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Abstract. Suppose K is a local field with finite residue field of
characteristic p 6= 2 and K<p(M) is its maximal p-extension such
that Gal(K<p(M)/K) has period pM and nilpotent class < p. If
charK = 0 we assume that K contains a primitive pM -th root
of unity. The paper contains an overview of methods and results
describing the structure of this Galois group together with its fil-
tration by ramification subgroups.

Introduction

Everywhere in the paper p is a prime number. For any profinite
group Γ and s ∈ N, Cs(Γ) denotes the closure of the subgroup of
commutators of order s.

Let K be a complete discrete valuation field with a finite residue
field k ' FpN0 , N0 ∈ N. Let Ksep be a separable closure of K and
ΓK = Gal(Ksep/K). Denote by K(p) the maximal p-extension of K in
Ksep. Then ΓK(p) = Gal(K(p)/K) is a profinite p-group. As a matter
of fact, the major information about ΓK comes from the knowledge of
the structure of ΓK(p). This structure is very well-known and is related
to the following three cases (ζp is a primitive p-th root of unity) [17]:

— charK = p;

— charK = 0, ζp /∈ K;

— charK = 0, ζp ∈ K.

In all these cases the maximal abelian quotient of period p of ΓK(p)
is isomorphic to K∗/K∗p. Therefore, ΓK(p) has infinitely many gener-
ators in the first case, has [K : Qp] + 1 generators in the second case
and [K : Qp] + 2 generators in the third case. In the first two cases
ΓK(p) is free and in the last case it has one relation of a very special
form, cf. [17, 23, 24].

The above results can’t be considered as completely satisfactory be-
cause they do not essentially reflect the appearance of ΓK(p) as a Galois
group of an algrebraic extension of local fields. In other words, let LF
be the category of couples (K,Ksep) where the morphisms are compat-
ible continuous morphisms of local fields and let PGr be the category
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of profinite groups. Then the functor (K,Ksep) 7→ ΓK(p) (as well as
the functor (K,Ksep) 7→ ΓK) is not fully faithful.

The situation can be cardinally improved by taking into account a
natural additional structure on ΓK(p) and ΓK given by the decreas-
ing filtration of ramification subgroups. The ramification filtration

{ΓK(p)(v)}v>0 of ΓK(p) (as well as the appropriate filtration {Γ(v)
K }v>0 of

ΓK) has many non-trivial properties. For example, it is left-continuous
at any v0 ∈ Q, v0 > 1, i.e.

⋂
v<v0

ΓK(p)(v) = ΓK(p)(v0), but is not right-

continuous, i.e. the closure of
⋃
v>v0

ΓK(p)(v) is not equal to ΓK(p)(v0).

Another example [14, 15], for any v1, v2 < v0, (ΓK(p)(v1),ΓK(p)(v2)) 6⊂
ΓK(p)(v0) and (ΓK(p)(v1))p 6⊂ ΓK(p)(v0) and in some sense the groups
ΓK(p)/ΓK(p)(v0) have no “simple” relations [5].

The significance of study of ramification filtration was very well-
understood long ago, e.g. cf. Shafarevich’s Introduction to [17]. (The
author also had interesting discussions on this subject in the IAS with
A.Weil, P.Deligne and F.Pop.) As a matter of fact, the knowledge of
ramification filtration is equivalent to the knowledge of the original field
K due to the following local analogue of the Grothendieck Conjecture.

Theorem 0.1. The functor (K,Ksep) 7→ (ΓK(p), {ΓK(p)(v)}v>0) from
LF to the category of profinite p-groups with filtration is fully faithful.

This result was first proved in the mixed characteristic case in the
context of the whole Galois group ΓK by Mochizuki [21] as a spectac-
ular application of p-adic Hodge-Tate theory. The case of arbitrary
characteristic was established by the author by different method in [7]
under the assumption p 6= 2. Note that the characteristic p case was ob-
tained via the explicit description of ramification filtration modulo the
subgroup of third commutators from [2]. Then the mixed characteristic
case was deduced from it via the Fontaine-Wintenberger field-of-norms
functor. In paper [11] we removed the restriction p 6= 2 and reproved
the statement in the context of the pro-p-group ΓK(p).

The study of ramification filtration in full generality seems not to
be a realistically stated problem: it is not clear how to specify sub-
groups of a given profinite p-group. If we replace ΓK(p) by its maximal
abelian quotient ΓK(p)ab then the appropriate ramification filtration is
very well-known but reflects very weak information about the original
filtration of ΓK(p). This can be seen from class field theory where we
have the reciprocity map K∗ −→ ΓabK and the ramification subgroups
appear as the images of the subgroups of principal units of K∗. In
particular, we can observe only integral breaks of our filtration.

As a matter of fact, the ramification subgroups can be described on
the abelian level without class field theory. The reason is that cyclic
extensions of K can be studied via much more elementary tools: we can
use the Witt-Artin-Schreier theory in the characteristic p case and the
Kummer theory in the mixed characteristic case. Trying to develop this
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approach to the case of nilpotent Galois groups we developed in [1, 2]
a nilpotent analogue of the Witt-Artin-Schreier theory. This theory
allows us to describe quite efficiently p-extensions of fields of charac-
teristic p with Galois p-groups of nilpotent class < p. Such groups arise
from Lie algebras due to the classical equivalence of the categories of
p-groups and Lie Fp-algebras of nilpotent class < p, [20]. In [1, 2, 4] we
applied our theory to local fields K = k((t0)), where k ' FpN0 , and con-
structed explicitly the sets of generators of the appropriate ramification
subgroups. This result demonstrates the advantage of our techniques:
it is stated in terms of extensions of scalars of involved Lie algebras
but this operation does not exist in group theory.

A generalization of our approach to local fields K of mixed char-
acteristic was sketched earlier by the author in [6]. This approach

allowed us to work with the groups ΓK/Γ
pM

K Cp(ΓK) under the assump-
tion that a primitive pM -th root of unity ζpM ∈ K. At that time we
obtained explicit constructions of our theory only modulo subgroup of
third commutators. Recently, we can treat the general case. First re-
sults are related to the case M = 1 and can be found in [11] (we discuss
them also in Subsection 3.6 of this paper). The case of arbitrary M as
well as the case of higher dimensional local fields will be considered in
upcoming papers. In the case of local fields it would be very interesting
to relate our theory to constructions of “nilpotent class field theory”
from [19].

Note that the main constructions of the nilpotent Artin-Schreier the-
ory do not suggest that the basic field is local. They can be applied
also to global fields but it is not clear what sort of applications we can
expect in this direction.

On the other hand, we can’t expect the existence of an easy “nilpo-
tent Kummer theory” for global fields. According to anabelian philos-
ophy, for global fields E, the quotient of ΓE(p) by the subgroup of third
commutators should already reflect all basic properties of the field E.

1. Nilpotent Artin-Schreier theory

In this section we discuss basic constructions of nilpotent Artin-
Schreier theory. The main reference for this theory is [2]. We shall call
this version contravariant and introduce also its covariant analogue, cf.
Subsection 1.2 below. Everywhere M is a fixed natural number.

1.1. Lifts modulo pM , M ∈ N. Suppose K is a field of characteristic
p and Ksep is a separable closure of K. Let {xi}i∈I be a p-basis for K.
This means that the elements xi modK∗p, i ∈ I, form a basis of the
Fp-module K∗/K∗p. Note that if E is any subfield of Ksep containing
K then {xi}i∈I can be taken also as a p-basis for E.

Let WM be the functor of Witt vectors of length M . For a field
K ⊂ E ⊂ Ksep, define OM(E) as the subalgebra in WM(E) generated
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over WM(σM−1E) by the Teichmuller representatives [xi] ∈ WM(K) ⊂
WM(E) of all xi. Then OM(E) is a lift of E modulo pM : it is a flat
WM(Fp)-algebra such that OM(E)/pOM(E) = E. The system of lifts
OM(E) essentially depends on the original choice of a p-basis in K. If
σ is the absolute Frobenius (i.e. the morphism of p-th powers) then
WM(σ) induces a σ-linear morphism on OM(E) and we usually denote
it again by σ. Note that OM(E)|σ=id = WM(Fp), if E is normal over
K then the Galois group Gal(E/K) acts on OM(E) and the invariants
of this action coincide with OM(K).

A (continuous) automorphism ψ ∈ Aut(E) generally can’t be ex-
tended to AutOM(E) if ψ changes the original p-basis. But the mor-
phism σM−1ψ admits “almost a lift” σM−1OM(E) −→ OM(E) given by
the following composition

σM−1OM(E) ⊂ WM(σM−1E)
WM (σM−1ψ)

−−−−−−−−→ WM(σM−1E) ⊂ OM(E).

The existence of such lift allowed us to extend the modulo p methods
from [1] to the modulo pM situation in [2, 4].

1.2. Covariant and contravariant nilpotent Artin-Schreier the-
ories. Suppose L is a Lie algebra over WM(Fp). For s ∈ N, let Cs(L)
be an ideal of s-th commutators in L, e.g. C2(L), resp., C3(L), is gen-
erated by the comutators [l1, l2], resp. [[l1, l2].l3], where all li ∈ L. The
algebra L has nilpotent class < p if Cp(L) = 0.

The basic ingredient of our theory is the equivalence of the categories
of p-groups of nilpotent class < p and the category of Lie Zp-algebras
of the same nilpotent class. This equivalence can be described on the
level of objects killed by pM as follows.

Suppose L is a Lie WM(Fp)-algebra of nilpotent class < p. If A is
envelopping algebra for L and J is the augmentation ideal in A then
there is a natural embedding of L into A/Jp (and L can be recovered as
a submodule of the module of primitive elements modulo Jp in A, cf. [1]
Section 1). The Campbell-Hausdorff formula is the map L× L −→ L,

(l1, l2) 7→ l1 ◦ l2 = l1 + l2 +
1

2
[l1, l2] + . . .

such that in Amod Jp we have ẽxp(l1)ẽxp(l2) = ẽxp(l1 ◦ l2), where
ẽxp(x) =

∑
06i<p x

i/i! is the truncated exponential. The set L can

be provided with the composition law (l1, l2) 7→ l1 ◦ l2 which gives a
group structure on L. We denote this group by G(L). Clearly, this
group has period pM . Then the correspondence L 7→ G(L) is the above
mentioned equivalence of the categories of p-groups of period pM and
Lie WM(Fp)-algebras.

Here and below we shall use the notation LK := L ⊗WM (Fp) OM(K)
and LKsep = L ⊗WM (Fp) OM(Ksep). Then ΓK and the absolute Frobe-
nius σ act through the second factor on LKsep , LKsep |σ=id = L and
(LKsep)ΓK = LK . The covariant nilpotent Artin-Schreier theory states
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that for any e ∈ G(LK), the set F (e) = {f ∈ G(LKsep) | σ(f) = e ◦ f}
is not empty and the map g 7→ (−f) ◦ g(f) is a group homomorphism
πf (e) : ΓK −→ G(L). The correspondence e 7→ πf (e) has the following
properties:

a) if f ′ ∈ F (e) then f ′ = f ◦ c, where c ∈ G(L), and πf (e) and πf ′(e)
are conjugated via c;

b) for any π ∈ Hom(ΓK , G(L)), there are e ∈ G(LK) and f ∈ F (e)
such that πf (e) = π;

c) for appropriate elements e, e′ ∈ G(LK) and f, f ′ ∈ G(LKsep), we
have πf (e) = πf ′(e

′) iff there is an x ∈ G(LK) such that f ′ = x ◦ f and
(therefore) e′ = σ(x) ◦ e ◦ (−x); e and e′ are called R-equivalent via
x ∈ G(LK).

According to above properties a)-c), the correspondence e 7→ πf (e)
establishes an identification of the set of all R-equivalent elements in
G(LK) and the set of all conjugacy classes of Hom(ΓK , G(L)).

The above theory can be proved in a similar way to its contravari-
ant version established in [2]. In the contravariant theory for any
e ∈ G(LK), the set {f ∈ G(LKsep) | σ(f) = f ◦ e} is not empty,
the correspondence g 7→ g(f) ◦ (−f) establishes a group homomor-
phism from Γ0

K to G(LK), where Γ0
K coincides with ΓK as a set but has

the opposite group law (g1g2)0 = g2g1. (Equivalently, if a ∈ Ksep then
(g1g2)a = g2(g1a).) We have also the properties similar to above prop-
erties a)-c) but in c) there should be f ′ = f ◦ x and e′ = x ◦ e ◦ (−σx).

The both (covariant and contravariant) theories admit a pro-finite
version where L becomes a profinite WM(Fp)-Lie algebra and the set
Hom(ΓK , G(L)) is the set of all continuous group morphisms.

1.3. Identification η0. Suppose K = k((t0)) where t0 is a fixed uni-
formiser in K and k ' FpN0 with N0 ∈ N. Then {t0} is a p-basis for
K, and we have the appropriate system of lifts OM(E) modulo pM for
all subfields K ⊂ E ⊂ Ksep. In addition, fix an element α0 ∈ W (k)
such that Tr(α0) = 1, where Tr is the trace map for the field extension
W (k)⊗Zp Qp ⊃ Qp.

Let Z+(p) = {a ∈ N | (a, p) = 1} and Z0(p) = Z+(p) ∪ {0}.
For M ∈ N, let L̃M be a profinite free Lie Z/pM -algebra with the

(topological) module of generators K∗/K∗pM and LM = L̃M/Cp(L̃M).
From time to time we drop the subscript M off to simplify the notation.

Let L = LM . Then Lk := L ⊗WM(k) has the generators

{D0} ∪ {Dan | a ∈ Z+(p), n ∈ Z/N0}

due to the following identifications (where t = [t0] is the Teichmuller
representative of t0):

K∗/K∗pM ⊗WM (Fp) WM(k) =
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HomWM (Fp)(OM(K)/(σ − id)OM(K),WM(k)) =

HomWM (Fp)((WM(Fp)α0)⊕a∈Z+(p) (WM(k)t−a),WM(k)) =

WM(k)D0 ×
∏

a∈Z+(p)
n∈ZmodN0

WM(k)Dan

Note that the first identification uses the Witt pairing, D0 appears from
t0 ⊗ 1 ∈ K∗/K∗pM ⊗WM(k) and for all a ∈ Z+(p) and w ∈ WM(k),
Dan(wt−a) = σnw.

For any n ∈ Z/N0, set D0n = t⊗ (σnα0) = (σnα0)D0.
Let e0 =

∑
a∈Z0(p) t

−aDa0 ∈ LK , choose f0 ∈ F (e0) and set η0 =

πf0(e0). Then η0 is a surjective homomorphism from ΓK to G(L) and

it induces a group isomorphism ΓK/Γ
pM

K Cp(ΓK) ' G(L). Note that
the construction of η0 depends up to conjugacy only on the original
choice of the uniformizer t0 and the element α0 mod pM ∈ WM(k). On
the level of maximal abelian quotients of period pM , η0 induces the
isomorphism of local class field theory ΓabK ⊗Zp WM(Fp) ' K∗/K∗p

M
.

1.4. Why Campbell-Hausdorff? In this Subsection it will be ex-
plained that in our theory, we are, essentially, forced to use the Campbell-
Hausdorff composition law.

Assume for simplicity, that M = 1 and K = Fp((t0)). Let K(p) be
the maximal p-extension of K and ΓK(p) = Gal(K(p)/K). For s ∈ N
and a1, a2, . . . , as, . . . ∈ Z0(p), consider the elements Ta1...as ∈ K(p)
such that:

T pa1 − Ta1 = t−a10 ,

T pa1a2 − Ta1a2 = t−a10 Ta2
. . . . . . . . .

T pa1...as − Ta1...as = t−a10 Ta2...as

. . . . . . . . .

Then the system {Ta1...as | s > 0, ai ∈ Z0(p)} is linearly independent
over K and ifM =

⊕
a1,...,as
s>0

FpTa1...as then K(p) =M⊗FpK and ΓK(p) acts

onM via a natural embedding ΓK(p) ↪→ GLFp(M). This construction
would have given us an efficient approach to an explicit construction of
the maximal p-extension K(p) if we could describe explicitly the image
of ΓK(p) in GLFp(M).

Analyze the situation at different levels s > 1.

• 1st level. Here all equations are independent and we can introduce
a minimal system of generators τa, a ∈ Z0(p), of ΓK(p) with their
explicit action via τa : Ta1 7→ Ta1 + δ(a, a1) at this level. (Here and
below δ is the Kronecker symbol.)
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• 2nd level. Here the roots Ta1a2 are not (algebraically) indepen-
dent. For example, the following identity

(Ta1Ta2)
p = (Ta1+t

−a1
0 )(Ta2+t

−a2
0 ) = Ta1Ta2+t

−a1
0 Ta2+t

−a2
0 Ta1+t

−(a1+a2)
0

implies under the assumption (a1 + a2, p) = 1 (and after a suitable
choice of involved roots of Artin-Schreier equations) that

Ta1Ta2 = Ta1a2 + Ta2a1 + Ta1+a2 .

The presence of the term Ta1+a2 creates a problem: τa1+a2 should act
non-trivially on either Ta1a2 or Ta2a1 but they both do not depend on
the index a1 + a2. The situation can be resolved by a slight correction
of involved equations. Namely, let Ta1a2 be such that

T pa1a2 − Ta1a2 = t−a10 Ta2 + η(a1, a2)t
−(a1+a2)
0

where the constants η(a1, a2) ∈ k, a1, a2 ∈ Z0(p), satisfy the relations

(1.1) η(a1, a2) + η(a2, a1) = 1.

With the above correction, the elements Ta1a2 , a1, a2 ∈ Z0(p), can be
chosen in such a way that we have the following:

— relations: Ta1Ta2 = Ta1a2 + Ta2a1 ;

— Galois action: τa(Ta1a2) = Ta1a2 +Ta1δ(a2, a)+η(a1, a2)δ(a1, a2, a).

Relation (1.1) will look more natural if we introduce the constants
on the first level via η(a) = 1, a ∈ Z0(p). Then (1.1) can be rewritten
as η(a1)η(a2) = η(a1, a2) + η(a2, a1). These relations can be satisfied
only if p 6= 2 and the simplest choice is η(a1, a2) = 1/2 for all a1, a2.

The above picture can be generalized to higher levels as follows.

• s-th level, s < p. Here we have:

- the equations: T pa1...as = Ta1...as + η(a1)t−a1Ta2...as + . . .

+η(a1, . . . , as−1)t
−(a1+···+as−1)
0 Tas + η(a1, . . . , as)t

−(a1+···+as)
0

-the relations: Ta1...akTb1...bl =
∑
Tinsertions of a’s into b’s, where k+l < p;

- the Galois action: τa(Ta1...as) = Ta1...as + Ta1...as−1δ(a, as)η(as)+

· · ·+Ta1δ(a, a2, . . . , as)η(a2, . . . , as)+δ(a, a1, . . . , as)η(a1, . . . , as)

- the constants: if k + l < p then

η(a1, . . . , ak)η(b1, . . . , bl) =
∑

η(insertions of a’s into b’s)

with their simplest choice η(a1, . . . , as) = 1/s!
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Remark. An insertion of the ordered collection a1, . . . , ak into the
ordered collection b1, . . . , bl is the ordered collection c1, . . . , ck+l such
that

— {1, . . . , k + l} = {i1, . . . , ik}
∐
{j1, . . . , jl};

— i1 < . . . < ik and j1 < . . . < jl;

— a1 = ci1 ,. . . , ak = cik and b1 = cj1 ,. . . , bl = cjl .

The following formalism allows us to present the above information
on all levels 1 6 s < p in the following compact way.

Let Ã be a pro-finite associative Fp-algebra with the set of free gen-
erators {Da | a ∈ Z0(p)}. Introduce the elements of the appropriate
extensions of scalars of A

E = 1 +
∑

16s<p
ai∈Z0(p)

η(a1, . . . , as)t
−(a1+···+as)
0 Da1 . . . Das

= ẽxp(
∑

a∈Z0(p)

t−a0 Da) ∈ AK ,

F = 1 +
∑

16s<p
ai∈Z0(p)

η(a1, . . . , as)Ta1...asDa1 . . . Das ∈ AKsep

Define the diagonal map as the morphism of Fp-algebras

∆ : Amod deg p −→ A⊗Amod deg p

such that for any a ∈ Z0(p), Da 7→ Da⊗ 1 + 1⊗Da. Then we have the
following properties:

— ∆(E) ≡ E ⊗ Emod deg p; ∆(F) ≡ F ⊗Fmod deg p ;

— σ(F) ≡ EF mod deg p; τa(F) ≡ F ẽxp(Da) mod deg p .

Now we can verify the existence of f ∈ LKsep such that F = ẽxp(f)
modulo deg p, and recover the basic relations σ(f) = (

∑
a t
−a
0 Da) ◦ f

and τa(f) = f ◦Da, a ∈ Z0(p), of our nilpotent Artin-Schreier theory.

2. Ramification filtration in L = LM+1

In this Section we describe and illustrate the main trick used in
papers [1, 2, 4]. This trick allowed us to find explicit generators of
ramification subgroups under the identification η0 from Subsection 1.3.
Remind that we work over K = k((t0)), where k ' FpN0 , N0 ∈ N.
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2.1. Auxiliary field K′ = K(r∗, N), [1, 2, 4]. The field K′ is a totally
ramified extension of K in Ksep. It depends on two parameters: r∗ ∈ Q
such that r∗ > 0 and vp(r

∗) = 0, and N ∈ N such that if q = pN

then b∗ := r∗(q − 1) ∈ N. Note that for a given r∗, there are infinitely
many ways to choose N , in particular, we can always assume that N
is sufficiently large.

By definition, [K′ : K] = q and the Herbrand function ϕK′/K has
only one edge point (r∗, r∗). It can be proved that K′ = k((t′0)), where
t0 = t′ q0 E(−1, t′ b

∗
0 ). Here for w ∈ W (k),

E(w,X) = exp(wX + σ(w)Xp/p+ · · ·+ σn(w)Xpn/pn + . . . ) ∈ Zp[[X]]

is the Shafarevich version of the Artin-Hasse exponential.
Note that if r∗ /∈ N, K′/K is neither Galois nor a p-extension.

2.2. The criterion. Consider the following lifts modulo pM+1 with
respect to the p-basis {t0} of K

OM+1(K) = WM+1(k)((t)) = WM+1(σMK)[t]

OM+1(Ksep) = WM+1(σMKsep)[t] ⊂ WM+1(Ksep).
Remind that t = [t0] ∈ OM+1(K) is the Teichmüller representative of
t0 in WM+1(K).

ForK′ = K(r∗, N) and its uniformiser t′0 from Subsection 2.1 consider
the appropriate lifts O′M+1(K′) and O′M+1(K′sep). If t′ = [t′0] then t and
t′ can be related one-to-another in WM+1(K′) via

tp
M

= t′ p
M qexp(−pM t′ b∗ − · · · − pt′ pM−1b∗)E(−1, t′ p

M b∗) .

This implies the following relations between the lifts for K and K′

σMOM+1(K) ⊂ WM+1(σMK) ⊂ O′M+1(K′)

σMOM+1(Ksep) ⊂ WM+1(σMKsep) ⊂ O′M+1(K′sep)

As earlier, take e0 =
∑

a∈Z0(p) t
−aDa0 ∈ LK, f0 ∈ LKsep such that

σf0 = e0 ◦ f0 and consider πf0(e0) : ΓK −→ G(L) . Similarly, let
e′0 =

∑
a∈Z0(p) t

′−aDa,−N , choose f ′0 ∈ LKsep such that σf ′0 = e′0 ◦ f ′0 and

consider πf ′0(e
′
0) : ΓK′ −→ G(L).

For Y ∈ LKsep and an ideal I in L, define the field of definition
of Y mod IKsep over K as K(Y mod IKsep) := KHsep, where H = {g ∈
ΓK | g(Y ) ≡ Y mod IKsep}.

For any finite field extension E/K in Ksep define its biggest ramifica-

tion number v(E/K) = max{v | Γ
(v)
K acts non-trivially on E}.

For v0 ∈ Q>0, let the ideal L(v0) of L be such that G(L(v0)) =

η0(Γ
(v0)
K ). Let fM = σMf0 and f ′M = σMf ′0. Our method from [1, 2, 4]

is based on the following criterion.
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Proposition 2.1. Let X ∈ LKsep be such that fM = X ◦ σN(f ′M).

Suppose v0, r
∗ ∈ Q>0, vp(r

∗) = 0 and r∗ < v0. Then L(v0) is the
minimal ideal in the family of all ideals I of L such that

v(K′(X mod IKsep)/K′) 6 v0q − b∗.

The proof is quite formal and is based on the following properties of
upper ramification numbers. If v = v(K(f mod IKsep)/K) then:

a) v(K′(f ′mod IK′sep)/K′) = v;

b) v(K′(f ′mod IK′sep)/K) = ϕK′/K(v);

c) if v > r∗ then ϕK′/K(v) < v.

2.3. Illustration of the criterion. The criterion from Proposition

2.1 was applied in [1, 2, 4] to describe the structure of η0(Γ
(v)
K ) by

induction by proceeding from the situation modulo pM to the situation
modulo pM+1 and from the situation modulo Cs(L) to the situation
modulo Cs+1(L), where 2 6 s < p.

Typically, for an ideal I ⊂ L, we used the knowledge of the structure
of L(v0) modI to prove (after choosing r∗ sufficiently close to v0) that

X ∈ LK′ mod (L(v0)
K′ + IK′). Then we could apply our Criterion to

L(v0) modJ for an appropriate (slightly smaller than I) ideal J because
X mod JKsep satisfied over LK′ just an Artin-Schreier equation of degree
p. Notice that f0 mod JKsep and f ′0 mod JKsep satisfy very complicated
relations over LK′ . We give below two examples to illustrate how our
method works in more explicit but similar situations.

2.3.1. First example. Suppose M > 0 and F ∈ OM+1(Ksep) is such
that F − σN0F = t−a, a ∈ Z0(p).

If M = 0 then F is a root of the Artin-Schreier equation F − F q0 =
t−a with q0 = pN0 and directly from the definition of ramification sub-
groups it follows that v(K(F )/K) = a. The case of arbitrary M corre-
sponds to the Witt theory. Here the left-hand side F −σN0F is already
a Witt vector of length M+1, and careful calculations with components
of Witt vectors give that v(K(F )/K) = pMa. Our criterion allows us
to obtain this result in a much more easier way.

Take the field K′ = K(r∗, N) where r∗ and N (recall that q = pN)
are such that

(2.1) apM > r∗ > apM−1q/(q − 1).

Consider the appropriate lift O′M+1(K′sep) and let F ′ ∈ O′M+1(K′sep) be

such that F ′ − σN0F ′ = t′ −a.
Set FM = σMF and F ′M = σMF ′.
Clearly, K(FM) = K(F ) and K′(F ′M) = K′(F ′).
According to restrictions (2.1) we have

t−ap
M

= t′ −aqp
M

exp(apM t′ b
∗

+ · · ·+ apt′ p
M−1b∗)E(a, t′ p

M b∗)
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= t′ −aqp
M

+ apM t′ −ap
M q+b∗ + f0,

where f0 ∈ t′WM(k)[[t′]] ⊂ O′M+1(K′). Therefore,

FM = σNF ′M + pMX +
∑
i>0

σiN0(f0),

where X − σN0X = at′ −ap
M q+b∗ .

In this situation an analogue of our Criterion states that

v(K(FM)/K) = apM ⇔ v(K′(X)/K′) = apMq − b∗

But the right-hand side of this assertion corresponds to the case M = 0
and was explained in the beginning of this section.

2.3.2. Second example. Consider the following modulo p situation, i.e.
the situation where M = 0. (The appropriate case of arbitrary M can
be considered similarly.)

Let F,G ∈ Ksep be such that

(2.2) F − σN0F = t−a0 , G− σN0G = t−b0 σn0(F )

with a, b ∈ Z0(p) and 0 6 n0 < N0. Let

A = max
{
a+ bp−n0 , ap−N0+n0 + b

}
Prove that v(K(F,G)/K) = A if either a 6= b or 2n0 6= N0.

Take K′ = K′(r∗, N), where r∗ and q = pN satisfy the following
restrictions

qA

2(q − 1)
< r∗ <

qA

q − 1
, r∗ >

q

q − 1
max{a, ap−N0 + b}

(We can take r∗ ∈ (A/2, A) such that r∗ > max{a, b} and then choose
sufficiently large N to satisfy these conditions.) Consider F ′, G′ ∈ K′sep
such that

F ′ − σN0F ′ = t′ −a0 , G′ − σN0G′ = t′ −b0 σn0(F ′)

Notice that
t−a0 = t′ −aq0 + at′ −aq+b

∗

0 + o1

where o1 ∈ t′ −aq+2b∗

0 k[[t′0]]. Therefore,

(2.3) F = F ′ q + TF +
∑
i>0

σiN0o1,

where TF − σN0TF = at′ −aq+b
∗

0 . We can choose F ′ in such a way that

(use that−aq+b∗ > 0) TF = at′ −aq+b
∗

0 +o2, where o2 ∈ t′ p
N0 (−aq+b∗)

0 k[[t′0]].
As earlier,

(2.4) t−b0 = t′ −bq0 + bt′ −bq+b
∗

0 + o3

with o3 ∈ t′ −bq+2b∗

0 k[[t′0]]. Then (2.3) and (2.4) imply that

t−b0 σn0F = (t′ −bq0 σn0F ′)q + at
′ −bq+pn0 (−aq+b∗)
0 +
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bt′ −bq+b
∗

0 (σn0F ′)q + o3(σn0F ′)q + o4

where o4 ∈ t′0k[[t′0]]. Therefore, G = G′ q + TG +
∑

i>0 σ
iN0o4, where

TG − σN0TG = at′ −bq+p
n0 (−aq+b∗)

+bt′ −bq+b
∗
(σn0F ′)q + o3(σn0F ′)q

An appropriate analogue of our criterion gives that

v(K(F,G)/K) = A ⇔ v(K′(TF , TG)/K′) = qA− b∗

First of all, TF ∈ k[[t′0]] and, therefore, we should prove that v(K′(TG)/K′) =
qA− b∗. Notice that

F ′ qp
n0 = (σN0F ′)qp

n0−N0 = F ′ qp
n0−N0 − t′ −aqp

n0−N0

0 .

Let OK′(F ′) and mK′(F ′) be the valuation ring and, resp., the maximal
ideal for K′(F ′). Clearly, t′ a0 σ

N0F ′ ∈ OK′(F ′) and, therefore,

t′ −bq+b
∗

0 F ′ qp
n0−N0 ∈ mK′(F ′)

(use that b∗ > q(apn0−2N0 + b)) and o3(σn0F ′)q ∈ mK′(F ′) (use that
2b∗ − (apn0−N0 + b) > 0).

This implies that K′(TG) ⊂ K′(TG, F ′) = K′(T, F ′), where

T − σN0T = aσn0

(
t′ −(a+bp−n0 )q+b∗

)
− bt′ −(apn0−N0+b)q+b∗

0 ,

and v(K′(TG)/K′) = v(K′(T, F ′)/K′).
If either a 6= b or 2n0 6= N0 the right-hand side of this equation is

not trivial and (use that v(K′(F ′)/K′) = a < A) v(K′(T, F ′)/K′) =
v(K′(T )/K′) = qA− b∗.

2.4. Ramification subgroups modulo Γp
M

K Cp(ΓK). As earlier, let

L = LM and for v > 0, let L(v) = η0(Γ
(v)
K ) ⊂ L. The ideal L(v) was

described in [4] as follows.
For γ > 0 and N ∈ Z, introduce the elements F0

γ,−N ∈ Lk via

F0
γ,−N =

∑
16s<p
ai,ni

a1p
n1η(n1, . . . , ns)[. . . [Da1n̄1 , Da2n̄2 ], . . . , Dasn̄s ]

Here:

— all ai ∈ Z0(p), ni ∈ Z, n1 > 0, n1 > n2 > · · · > ns > −N ,
n̄s = ns modN0;

— a1p
n1 + a2p

n2 + · · ·+ asp
ns = γ;

— if n1 = · · · = ns1 > · · · > nsr−1+1 = · · · = nsr then η(n1, . . . , ns) =
(s1! . . . (sr − sr−1)!)−1.

Let L(v)N be the minimal ideal of L such that L(v)N ⊗ WM(k)
contains all F0

γ,−N with γ > v. Then there is an N∗M(v) ∈ N and an
ideal L(v) of L such that for all N > N∗M(v), L(v)N = L(v).

Theorem 2.2. For any v > 0, L(v) = L(v).
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This statement was obtained in the contravariant setting in [4] and
uses the elements Fγ,−N given by the same formula (as for F0

γ,−N) but

with the factor (−1)s−1. Indeed, the contravariant version of Theorem
2.2 appears by replacing the Lie bracket [l1, l2] in L by the bracket
[l1, l2]0 = [l2, l1]. Therefore, [. . . [D1, D2], . . . , Ds] should be replaced by
[Ds, . . . , [D2, D1] . . . ] = (−1)s−1[. . . [D1, D2], . . . , Ds].

Remark. For the ideal L(v) modC2(L) we have the generators com-
ing from F0

γ,−N taken modulo the ideal of second commutators. Such

generators are non-zero only if γ is integral. Therefore, L(v) ⊗W (k) is
generated on the abelian level by the images of pnDam, wherem ∈ Z/N0

and pna > v.

The proof of Theorem 2.2 is quite technical and it would be nice to
put it into a more substantial context. This could be done on the basis
of its following interpretation.

Assume for simplicity that M = 0. Choose r∗, N as in Subsection
2.1. We can assume that N ≡ 0 modN0.

If we replace t0 by tq0 then the identification η0 will be not changed.
Indeed, e0 =

∑
a∈Z0(p) t

−a
0 Da0 is replaced by ι(e0) =

∑
a∈Z0(p) t

−aq
0 Da0 =

(σc) ◦ e0 ◦ (−c), where c = (σN−1e0) ◦ · · · ◦ (σe0) ◦ e0.
When proving above Theorem 2.2 in [4] we actually established that
L(v0) appears as the minimal ideal I of L such that the replacement
(deformation) d(1) : t0 7→ tq0E(−1, tb

∗
0 ) does not affect the identifica-

tion η0 mod I. The same holds also for the one-parameter deformation
D(u) : t0 7→ tq0E(−u, tb∗0 ) with parameter u. In terms of the nilpotent
Artin-Schreier theory this means the existence of c = c(u) ∈ LK[u] such
that

D(u)(e0) ≡ (σc) ◦ e0 ◦ (−c) mod IK[u]

(we assume that σ(u) = u). This condition is satisfied on the linear
level (i.e. for the coefficients of u) if and only if the above elements
Fγ,−N , where γ > v and N > N∗M(v), belong to Ik. As a matter of fact,
the main difficulty we resolved in [1, 4] was that on the level of higher
powers ui, i > 1, we do not obtain new conditions. We do expect to
obtain this fact in an easier way by more substantial use of ideas of
deformation theory.

3. The mixed characteristic case

In this Section we sketch main ideas which allowed us to apply the
above characteristic p results to the mixed characteristic case.

Suppose K is a finite etension of Qp with the residue field k. We fix
a choice of uniformising element π0 in K and assume that K contains
a primitive pM -th root of unity ζM .
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3.1. The field of norms functor [26]. Let K̃ be a composite of the
field extensions Kn = K(πn), where n > 0, K0 = K, and πpn+1 = πn.
The field of norms functor X provides us with:

1) a complete discrete valuation field K = X (K̃) of characteristic p.
The residue field of K can be canonically identified with k, and K has a
fixed uniformizer t0: by definition, K∗ = lim←−K

∗
n, where the connecting

morphisms are induced by the norm maps, and t0 = lim←− πn;

2) if E is an algebraic extension of K̃, then X (E) is separable over K,
and the correspondence E 7→ X (E) gives equivalence of the category

of algebraic extensions of K̃ and the category of separable extensions
of K. In particular, X gives the identification of ΓK = Gal(Ksep/K)
with ΓK̃ ⊂ ΓK ;

3) the above identification ΓK̃ = ΓK is compatible with the ramifica-
tion filtrations in ΓK and ΓK; this means that if ϕK̃/K = limn→∞ ϕKn/K

then for any x > 0, Γ
(x)
K = Γ

(y)
K ∩ ΓK̃ with y = ϕK̃/K(x).

3.2. Three questions. Let

K<p(M) = K̄ΓpM

K Cp(ΓK) , K<p(M) = KΓpM

K Cp(ΓK)
sep .

Then K<p(M) ⊃ X (K<p(M)K̃) ⊃ K, and there is a subgroup HM of
ΓK(M) := Gal(K<p(M)/K), such that

Gal(X (K<p(M)K̃)/K) = ΓK(M)/HM .

Under the identification η0 from Subsection 1.3 we have HM '
G(JM), where JM is an ideal of the Lie algebra LM .

Question A. What is the ideal JM?

Remind that the Lie algebra LM ⊗W (k) has a system of generators
{Dan | a ∈ Z+(p), n ∈ Z/N0} ∪ {D0}. So, more precisely,

What are explicit generators of the ideal JM?

It is easy to see that K<p(M) ∩ K̃ := KM = K(πM). Therefore, for
ΓK(M) := Gal(K<p(M)/K), we have the following exact sequence of
p-groups

1 −→ ΓK(M)/HM −→ ΓK(M) −→ 〈τ0〉Z/p
M −→ 1,

where τ0 ∈ Gal(KM/K) is defined by the relation τ0(πM) = ζMπM .
Using the equivalence of the category of Lie Z/pM -algebras of nilpotent
class < p and of the category of p-groups of the same nilpotent class,
cf. Subsection 1.2, we can rewrite the above exact sequence of p-groups
as the following exact sequence of Lie Z/pM -algebras

0 −→ LM/JM −→ LM −→ (Z/pM)τ0 −→ 0
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Here LM is the Lie Z/pM -algebra such that G(LM) = ΓK(M). This
sequence of Lie algebras splits in the category of Z/pM -modules and,
therefore, can be given by a class of differentiations adτ̂0 of LM , where
τ̂0 is a lift of τ0 to an automorphism of LM .

Question B. What are the differentiations adτ̂0?

More precisely,

Find the elements ad(τ̂0)(Da0), a ∈ Z0(p).

As we have mentioned in Subsection 3.1 the ramification filtrations
in ΓK and ΓK are compatible.

The ramification filtration of Gal(KM/K) = Z/pMτ0 has a very sim-
ple structure. Let eK be the absolute ramification index of K and for
s ∈ Z, s > 0, vs = eKp/(p− 1) + seK . Then

if 0 6 v 6 v0, then (Z/pMτ0)(v) is generated by τ0;

if vs < v 6 vs+1, 0 ≤ s < M , then (Z/pMτ0)(v) is generated by psτ0;

if v > vM , then (Z/pMτ0)(v) = 0.

Therefore, we shall obtain a description of the ramification filtration
ΓK(M)(v) of ΓK(M) by answering the following question.

Question C. How to construct ”good“ lifts p̂sτ0 ∈ L(vs)
M , 0 ≤ s ≤M?

Below we announce partial results related to above questions.

3.3. The ideal JM . Consider the decreasing central filtration by the
commutator subgroups {Cs(ΓK(M))}s≥2. This filtration corresponds
to the following decreasing central filtration of ideals of LM

J1 := LM ⊃ J2 ⊃ · · · ⊃ Jp = JM
We can treat LM as a free pro-finite object in the category of Lie

Z/pM -algebras of nilpotent class < p. Its module of generators is

K∗/K∗pM . In this Subsection we announce an explicit description of
the filtration {Js}26s6p. Particularly, in the case s = p we obtain an
answer to above question A.

Let U be the submodule of K∗/K∗pM generated by the images of
principal units. U can be identified with a submodule in the power
series ring WM(k0)[[ t ]] via the correspondences

E(w, ta0) modK∗pM 7→ wtamodpMW (k)[[ t ]],

where w ∈ W (k), a ∈ Z+(p) = {a ∈ N | (a, p) = 1} and E(w,X) is the
Shafarevich function from Subsection 2.1.

Let H0 ∈ W (k)[[ t ]] be a power series such that ζM = H0(π0).

Let H̃0 = H0 mod pM ∈ WM(k)[[ t ]]. Then there is a unique S ∈
WM(k)[[ t ]], such that H̃pM

0 = E(1, S). Note that the differential
dS = 0, in particular, S ∈ WM(k0)[[ tp]], and therefore, SU ⊂ U under
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the above identification of U with the submodule ⊕
a∈Z+(p)

WM(k) ta in

WM(k)[[ t ]].

For s ≥ 1 define a decreasing filtration of K∗/K∗pM as follows:(
K∗/K∗pM

)(1)

= K∗/K∗pM and
(
K∗/K∗pM

)(s)

= Ss−1U , if s ≥ 2.

This filtration determines a decreasing filtration of ideals {LM(s)}s>1

in LM which can be characterized as the minimal central filtration of
LM such that for all s, (K∗/K∗pM )(s) ⊂ LM(s).

Theorem 3.1. For 1 6 s 6 p, Js = LM(s).

Remark. a) The element H̃pM

0 − 1 appears as the denominator in the
Brückner-Vostokov explicit formula for the Hilbert symbol and can be
replaced in that formula by S, cf. [3]; this element S can be considered
naturally as an element of Fontaine’s crystalline ring of p-adic periods
and coincides with the p-adic period of the multiplicative p-divisible
group.

b) A first non-abelian case of the above theorem corresponds to s = 2
and is equivalent to the formula

SU = Ker(ΓK(M)ab −→ ΓK(M)ab).

By Laubie’s theorem [18] the functor X is compatible with the reci-
procity maps of class field theories of K and K cf. also [12]. Therefore,

(3.1) SU = Ker(N : K∗/K∗pM −→ K∗/K∗p
M

),

where N is induced by the projection K∗ = lim←−K
∗
n −→ K∗0 = K∗. The

right-hand side of (3.1) can be interpreted as the set of all (wa)a∈Z+(p) ∈
W (k)Z

+(p) modpM such that
∏

a∈Z+(p) E(wa, π
a
0) ∈ K∗pM . So, formula

(3.1) can be deduced from the Brückner-Vostokov explicit reciprocity
law.

3.4. Differentiation adτ̂0 ∈ Diff(LM). It can be proved that there

are only finitely many different ideals L(v)
M modJM . Therefore, we can

fix sufficiently large natural number N1 (which depends only on N0, eK
and M), set F0

γ := F0
γ,−N1

and use these elements to describe the

ramification filtration {L(v)
M modJM}v≥0.

The elements F0
γ , γ > 0, can be given modulo the ideal of third

commutators C3(LM k) as follows :
if γ = apl ∈ N, where a ∈ Z+(p) and l ∈ Z>0, then

F0
γ = aplDal̄ +

∑
s,n,a1,a2

η(n)a1p
s[Da1s̄, Da2s̄−n̄];

if γ /∈ N, then

F(γ) =
∑

s,n,a1,a2

η(n)a1p
s[Da1,s̄, Da2,s̄−n̄].
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In the above sums 0 6 s < M , 0 6 n < N1, a1, a2 ∈ Z0(p),

ps(a1 + a2p
−n) = γ, η(n) = 1 if n 6= 0 and η(0) = 1/2.

Let S ∈ WM(k)[[ t ]] be the element introduced in Subsection 3.3.
Remind that S = σS ′, where S ′ ∈ WM(k0)[[ t ]]. For l > 1, let αl ∈
WM(k) be such that

S − pS ′ =
∑
l>1

αlt
l.

Note that
a) if l < eKp/(p− 1) then αl = 0;
b) for any l > 1, we have lαl = 0.

Theorem 3.2. There is a lift τ̂0 ∈ LM of τ0 such that

adτ̂0(D0) =
∑
l>1

06n<N0

σn(αlF0
l )modC3(LM)

and, for a ∈ Z+(p),

adτ̂0(Da0) =
∑
f∈Z
l>1

σ−f (αlF0
l+apf )modC3(LMk).

3.5. Good lifts p̂sτ0, 0 ≤ s < M . If s = 0, let τ̂0 ∈ LM be a lift from
Theorem 3.2. Define the lifts p̂sτ0 by induction on s as follows

p̂sτ0 = p(p̂s−1τ0) +
1

2

∑
l>1

06n<N0

αl
∑

a1,a2∈Z+(p)

a1+a2=
pseK
p−1

a1[Da1n, Da2n].

Theorem 3.3. A lift τ̂0 from Theorem 3.2 can be chosen in such a
way that all p̂sτ0, 0 ≤ s < M , are “good” modulo C3(LMk), i.e. p̂sτ0 ∈
L
ϕ(vs)
M modC3(LMk), where vs = eKp

s/(p − 1) and ϕ is the Herbrand
function of the extension K<p(M)/K.

Theorem 3.3 gives a complete description of the ramification filtra-
tion of ΓK(M) modulo C3(ΓK(M)). This result can be compared with
the description of the filtration ΓK(1)(v)∩C2(ΓK(1)) modulo C3(ΓK(1))
in [27].

3.6. The modulo p case. In this Subsection we give an overview
of the results from [11] related to the modulo p aspect of problems
discussed in this paper.

Let M = 1 and c0 := eKp/(p− 1)(= v1). We can simply drop off M
from all above notation instead of substituting M = 1.

The ideals L(s), 1 6 s 6 p, can be described now quite explicitly as
follows. Define a weight filtration on L by setting for a ∈ Z0(p) and
n ∈ Z/N0, wt(Dan) = s ∈ N if (s − 1)c0 6 a < sc0. Then for all s,
L(s) = {l ∈ L | wt(l) > s}, cf. Section 3 of [11].
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The field-of-normsK admits a standard embedding intoR0 = FracR,
where R is Fontaine’s ring [26]. This also identifies R0 with the com-
pletion of Ksep and, therefore, we have a natural embedding of K<p into
R0. In particular, f0 can be considered as an element of LR0 .

Choose a continuous automorphism h0 of K such that

h0(t) ≡ τ0(t) mod tc0(p−1)mR,

where mR is the maximal ideal in R. The formalism of nilpotent Artin-
Schreier theory allows us to describe efficiently the lifts ĥ0 ∈ AutK<p
of h0, [2]. This can be done by specifying the image ĥ0(f0) in the form

ĥ0(f0) = c(ĥ0) ◦ (Adĥ0 ⊗ 1)f0

where c(ĥ0) ∈ LK and Adĥ0 is the conjugation of G(L) via ĥ0.
It can be proved then that the lifts τ̂0 ∈ AutK<p satisfy

τ̂0(f0) ≡ ĥ0(f0) mod tc0(p−1)MR0 ,

where MR0 =
∑

16s<p t
−c0sL(s)mR

+ L(p)R0 , and are uniquely deter-
mined by this conditions. Therefore, the lifts τ̂0 can be uniquely de-
scribed via the morphisms Adτ̂0 and the elements c(ĥ0) mod tc0(p−1)MK,
where MK =

∑
16s<p t

−c0sL(s)mK + L(p)K.

The above elements c(ĥ0) satisfy complicated relations but the whole
situation can be linearized as follows.

In [11] we proved that the action of the group 〈ĥ0〉Z/p on f0 comes
from the action of the additive group scheme Ga,Fp = SpecFp[u] on

MK<p/t
c0(p−1)MK<p , where MK<p is defined similarly to MR0 . This

implies that if c[u] = c0 +c1u+ · · ·+cp−1u
p−1 ∈ LK[u] is the polynomial

with coefficients in LK such that for 0 6 k < p, c[u]|u=k = c(ĥk0)
then its residue modulo tc0(p−1)MK is well-defined and can be uniquely
recovered from its first coefficient c1 mod tc0(p−1)MK.

Now we can state the main results from [11].

3.6.1. There is a bijection

τ̂0 7→ (c1, {adτ̂0(Da0) | a ∈ Z0(p)})
of the set of lifts τ̂0 and solutions (c1, {Va | a ∈ Z0(p)}), where c1 ∈ LK,
V0 ∈ α0L, Va ∈ Lk with a ∈ Z+(p), of the following equation

σc1 − c1 +
∑

a∈Z0(p)

t−aVa =

∑
k,l>1

1

k!
tl−(a1+···+ak)αl[. . . [a1Da10, Da20], . . . , Dak0]

−
∑
k>2

1

k!
t−(a1+···+ak)[. . . [Va1 , Da20], . . . , Dak0]
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−
∑
k>1

1

k!
t−(a2+···+ak)[. . . [σc1, Da20], . . . , Dak0]

(Remind that αl ∈ k were defined in Subsection 3.4 and they equal 0
if l 6= c0, c0 + p, c0 + 2p, . . . .)

3.6.2. A lift τ̂0 is “good”, i.e. τ̂0 ∈ L(c0) iff all Va ∈ L(c0)
k and

c1 ≡ −
∑
γ>0
l>1

∑
06i<N∗

σi(αlF0
γ,−it

−γ+l) mod (L(c0)
K + tc0(p−1)MK)

3.6.3. Let the operators F0 and G0 on Lk be such that for any l ∈ Lk,

F0(l) =
∑
k>1

1

k!
[. . . [l, D00], . . . , D00︸ ︷︷ ︸

k−1 times

], G0(l) =
∑
k>0

1

k!
[. . . [l, D00], . . . , D00︸ ︷︷ ︸

k times

]

Then the correspondence

(c0
1, V0) 7→ (c0

1 −
∑

06i<N∗
l>1

σi(αlF0
l,−i), V0)

establishes a bijection between the set of all good lifts τ̂0 and the set

of all (x, y) such that x ∈ L(c0)
k , y ∈ α0L(c0), and

(3.2) (G0σ − id)(x) + F0(y) =
∑
l>1

σN
∗ (
αlF0

l,−N∗
)

3.6.4. For any above solution (x, y) of (3.2) we have

y ≡ α0

∑
l>1

Trk/Fp(αlF0
l,−N∗)modα0[D0,L(c0)]

This implies the existence of a good lift τ̂0 such that the (only) relation
in the Lie algebra Lk (recall that G(L) = Gal(K<p/K)) appears in the
form

adτ̂0(D0) =
∑
l>1

Trk/Fp(αlF0
l,−N∗) .
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