgraphs D1, . . . , Dk of a graph G = (V,E) are mutually in-
duced subgraphs of G if there exists a set S ⊆ V such that G[S] = D1+ . . .+Dk.
A connected subgraph D of G is a Z-subgraph if Z ⊆ V (D). A terminal set Z
is an unordered set of distinct vertices, which we again call terminals. A set
Z = {Z1, . . . , Zk} is a terminal set collection if Z1, . . . , Zk are pairwise disjoint
terminal sets. We now introduce the generalization:

Induced Disjoint Connected Subgraphs
Instance: a graph G and terminal set collection Z = {Z1, . . . , Zk}.
Question: does G have a set of mutually induced connected subgraphs

D1, . . . , Dk such that Di is a Zi-subgraph for i ∈ {1, . . . , k}?

The subgraphs D1, . . . , Dk, if they exist, form a solution. We write Induced
Disjoint Connected `-Subgraphs if ` = max{|Z1|, . . . , |Zk|} is fixed. Note
that Induced Disjoint Connected 2-Subgraphs is exactly Induced Dis-
joint Paths.
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1.1 Known Results

Only results for Induced Disjoint Paths are known and these hold for a
slightly more general problem definition (see Section 6). Namely, Induced Dis-
joint Paths is linear-time solvable for circular-arc graphs [10]; polynomial-time
solvable for chordal graphs [1], AT-free graphs [11], graph classes of bounded
mim-width [15]; and NP-complete for claw-free graphs [6], line graphs of triangle-
free chordless graphs [29] and thus for (theta,wheel)-free graphs, and for pla-
nar graphs; the last result follows from a result of Lynch [23] (see [11]). More-
over, Induced Disjoint Paths is XP with parameter k for (theta,wheel)-free
graphs [29] and even FPT with parameter k for claw-free graphs [9] and planar
graphs [17]; the latter can be extended to graph classes of bounded genus [20].

1.2 Our Results

Let Pr be the path on r vertices. A linear forest is the disjoint union of one or
more paths. We write F ⊆i G if F is an induced subgraph of G and sG for the
disjoint union of s copies of G. We can now present our first two results: the first
one includes our dichotomy for Induced Disjoint Paths (take ` = 2).

Theorem 1. Let ` ≥ 2. For a graph H, Induced Disjoint Connected `-
Subgraphs on H-free graphs is polynomial-time solvable if H ⊆i sP3 + P6 for
some s ≥ 0; NP-complete if H is not a linear forest; and quasipolynomial-time
solvable otherwise.

Theorem 2. For a graph H such that H 6= sP1 +P6 for some s ≥ 0, Induced
Disjoint Connected Subgraphs on H-free graphs is polynomial-time solv-
able for H-free graphs if H ⊆i sP1 + P3 + P4 or H ⊆i sP1 + P5 for some s ≥ 0,
and it is NP-complete otherwise.

Note the complexity jumps if we no longer fix `. We will show that all open cases
in Theorem 2 are equivalent to exactly one open case, namely H = P6.

Comparison. The Disjoint Connected Subgraphs problem restricted to
H-free graphs is polynomial-time solvable if H ⊆i P4 and else it is NP-complete,
even if the maximum size of the terminal sets is ` = 2, except for the three
unknown casesH ∈ {3P1, 2P1+P2, P1+P3} [18]. Perhaps somewhat surprisingly,
Theorems 1 and 2 show the induced variant is computationally easier for an
infinite number of linear forests H (if P 6= NP).

Fixing k. If the number k of terminal sets is fixed, we write k-Induced Dis-
joint Connected Subgraphs and prove the following complete dichotomy.

Theorem 3. Let k ≥ 2. For a graph H, k-Induced Disjoint Connected
Subgraphs on H-free graphs is polynomial-time solvable for H-free graphs if
H ⊆i sP1 + 2P4 or H ⊆i sP1 + P6 for some s ≥ 0, and it is NP-complete
otherwise.
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Comparison. We note a complexity jump between Theorems 2 and 3 when
H = sP1 + 2P4 for some s ≥ 0.

Paper Outline. Section 2 contains terminology, known results and auxiliary
results that we will use as lemmas. Hardness results for Theorem 1 transfer to
Theorem 2, whereas the reverse holds for polynomial results. As such, we show
all our polynomial-time algorithms in Section 3 and all our hardness reductions
in Section 4. The cases H = sP3 + P6 in Theorem 1 and H = sP1 + P5 in
Theorem 2 are proven by a reduction to Independent Set via so-called blob
graphs, just as the quasipolynomial-time result if H is a linear forest. Hence, we
also include the proof of the latter result in Section 3. In Section 5 we combine
the results from the previous two sections to prove Theorems 1–3.

In our theorems we have infinite families of polynomial cases related to nearly
H-free graphs. For a graph H, a graph G is nearly H-free if G is (P1 +H)-free.
It is easy to see (cf [3]) that Independent Set is polynomial-time solvable
on nearly H-free graphs if it is so on H-free graphs. However, for many other
graph problems, this might either not be true or less easy to prove (see, for
example, [16]). In Section 3 we show that it holds for the relevant cases in
Theorem 2, in particular for the case H = P6 (see Lemma 7). The latter result
yields no algorithm but shows that essentially H = P6 is the only one open case
left in Theorem 2.

In Section 6 we consider a number of directions for future work. In particular
we consider the restriction k-Disjoint Connected `-Subgraphs where both
k and ` are fixed and discuss some open problems.

2 Preliminaries

Let G = (V,E) be a graph. A subset S ⊆ V is connected if G[S] is connected.
A subset D ⊆ V (G) is dominating if every vertex of V (G) \ D is adjacent to
least one vertex of D; if D = {v} then v is a dominating vertex. The open
and closed neighbourhood of a vertex u ∈ V are N(u) = {v | uv ∈ E} and
N [u] = N(u) ∪ {u}. For a set U ⊆ V we define N(U) =

⋃
u∈U N(u) \ U and

N [U ] = N(U) ∪ U .
For a graph G = (V,E) and a subset S ⊆ U , we write G− S = G[V \ S]. If

S = {u} for some u ∈ V , we write G − u instead of G − {u}. A vertex u is a
cut-vertex of a connected graph G if G− u is disconnected.

The contraction of an edge e = uv in a graph G replaces the vertices u and v
by a new vertex w that is adjacent to every vertex previously adjacent to u or v;
note that the resulting graph G/e is still simple, that is, G/e contains no multi-
edges or self-loops. The following lemma is easy to see (see, for example, [19]).

Lemma 1. For a linear forest H, let G be an H-free graph. Then G/e is H-free
for every e ∈ E(G).

In a solution (D1, . . . , Dk) for an instance (G,Z) of Induced Disjoint Con-
nected Subgraphs, if Di is minimal and Xi is a minimum connected domi-
nating set of Di, then Xi ∪ Zi = Di or, equivalently, Di \Xi ⊆ Zi. This will be



Induced Disjoint Paths and Connected Subgraphs for H-Free Graphs 5

relevant in our proofs, where we use the following result of Camby and Schaudt,
in particular for the case r = 6 (alternatively, we could use the slightly weaker
characterization of P6-free graphs in [13] but the below characterization gives a
faster algorithm).

Theorem 4 ([4]). Let r ≥ 4 and G be a connected Pr-free graph. Let X be
any minimum connected dominating set of G. Then G[X] is either Pr−2-free or
isomorphic to Pr−2.

Let G = (V,E) be a graph. Two sets X1, X2 ⊆ V are adjacent if X1∩X2 6= ∅
or there exists an edge with one end-vertex in X1 and the other in X2. The
blob graph G◦ of G has vertex set {X ⊆ V (G) | X is connected} and edge set
{X1X2 | X1 and X2 are adjacent}. Note that blob graphs may have exponential
size, but in our proofs we will only construct parts of blob graphs that have
polynomial size. We need the following known lemma that generalizes a result
of Gartland et al. [8] for paths.

Lemma 2 ([27]). For every linear forest H, a graph G is H-free if and only if
G◦ is H-free.

The Independent Set problem is to decide if a graph G has an independent
set (set of pairwise non-adjacent vertices) of size at least k for some given inte-
ger k. We need the following two known results for Independent Set. The first
one is due to Grzesik, Klimosová, Pilipczuk and Pilipczuk [12]. The second one
is due to Pilipczuk, Pilipczuk and Rzążewski [28], who improved the previous
quasipolynomial-time algorithm for Independent Set on Pt-free graphs, due
to Gartland and Lokshtanov [7] (whose algorithm runs in nO(log3 n) time).

Theorem 5 ([12]). The Independent Set problem is polynomial-time solv-
able for P6-free graphs.

Theorem 6 ([7]). For every r ≥ 1, the Independent Set problem can be
solved in nO(log2 n) time for Pr-free graphs.

Two instances of a decision problem are equivalent if one is a yes-instance if and
only if the other one is. We frequently use the following lemmas (proofs omitted).

Lemma 3. From an instance (G,Z) of Induced Disjoint Connected Sub-
graphs we can in linear time, either find a solution for (G,Z) or obtain an
equivalent instance (G′,Z ′) with |V (G′)| ≤ |V (G)|, such that the following holds:

1. |Z ′| ≥ 2;
2. every Z ′i ∈ Z ′ has size at least 2; and
3. the union of the sets in Z ′ is an independent set.

Moreover, if G is H-free for some linear forest H, then G′ is also H-free.

Lemma 4. Let H be a linear forest. If (G,Z) is a yes-instance of Induced
Disjoint Connected Subgraphs and G is H-free, then (G,Z) has a solution
(D1, . . . , Dk), where each Di has size at most (2|V (H)| − 1)|Zi|.
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3 Algorithms

In this section we show all the polynomial-time and quasipolynomial-time results
needed to prove our main theorems. We start with the following result.

Lemma 5. Let ` ≥ 2. For every s ≥ 0, Induced Disjoint Connected `-
Subgraphs is polynomial-time solvable for (sP3 + P6)-free graphs.

Proof. Let (G,Z) be an instance of the Induced Disjoint Connected `-
Subgraphs problem, where G is (sP3 + P6)-free for some s ≥ 0. By Lemma 3,
we may assume the union of the sets in Z = {Z1, . . . , Zk} is independent.

First suppose that k ≤ s. By Lemma 4 we may assume that each Di in a
solution (D1, . . . , Dk) has size at most t = (6s+11)`. So |D1|+. . .+|Dk| has size
at most kt ≤ st. Hence, we can consider all O(nst) options of choosing a solution.
As s and t are constants, this takes polynomial time in total. Now suppose that
k ≥ s+1. We consider all O(n(s−1)t) options of choosing the first s subgraphs Di,
discarding those with an edge between distinctDi or between someDi and Zj for
some j ≥ s+1. For each remaining option, let G′ = G−N [V (D1)∪· · ·∪V (Ds)]
and Z ′ = {Zs+1, . . . , Zk}. Note that G′ is P6-free.

Let F be the subgraph of the blob graph G′◦ induced by all connected subsets
X in G′ that have size at most 11`, such that X contains all vertices of one set
from Z ′ and no vertices from any other set of Z ′. Then F has polynomial size, as
it has O(n11`) vertices, so we can construct F in polynomial time. By Lemma 2,
F is P6-free.

We claim that (G′,Z ′) has a solution if and only if F has an independent
set of size k − s. First suppose that (G′,Z ′) has a solution. Then, by Lemma 4,
it has a solution (Ds+1, . . . , Dk), where each Di has size at most 11`. Such a
solution corresponds to an independent set of size k − s in F . For the reverse
implication, two vertices in F that each contain vertices of the same set Zi are
adjacent. Hence, an independent set of size k − s in F is a solution for (G′,Z ′).

Due to the above, it remains to apply Theorem 5 to find in polynomial time
whether G′◦ has an independent set of size k − s. ut

By replacing Theorem 5 by Theorem 6 in the above proof and repeating the
arguments of the second part we obtain the following result.

Lemma 6. Let ` ≥ 2. For every r ≥ 1, Induced Disjoint Connected `-
Subgraphs is quasipolynomial-time solvable for Pr-free graphs.

We no prove a crucial lemma on nearly H-free graphs.

Lemma 7. For k ≥ 2, r ≤ 6 and s ≥ 1, if (k-)Induced Disjoint Connected
Subgraphs is polynomial-time solvable for Pr-free, graphs, then it is so for
(sP1 + Pr)-free graphs.

Proof. First let r = 6 and k be part of the input. Let (G,Z) be an instance
of Induced Disjoint Connected Subgraphs, where G is an (sP1 + P6)-free
graph for some integer s ≥ 1 and Z = {Z1, . . . , Zk}. We may assume without
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loss of generality that |Z1| ≥ |Z2| ≥ · · · ≥ |Zk|. By Lemma 3, we may assume
that k ≥ 2; every Zi ∈ Z has size at least 2; and the union of the sets in Z is an
independent set. We assume that Induced Disjoint Connected Subgraphs
is polynomial-time solvable for P6-free graphs.

Case 1. For every i ≥ 2, |Zi| ≤ s− 1.
Let D1, . . . , Dk be a solution for (G,Z) (assuming it exists). By Lemma 4, we
may assume without loss of generality that for i ≥ 2, the number of vertices
of Di is at most (2s+ 11)|Zi| ≤ (2s+ 11)(s− 1).

First assume k ≤ s. Then V (D2) ∪ · · · ∪ V (Dk) has size at most t, where
t = (s−1)(2s+11)(s−1) is a constant. Hence, we can do as follows. We consider
all O(nt) options for choosing the subgraphs D2, . . . , Dk. For each choice we
check in polynomial time if D2, . . . , Dk are mutually induced and connected,
and if each Di contains Zi. We then check in polynomial time if the graph
G − N [(V (D2) ∪ · · ·V (Dk)] has a connected component containing Z1. As the
number of choices is polynomial, the total running time is polynomial.

Now assume k ≥ s+1. We consider all O(ns(2s+11)(s−1)) options of choosing
the s subgraphs D2, . . . , Ds+1. We discard an option if for some i ∈ {1, . . . , s},
the graph Di is disconnected. We also discard an option if there is an edge
between two vertices from two different subgraphs Dh and Di for some 2 ≤
h < i ≤ s + 1, or if there is an edge between a vertex from some subgraph Dh

(2 ≤ h ≤ s) and a vertex from some set Zi (i = 1 or i ≥ s + 2). If we did not
discard the option, then we solve Induced Disjoint Connected Subgraphs
on instance (G−

⋃s+2
i=2 N [V (Di)],Z\{Z2, . . . , Zs+1}). The latter takes polynomial

time as G−
⋃s+1

i=2 N [Di] is P6-free. As the number of branches is polynomial as
well, the total running time is polynomial.

Case 2. |Z2| ≥ s (and thus also |Z1| ≥ s).
Let D1, . . . , Dk be a solution for (G,Z) (assuming it exists). As |Z1| ≥ s, we
find that for every i ≥ 2, Di is P6-free. As |Z2| ≥ s, we also find that D1 is
P6-free. Then, by setting r = 6 in Theorem 4, every Di (i ∈ {1, . . . , k}) has a
connected dominating set Xi such that G[Xi] is either P4-free or isomorphic to
P4. We may assume that every Xi is inclusion-wise minimal (as else we could
just replace Xi by a smaller connected dominating set of Di).

Case 2a. There exist some Xi with size at least 7s+ 2.
As s ≥ 1, we have that G[Xi] is P4-free. We now set r = 4 in Theorem 4 and
find that G[Xi] has a connected dominating set Yi of size at most 2. Hence,
G[Xi] contains a set R of 7s vertices that are not cut-vertices of G[Xi]. As Xi is
minimal, this means that inDi, each r ∈ R has at least one neighbour z ∈ Zi that
is not adjacent to any vertex of Xi \ {r}. We say that z is a private neighbour
of r. We now partition R into sets R1, . . . , R7, each of exactly s vertices. For
h = 1, . . . , 7, let Rh = {r1h, . . . , rsh} and pick a private neighbour zjh of rjh. For
h = 1, . . . , 7, let Qh = {z1h, . . . , zsh}. Each Qh is independent, as Zi is independent
and Qh ⊆ Zi.

We claim that there exists an index h ∈ {1, . . . , 7} such that G−(N [Qh]\Rh)
is P6-free. For a contradiction, assume that for every h ∈ {1, . . . , 7}, we have
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that G− (N [Qh] \Rh) is not P6-free. As G is (sP1+P6)-free and every Qh is an
independent set of size s, we have that G−N [Qh] is P6-free. We conclude that
every induced P6 of G contains a vertex of Rh for every h ∈ {1, . . . , 7}. This is
contradiction, as every induced P6 only has six vertices. Hence, there exists an
index h ∈ {1, . . . , 7} such that G− (N [Qh] \Rh) is P6-free.

We exploit the above structural claim algorithmically as follows. We consider
all k = O(n) options that one of the sets Xi has size at least 7s + 2. For each
choice of index i we do as follows. We consider all O(n2s) options of choosing
a set Qh of s vertices from the independent set Zi together with a set Rh of s
vertices from N(Qh). We discard the option if a vertex of Qh has more than one
neighbour in Rh, or if G′ = G− (N [Qh] \Rh) is not P6-free. Otherwise, we solve
Induced Disjoint Connected Subgraphs on instance (G′,Z ′), where Z ′ =
(Z \ {Zi})∪{(Zi \Qh)∪Rh}. As G′ is P6-free, the latter takes polynomial time
by our initial assumption. Hence, as the total number of branches is O(n2s+1)
the total running time of this check takes polynomial time.

Case 2b. Every Xi has size at most 7s+ 1.
First assume k ≤ s. We consider all O(ns(7s+1)) options of choosing the sets
X1, . . . , Xk. For each option we check if (X1 ∪Z1, . . . , Xk ∪Zk) is a solution for
(G,Z). As the latter takes polynomial time and the total number of branches is
polynomial, this takes polynomial time.

Now assume k ≥ s + 1. We consider all O(ns(7s+1)) options of choosing the
first s sets X1, . . . , Xs. We discard an option if for some i ∈ {1, . . . , s}, the set
Xi∪Zi is disconnected. We also discard an option if there is an edge between two
vertices from two different sets Xh ∪ Zh and Xi ∪ Zi for some 1 ≤ h < i ≤ s, or
if there is an edge between a vertex from some set Xh ∪Zh (h ≤ s) and a vertex
from some set Zi (i ≥ s + 1). If we did not discard the option, then we solve
Induced Disjoint Connected Subgraphs on instance (G −

⋃s
i=1N [Xi ∪

Zi], {Zs+1, . . . , Zk}). The latter takes polynomial time as G −
⋃s

i=1N [Xi ∪ Zi]
is P6-free. As the number of branches is polynomial as well, the total running
time is polynomial.

From the above case analysis we conclude that the running time of our algorithm
is polynomial. If r ≤ 5 and/or k is fixed we use exactly the same arguments. ut

Remark 1. Due to Lemma 7, the missing cases H = sP1 + P6 in Theorem 2
are all equivalent to the case H = P6.

We will use Lemma 7 for the case where r = 5. We also make use of the blob
approach again.

Lemma 8. For every s ≥ 0, Induced Disjoint Connected Subgraphs is
polynomial-time solvable for (sP1 + P5)-free graphs.

Proof. Due to Lemma 7 it suffices to prove the statement for P5-free graphs
only. Let (G,Z) be an instance of Induced Disjoint Connected Subgraphs,
where G is a P5-free graph and Z = {Z1, . . . , Zk}. By Lemma 3, we may assume
that k ≥ 2; every Zi ∈ Z has size at least 2; and the union of the sets in Z is
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an independent set. We may also delete every vertex from G that is not in a
terminal set from Z but that is adjacent to two terminals in different sets Zh

and Zi (such a vertex cannot be used in any subgraph of a solution). We now
make a structural observation that gives us a procedure for safely contracting
edges; recall that edge contraction preserves P5-freeness by Lemma 1.

Consider a solution (D1 . . . Dk) that is maximal in the sense that any vertex v
outside V (D1) ∪ · · · ∪ V (Dk) must have a neighbour in at least two distinct
subgraphs Di and Dj . As G is P5-free, v must be adjacent to all vertices of
at least one of Di and Dj . As v has no neighbours in both Zi ⊆ V (Di) and
Zj ⊆ V (Dj), v must be adjacent to all vertices of exactly one of Di and Dj .

The above gives rise to the following algorithm. Let v be a vertex that is
adjacent to at least one vertex z ∈ Zi but not to all vertices of Zi. As v is
adjacent to z and z is in Zi, it hold that v does not belong to any Dh with h 6= i
for every (not necessarily maximal) solution (D1, . . . , Dk). The observation from
the previous paragraph tells us that if v is not in any Dh and (D1, . . . , Dk) is
a maximal solution, then v must be adjacent to all vertices of some Dj . As v is
adjacent to z ∈ Zi, it holds by construction that v is not adjacent to any vertex
of any Zh ⊆ V (Dh) with h 6= i. Hence, i = j must hold. However, this is not
possible, as we assumed that v is not adjacent to all vertices of Zi ⊆ V (Di).
Hence, we may assume without loss of generality that v belongs to Di (should
a solution exist). This means that we can safely contract the edge vz and put
the resulting vertex in Zi. Then we apply Lemma 3 again and also remove all
common neighbours of vertices from Zi and vertices from other sets Zj . This
takes polynomial time and the resulting graph has one vertex less. Hence, by
applying this procedure exhaustively we have, in polynomial time, either solved
the problem or obtained an equivalent but smaller instance.

Suppose the latter case holds. For simplicity we denote the obtained instance
by (G,Z) again, where G is a P5-free graph and Z = {Z1, . . . , Zk} with k ≥ 2.
Due to our procedure, every Zi ∈ Z has size at least 2; the union of the sets in
Z is an independent set. Moreover, every non-terminal vertex is adjacent either
to no terminal vertex or is adjacent to all terminals of exactly one terminal set.
We let S be the set of vertices of the latter type. Observe that it follows from
the preceding that only vertices of S need to be used for a solution.

We now construct the subgraph F of the blob graph G◦ that is induced by
all connected subsets X of the form X = Zi ∪{s} for some 1 ≤ i ≤ k and s ∈ S.
Note that F has O(kn) vertices. Hence, constructing F takes polynomial time.
Moreover, F is P5-free due to Lemma 2. As in the proof of Lemma 5, we observe
that (G,Z) has a solution if and only if F has an independent set of size k. It
now remains to apply (in polynomial time) Theorem 5. ut

We now show a stronger result when k is fixed (proof omitted).

Lemma 9. For every s ≥ 0, k-Induced Disjoint Connected Subgraphs
is polynomial-time solvable for (sP1 + P6)-free graphs.

We now present our final two polynomial-time algorithms (proofs omitted).
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Lemma 10. For every k ≥ 2 and s ≥ 0, k-Induced Disjoint Connected
Subgraphs is polynomial-time solvable for (sP1 + 2P4)-free graphs.

Lemma 11. For every s ≥ 0, Induced Disjoint Connected Subgraphs is
polynomial-time solvable for (sP1 + P3 + P4)-free graphs.

4 NP-Completeness Results

In this section we present a number of NP-completeness results; we omitted
all proofs except one. If ` = 2, we write Induced Disjoint Paths instead of
Induced Disjoint Connected `-Subgraphs. The girth of a graph G that is
not a forest is the length of a shortest cycle of G.

Lemma 12. For every g ≥ 3, Induced Disjoint Paths is NP-complete for
graphs of girth at least g.

Lemma 13. For every g ≥ 3, 2-Induced Disjoint Connected Subgraphs
is NP-complete for graphs of girth at least g.

The line graph L(G) of a graph G has vertex set {ve | e ∈ E(G)} and an edge
between ve and vf if and only if e and f are incident on the same vertex in G. The
following two lemmas show NP-completeness for line graphs. Lemma 14 is due
to Fiala et al. [6]. They consider a more general variant of Induced Disjoint
Paths, but their reduction holds in our setting as well. Lemma 15 can be derived
from the NP-completeness of 2-Disjoint Connected Subgraphs [14].

Lemma 14 ([6]). Induced Disjoint Paths is NP-complete for line graphs.

Lemma 15. 2-Induced Disjoint Connected Subgraphs is NP-complete
for line graphs.

Finally, we show two lemmas for graphs without certain induced linear forests.

Lemma 16. 2-Induced Disjoint Connected Subgraphs is NP-complete
for (3P2, P7)-free graphs.

Proof. We reduce from Not-All-Equal-3-Sat, known to be NP-complete [31].
Let (X , C) be an instance of Not-All-Equal-3-Sat containing n variables
x1, . . . , xn and m clauses C1, . . . , Cm. We construct a graph G as follows. Let X
be a clique of size n on vertices v1, . . . , vn. Introduce a copy v′i of each vi in X.
Call the new set X ′ and make it a clique. Add the edges viv′i for each vi in X.
Let C be an independent set of size m on vertices c1, . . . , cm. Introduce a copy
c′j of each vertex cj in C. Call the new set C ′ (and keep it an independent set).
Now for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, add an edge vicj and an edge v′ic′j if
clause Cj contains variable xi. Set Z1 = C and Z2 = C ′. Then, (G,Z1, Z2) is an
instance of 2-Induced Disjoint Connected Subgraphs.

Observe that G is P7-free. Indeed, let P be any longest induced path in G.
Then P can contain at most two vertices from X and at most two vertices from
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X ′. If P contains at most one vertex from C and at most one vertex from C ′,
then P has length at most 2 + 2 + 1 + 1 = 6. On the other hand, if P contains
two vertices from C or two vertices from C ′, then P has length at most 3.

We also observe that G is 3P2-free, as any P2 must contain at least one vertex
from X or from X ′, and X and X ′ are cliques. So we are done after proving the
following claim: (X , C) is a yes-instance of Not-All-Equal-3-Sat if and only if
(G,Z1, Z2) is a yes-instance of 2-Induced Disjoint Connected Subgraphs.

In the forward direction, let τ be a satisfying truth assignment. We put in
A every vertex of X for which the corresponding variable is set to true. We put
in A′ every vertex of X ′ for which the corresponding variable is set to false.
As each clause Cj contains at least one true variable, cj is adjacent to a vertex
in A. Similarly, each clause Cj contains at least one false variable, so each c′j
is adjacent to a vertex in A′. As X and X ′ are cliques, A and A′ are cliques.
Hence, G[C ∪A] and G[C ′ ∪A′] are connected.

Now suppose there is an edge between a vertex of C ∪ A and a vertex of
C ′ ∪ A′. Then, by construction, this edge must be equal to some viv′i, which
means that vi is in A and v′i is in A′, so xi must be true and false at the same
time, a contradiction. Hence, there exists no edge between a vertex from C ∪A
and a vertex from C ′ ∪A′. We conclude that (C ∪A,C ′ ∪A′) is a solution.

In the backwards direction, let (C ∪ A,C ′ ∪ A′) be a solution. Then, by
definition, there is no edge between C ∪A and C ′ ∪A′, which means that there
is no edge between A and A′. Then A ⊆ X and A′ ⊆ X ′, since X and X ′ are
cliques and A (A′) needs to contain at least one vertex of X (X ′). Also, there is
no variable xi such that vi is in A and v′i is in A′. This means we can define a
truth assignment τ by setting all variables corresponding to vertices in A to be
true, all variables corresponding to vertices in A′ to be false, and all remaining
vertices in X to be true (or false, it does not matter).

As C is an independent set and C ∪A is connected, each cj has a neighbour
in A. So each Cj contains a true literal. As C ′ is an independent set and C ′ ∪A′
is connected, each c′j has a neighbour in A′. So each Cj contains a false literal.
Hence, τ is a satisfying truth assignment. This completes the proof. ut

Lemma 17. Induced Disjoint Connected Subgraphs is NP-complete for
2P4-free graphs.

5 The Proofs of Theorems 1–3

We are now ready to prove Theorems 1–3, which we restate below.

Proof of Theorem 1. We prove the theorem for ` = 2; extending the proof to
` ≥ 3 is trivial. If H contains a cycle Cs, then we use Lemma 12 by setting the
girth to g = s + 1. Suppose that H contains no cycle, that is, H is a forest. If
H contains a vertex of degree at least 3, then we use Lemma 14, as in that case
the class of H-free graphs contains the class of K1,3-free graphs, which in turn
contains the class of line graphs. In the remaining cases, H is a linear forest. If
H ⊆i sP3 + P6 for some s ≥ 0 we use Lemma 5. Else we use Lemma 6. ut



12 B. Martin, D. Paulusma, S. Smith, E.J. van Leeuwen

Proof of Theorem 2. If H is not a linear forest, we use Theorem 1. Suppose
H is a linear forest. If H ⊆i sP1 + P5 for some s ≥ 0 we use Lemma 8. If
H ⊆i sP1 + P3 + P4 for some s ≥ 0 we use Lemma 11. If 3P2 ⊆i H or P7 ⊆i H
we use Lemma 16. Otherwise 2P4 ⊆i H and we use Lemma 17. ut
Proof of Theorem 3. If H contains a cycle Cs, then we use Lemma 13 by setting
the girth to g = s+1. Suppose that H contains no cycle, that is, H is a forest. If
H contains a vertex of degree at least 3, then we use Lemma 15, as in that case
the class of H-free graphs contains the class of K1,3-free graphs, which in turn
contains the class of line graphs. In the remaining cases, H is a linear forest. If
H ⊆i sP1+P6 for some s ≥ 0 we use Lemma 9. If H ⊆i sP1+2P4 for some s ≥ 0
we use Lemma 10. Otherwise 3P2 ⊆i H or P7 ⊆i H and we use Lemma 16. ut

6 Future Work

Our results naturally lead to some open problems. First of all, can we find
polynomial-time algorithms for the quasipolynomial cases in Theorem 1? This is
a challenging task that is also open for Independent Set; note that we reduce
to the latter problem to solve the case where H = sP1 + P6 for some s ≥ 0.

We also recall that the case H = P6 is essentially the only remaining open
case left in Theorem 2, which is for the setting where k and ` are both part
of the input. As shown in Theorems 1 and 3, respectively, we have a positive
answer for the settings where ` is fixed (and k is part of the input) and where k
is fixed (and ` is part of the input), respectively. However, it seems challenging
to combine the techniques when both k and ` are part of the input.

We did not yet discuss the k-Induced Disjoint Connected `-Subgraphs
problem, which is the variant where both k and ` are fixed; note that if ` = 2,
then we obtain the k-Induced Disjoint Paths problem. The latter problem
restricted to k = 2 is closely related to the problem of deciding if a graph
contains a cycle passing through two specified vertices and has been studied for
hereditary graph classes as well; see [21]. Recently, we made some more progress.
A subdivided claw is obtained from a claw after subdividing each edge zero or
more times. In particular, the chair is the graph obtained from the claw by
subdividing one of its edges exactly once. The set S consists of all graphs with
the property that each of their connected components is a path or a subdivided
claw. We proved in [24] that for every integer k ≥ 2 and graph H, k-Induced
Disjoint Paths is polynomial-time solvable if H is a subgraph of the disjoint
union of a linear forest and a chair, and it is NP-complete if H is not in S.

From the above it follows in particular that k-Induced Disjoint Paths is
polynomial-time solvable for claw-free graphs (just like Independent Set [26,
32]) in contrast to the other three variants, which are NP-complete for claw-free
graphs (see Theorems 1–3). We leave completing the classification of k-Induced
Disjoint Paths as future work and refer to [24] for a more in-depth discussion.

Acknowledgments. We thank Paweł Rzążewski for the argument using blob
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