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Abstract The material point method is ideally suited to modelling large deformation 
problems in three dimensions, especially in cases where the finite element method strug-
gles due to mesh distortion.  However, when the method is used to analyse problems 
with near-incompressible material behaviour, such as in geotechnical engineering using 
models with isochoric plastic flow, it suffers from severe volumetric locking.  This 
causes the method to over predict the forces for a given displacement and induces spu-
rious stress oscillations through the problem domain.  Several methods have been pro-
posed in the finite element literature but few of these have been applied to the material 
point method.  In this paper we present a way to avoid volumetric locking for three-
dimensional material point analyses with simplex elements (linear tetrahedra) using an 
𝐹 bar patch approach.  Not only does the technique avoid the over-stiff behaviour asso-
ciated with volumetric locking but it also reduces the stress oscillations in the method, 
which are often attributed to cell-crossing instabilities.  The formulation is validated 
against two three-dimensional benchmark problems.     
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1   Introduction 

Volumetric locking occurs in numerical analysis when the number of volumetric con-
straints, often a consequence of the constitutive behavior of the material being modelled, 
excessively constrains the movement of an element’s nodes.  This is often an issue for 
Material Point Methods (MPMs) due to the relatively high material point/node ratio (to 
reduce integration errors) and the types of materials modelled using the method (iso-
choric plasticity is common).  Despite this, the issue of volumetric locking in MPMs has 
received relatively little attention to date.  Notable exceptions are the papers of Mast et 
al. (2012) and Coombs et al. (2018), however these works introduce additional com-
plexity into the underlying element formulation and can only be applied to 
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quadrilateral/hexahedral elements, respectively.  The 𝐹" approach of Coombs et al. 
(2018)1 makes different assumptions about the deformation gradient variation across the 
element; the deviatoric component varies in the conventional manner whereas the volu-
metric component of the deformation gradient is constant within each element.  This 
reduces the volumetric constraint on the element and removes the over-stiff behavior 
associated with volumetric locking.  Although many MPMs are based on structured 
quadrilateral/hexahedral background grids, several real geotechnical problems require 
the use of unstructured tetrahedra, especially in the area of soil-structure interaction 
(such as the installation of piles and seabed ploughing for offshore renewable energy 
cable installation).  However, it is not possible to apply the 𝐹" approach to simplex ele-
ments due the fact that they can only represent a constant strain field within each ele-
ment.  This paper briefly outlines a material point formulation that eliminates volumetric 
locking for simplex element-based background grids2 using the 𝐹" patch approach of de 
Souza Neto et al. (2005) and demonstrates the performance of the method.   

2   Material Point Continuum Formulation 

This paper is restricted to quasi-static analysis and adopts an updated Lagrangian con-
tinuum formulation, solved using an implicit material point approach based on Charlton 
et al. (2017); see Coombs et al. (2020) for details of the numerical implementation and 
associated AMPLE code.  Within this formulation, the updated Lagrangian weak state-
ment of equilibrium can be expressed as 

# $𝜎&'(∇*𝜂)&' − 𝑏&𝜂&/𝑑𝑣
23(4)

− # (𝑡&𝜂&)𝑑𝑠
23(74)

= 0, (1) 

where 𝜑= is the motion of the material body with domain, Ω, which is subjected to trac-
tions, 𝑡&, on its boundary, 𝜕Ω, and body forces, 𝑏&, acting over its volume, 𝑣,	which gen-
erate a Cauchy stress, 𝜎&', through the body.  𝜂& are a set of admissible virtual displace-
ments.  The corresponding Galerkin weak statement of equilibrium over each 
background element, 𝐸, is   

# B∇*𝑆DEF
G{𝜎}

23(J)
𝑑𝑣 −# B𝑆DEF

G{𝑏}
23(J)

𝑑𝑣 −	# B𝑆DEF
G{𝑡}

23(7J)
𝑑𝑠 = 0	 (2) 

where [𝑆DE] are the basis functions linking the nodes (or vertices, 𝑣) and the material 
points, 𝑝, and {𝜎}, {𝑡} and {𝑏} are the vector forms of the Cauchy stress, tractions and 

 
1 The 𝐹" material point approach of Coombs et al. (2018) is essentially the 𝐹" method of de Souza Neto et 

al. (1996) applied to the MPM with minor modifications to account for the differences between the methods.  
2 That is, background grids comprised of three-noded linear triangles or four-noded linear tetrahedra. 
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body forces, respectively.  Note that the spatial gradients of the basis functions, [∇𝑆DE], 
are with respect to the deformed coordinates3, 𝑥&.   

The key idea behind the 𝐹" approach is to modify the volumetric component of the de-
formation gradient to reduce the volumetric constraint on the element.  For linear quad-
rilateral/hexahedral elements this is straightforward as the conventional deformation 
gradient varies across the element and therefore the volumetric component can be taken 
as a constant over each element.  However, for linear triangles/tetrahedra the defor-
mation gradient is already constant over each element so this approach is not possible.  
The 𝐹" patch method overcomes this issue by defining a number of patches, or collec-
tions of elements, and assuming that the volumetric component of the deformation gra-
dient is constant over each patch.  The 𝐹" patch incremental deformation gradient (see 
de Souza Neto et al. (2005)) is given by 

Δ𝐹"&' = Q
𝑣ER=ST

𝑉VER=ST$det$Δ𝐹&'//
Z

[
\]
	Δ𝐹&'	, (4) 

where 𝑛`is the number of dimensions, 𝑣ER=ST and 𝑉VER=ST are the volumes of the patch 
in the deformed configuration and at the start of the load step, respectively, and Δ𝐹&' is 
the conventional deformation gradient increment of the material point determined via 
the spatial gradient of the basis functions and the incremental nodal displacements.  
Changing the definition of the deformation gradient via Eq. (4) introduces an additional 
component to the stiffness of the material point’s parent element and also introduces 
coupling terms between the elements within a patch.  This increases the bandwidth of 
the global stiffness matrix; in this paper each tetrahedral element will influence seven 
other elements (eight elements per patch).  

3   Numerical Implementation 

The 𝐹" patch method requires the definition of patches of elements but the definition of 
these patches is arbitrary.  In this paper the patches are formed by first constructing a 
background mesh comprised of 10-noded quadratic tetrahedra (or 6-noded triangles for 
two-dimensional analysis) and then splitting each these elements into eight 4-noded lin-
ear tetrahedra.  This means that the bandwidth of the mesh is the same as that of the 
original quadratic mesh and the process of converting to linear elements does not intro-
duce any additional nodes.  During the analysis, if the material points have moved such 
that an element within a patch no longer contains material points, it is removed from the 
patch for the load step under consideration.  Note that if the element is repopulated by a 
material point during a later stage of the analysis, it would be reintroduced into its orig-
inal patch.  The use of an unstructured background mesh increases the complexity (and 

 
3 For many MPMs this requires the derivatives of the basis functions to be mapped from the configuration 

at the start of the load step to the current configuration using the procedure explained in Charlton et al. (2017). 
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potentially cost) of determining the element location of each material point.  In this pa-
per we adopt a modified version of the Walking-in-Triangulation (WiT) procedure of 
Devillers et al. (2002) which, for an example problem containing 31,000 material points 
and elements, reduces the searching time to 0.054% of a naïve searching method based 
on local element positions (see Wang et al. (2020) for details).           

4   Numerical Examples 

The first numerical example presented in this paper is the analysis of a 1m rigid square 
smooth footing bearing onto a three-dimensional domain.  The weightless soil had a 
Young’s modulus of 10MPa, a Poisson’s ratio of 0.48 and a perfect plasticity von Mises 
yield strength of 0.85kPa.  Due to symmetry only a quarter of the footing was modelled 
and the resulting 5 by 5m domain, as shown to the right of Fig. 1, was discretized by a 
background grid of 4,176 elements with 11 material pointe per element.  Roller bound-
ary conditions were imposed on the four vertical sides and the base of the domain and a 
vertical displacement of 2mm was imposed on the footing area over 20 equal displace-
ment-controlled increments.  A moving mesh strategy (Beuth, 2012) was adopted so 
that the background mesh remained coincident with the imposed boundary conditions.       

The reaction force versus displacement response of the standard MPM (sMPM) and the 
𝐹" patch MPM are shown in Fig. 1, where it is clear that the sMPM suffers from volu-
metric locking and does not reach a limit load.  The 𝐹" patch MPM prediction is con-
sistent with the perfect plasticity material assumption and reaches a limit load after ap-
proximately 1mm of vertical displacement.   
 

 
Fig. 1 Footing analysis: reaction force-displacement response and background mesh 

Fig. 2 shows the magnitude of the Cauchy stress for (a) the sMPM and (b) the 𝐹" patch 
MPM.  The sMPM shows the spurious checkerboarding artifact of volumetric locking 
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whereas the proposed 𝐹" patch MPM produces a physically more realistic response 
showing stress concentration under the imposed displacement.  The checkerboarding of 
the sMPM is caused by the inability of the method to deform in a natural way whilst 
imposing the volumetric constraints, caused by the isochoric plastic flow at each yielded 
material point, on each element.  The 𝐹" patch MPM replaces these constraints by a single 
volumetric constraint on each patch of eight elements.         
 

 
Fig. 2 Cauchy stress magnitude, aσcdae, for the (a) sMPM and (b) F" patch MPM. 

The second numerical example of this paper is a much simpler problem – stretching of 
a cubic domain in one direction.  The 2m domain had a Young’s modulus of 10kPa, a 
Poisson’s ratio of 0 and a von Mises perfect plasticity yield strength of 400Pa.  The 
domain was modelled using five patches of eight tetrahedra (40 elements in total) and 
each element was discretized by 11 material points.  The domain, as shown in Fig. 3(a), 
was stretched by an incremental displacement of 0.4m per load step on one face with a 
roller constraint placed on the opposite face.  Two of the remaining four sides, one each 
at the 𝑥 and 𝑧 limits of the domain, where also restrained with a roller boundary condi-
tion.  The moving mesh concept was used so that the background mesh remained coin-
cident with the imposed boundary conditions throughout the analysis.    
 

 
Fig. 3 Simple stretch: (a) problem definition and (b) deformed configuration with 6.8m displacement. 
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Fig. 4 shows the normal component of the Kichhoff stress in the direction of the stretch-
ing for all of the material points in the analysis over 11 load steps for both the standard 
(sMPM) and the 𝐹" patch MPMs along with the analytical solution.  It is clear that the 𝐹" 
patch MPM significantly reduces the stress oscillation caused by material points moving 
between elements due to the coupling terms introduced via the patches.  That is, in a 
similar way to domain-based MPMs, a material point has an influence on an element, 
and vice-versa, before it moves into the element if it is in the same patch.     
 

 
Fig. 4 Kirchhoff stress response for the (a) standard MPM and (b) F" patch MPM. 

8   Conclusions 

This paper has presented a 𝐹" patch approach to avoid volumetric locking in simplex 
elements.  Although the focused has been on three-dimensional analysis with an implicit 
material point formulation, the method is applicable to both implicit and explicit analy-
sis for two and three-dimensional problems.  The proposed method has two clear bene-
fits: (i) it removes the over-stiff global response and (ii) significantly reduces the stress 
oscillations between elements of the standard MPM when modelling near-incompressi-
ble materials. Unfortunately, the bandwidth is increased compared to the standard MPM 
(in a similar way to changing from linear to quadratic elements), via coupling terms 
within each patch of elements, and the method requires a non-unique patch definition.  
However, it is the authors’ opinion that the benefits offered by the method vastly out-
weigh this additional complexity.     
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