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1. Introduction
1 

This chapter reviews the main challenges facing electricity distribution network utilities 

along technological, economic, and social dimensions. It also discusses the implications 

of challenges ahead for network utilities and provides some insights into the likely 

features of their future business models. 

 

Electricity networks are a crucial part of the power system as they transport electricity 

from generators to end-users. The power grid consists of transmission and distribution       

networks that differ in voltage level, size, operation, and objectives. The transmission 

grid comprises high-voltage circuits designed to transfer bulk power from power plants 

to load centers, using step-up transformers to raise the voltage to the required level. 

Distribution networks deliver electric energy to end-users after receiving bulk power 

from the transmission grid. Circuits with different voltage levels in transmission and 

distribution networks are connected by substations.
2
 Electricity is delivered through 

underground cables or overhead lines. Underground cables are often used in urban 

areas, whereas overhead lines are used for less densely populated and rural areas. 

 

In a liberalized and unbundled model of the electricity sector, distribution networks are 

owned and operated by distribution network operators (DNOs). Each DNO serves a 

specific service area but has no direct financial relationship with final consumers (that 

is, DNOs do not sell electricity). End-users buy electricity from or sell to, retail 

suppliers. In many countries, prior to the liberalization of the sector in the 1990s, 

distribution networks were part of vertically integrated monopoly structures that owned 

and operated the four basic functions of the electricity system: generation, transmission, 

distribution, and retail supply. Liberalizing reforms led to the introduction of wholesale 

and retail markets for electricity. However, competition is not feasible in the electricity 

networks, and consequently, network companies are subject to economic regulation. 
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In the coming years, distribution networks will likely experience wide-ranging changes 

in their operating environments. Networks that were originally designed as passive 

transporters of electric energy face a shift in their operational paradigm in terms of bi-

directional power flows and their use of information and communication technologies. 

Moreover, penetration of distributed generation sources, electric vehicles (EV), and 

storage facilities create techno-economic challenges that require grid upgrade, 

reinforcement, technological improvement, and, ultimately, the development of new 

business models (see Figure 1). Furthermore, the DNOs are the main point of 

interaction between the power grid and the end-users; therefore, implementing new 

concepts such as demand response, smart metering, and consumer empowerment 

involves changes in planning and operation at the distribution level. 

 

 
Figure 1. Electricity distribution networks in a dynamic environment 

Source: Authors 

 

These developments will lead to fundamental changes to the relationship between utility 

companies and their customers, which will result in the emergence of new business 

models. Future distribution network utilities will adapt their conventional business 

models based on the provision of unidirectional wire connection to innovative and 

interactive service-based business models. 

 

The outline of this chapter is as follows. The following section discusses penetration of 

new technologies and their implication for network companies. Section 3 explains the 

role of consumers and society and the change in the nature of demand. Regulatory 

challenges and possible solutions are discussed in Section 4. Section 5 investigates the 

problem of the current stylized business model of the DNOs and explores some 

possibilities in this respect. Finally, conclusions are drawn in Section 6. 
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2. New technologies: Game changers 

 

2.1 Distributed energy resources 

Distributed energy resources are facilities that can generate electricity (and heat) using 

several small- and medium-scale technologies. These include different types of 

distributed generations (DGs) such as small turbines, fuel cells, combined heat and 

power (CHP), and photovoltaic systems (IEA, 2002). These facilities either connect to 

the distribution network or serve customers directly on-site. This differs from the 

traditional system, which produces electricity in a few large facilities that is then 

transported over long distances through transmission and distribution networks to reach 

consumers. 

 

Distributed sources have several possible benefits. A greater number of local generation 

facilities can potentially reduce congestion in the network and defer upgrades to 

transmission and distribution systems. Additionally, quality of supply can increase as 

energy is generated closer to demand, and system losses may also decrease (IEA, 2002). 

Distributed generation currently accounts for a small proportion of total capacity, but 

this share is set to increase as these technologies improve. Furthermore, growing 

concerns over climate change, constraints in upgrading the transmission grid, and 

supply security are increasing the number of generators connected to distribution 

networks (IEA, 2002). 

 

However, large volumes of distributed generation can affect the quality of supply, 

voltage levels, and phase imbalance (Putrus et al., 2009), whilst large increases in 

renewable sources can create new bottlenecks in distribution networks. In passive 

networks, the distributed generation capacity that can be connected is limited as 

network stability is essential for a safe and secure supply, and large volumes of 

distributed generation may cause system volatility (Lopes et al., 2007). Therefore, the 

networks require substantial investment for upgrades and expansion to accommodate 

the diverse distributed energy sources. 

  

Alongside the increased focus on distributed generation is the prospect of development 

of storage technologies. Depending on the duration of storage, benefits include voltage 

and frequency control (short storage), peak load topping, renewable power smoothing 

(medium storage), smoothing of weather effects, and annual smoothing of loads (long 

storage). Thus, energy storage can increase the penetration of distributed generation by 

ensuring a smoother supply and offering greater demand predictability (Barton and 

Infield, 2004). This holds out the potential for electricity customers to become less 

dependent on the networks, so that DNOs will need to find alternative methods of 

securing their revenue base. 
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2.2 The smart information and communication technology era: Smart grids and meters 

Conventional distribution networks are passive and operate based on predefined values, 

and are thus unable to respond to short-term customer behavior. They are also unable to 

accommodate the wide range of renewable and distributed energy sources. Therefore, 

large increases in distributed generation and EV necessitate the development of active 

networks with the ability to respond to changes in demand and supply. A smart grid 

uses information and communication technology (ICT) to collect and respond to 

information about customer and supplier behavior. With two-way communication 

technologies and smart meters, the networks can better respond to changes in demand, 

aggregate consumption, and grid condition, enabling informed participation by their 

customers (Byun et al., 2011). 

 

However, the implementation of smart technology does not automatically lead to smart 

network operation. The transition must be comprehensive, and requires retraining of 

staff as well as development and implementation of new protocols that are compatible 

with the new operating environment (Arends and Hendriks, 2014). Moreover, the costs 

associated with active smart networks are substantial, and their benefits need to justify 

and outweigh their costs. In the conventional business model, DNOs do not normally 

have an incentive to implement a responsive grid as they would only be able to offer 

limited benefits (Lopes et al., 2007). 

 

2.3 Electric vehicles 

Whilst CO2 emissions from some sectors of the economy are decreasing, emissions 

from transportation are increasing (DECC, 2014). The UK government has 

implemented a number of measures to incentivize the public to switch from traditional 

vehicles, which run on petrol or diesel, to EV. These measures include grants, road tax 

waivers, and exemption from London congestion charges (TRL, 2013). With costs 

being a major motive behind purchases (TRL, 2013), financial incentives and 

technological progress can increase the uptake of EV in the UK (Putrus et al., 2009). 

However, to date, interest in the UK has been slow, and only 5 percent of consumers 

were considering buying an electric car or van in the near future as of 2014 (Department 

for Transport, 2014). On the other hand, strong incentives in countries such as Norway 

have resulted in a greater demand for electric cars. 

 

Electric vehicles have yet to make a substantial impact on the distribution network; 

however, since the vehicles use batteries with large storage capacity, allowing them to 

travel longer distances, an upsurge in uptake may place strain on the network. One 

potential problem relates to a mismatch of supply and demand due to uncertainties 

regarding when and how owners charge their vehicles. The distribution grids can only 

safely carry up to a certain load, and if owners charge their vehicles at peak demand 

hours, a congested network may overload. Therefore, substantial local infrastructural 

reinforcements are required to accommodate the integration of EV (Lopes et al., 2011). 
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As the number of vehicles increases, the DNOs will need to upgrade the network to 

supply the charging points and other required infrastructure (Pieltain Fernández et al., 

2011). However, provided that the necessary infrastructure is in place, the vehicles may 

be able to deliver electricity back to the grid. This opens the possibility for electric cars 

to provide peak-demand relief, which would reduce the need for grid capacity 

enhancement. Additionally, the potential mismatch between demand and supply can be 

eliminated through improved communication and provision of price incentives to 

consumers to encourage off-peak charging (Putrus et al., 2009). 

 

The aforementioned changes in the operating environment of distribution networks will 

necessitate a shift in the operating philosophy of these companies from being network 

operators (DNOs) to distribution system operators (DSOs). Figure 2 illustrates this 

likely transition, and depicts and relates the above-discussed aspects of technological 

change in the operating environment of the DNOs, including distributed generation, 

storage facilities, ICTs, and EV. 

 

 

 
Figure 2. A shift from DNO to DSO 

Source: Poudineh and Jamasb (2014) 
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3. The consumer and society: The changing nature of demand 

 

Governments across Europe have set ambitious green energy targets to curb emissions. 

The policies, including increased generation of renewable energy and EV expansion, 

largely depend on public and local support for their success. The role of the individual 

and the community in energy policy issues is thus on the rise (Akcura et al., 2011). This 

trend is also noticeable in the transportation of electricity. The technical challenges of 

DNOs to ensure a sustainable energy future include extensive expansion and 

modernization of the networks to allow for smaller but more numerous generation 

facilities, uptake of EV, and active grid management. However, whilst the technical and 

economic aspects receive more attention from the sector and academics alike, they are 

only part of the challenge. As the nature of electricity demand and supply is changing, 

so is the role of the society and consumer engagement in the sector. 

 

Societal and consumer acceptance of green energy innovations plays an important part 

in addressing and curbing climate change. Whilst it is generally thought that public 

attitudes towards renewable energy are positive, local opposition to large facilities 

remains significant. The importance of public acceptance has been discussed with 

regards to large infrastructural projects, such as transmission lines (Ciupuliga and 

Cuppen, 2013), renewable-energy-generation technologies (Devine-Wright, 2011), and 

hazardous facilities (Johnson and Scicchitano, 2012). However, where large 

infrastructure, put simply, only needs “passive” consent (see Ciupuliga and Cuppen, 

2013; Tobiasson and Jamasb, 2014), distributed generation, EV, and smart networks 

depend on “active” acceptance from consumers. This includes the willingness to invest, 

install, and change behavior to adapt these technologies (Sauter and Watson, 2007). The 

slow progress from simple acceptance to participation and changing behavior shows 

how priorities expressed by citizens sometimes fail to translate into actions by 

customers (Cotton and Devine-Wright, 2012). 

 

The shift to a decentralized generation mix creates a flow of electricity that is less 

predictable and less flexible to operate. Shifts in both demand and supply will have an 

effect on the operation of DNOs. Through increased uptake of demand–response, smart 

grids, and distributed generation, customers are more involved and can actively 

contribute to increased energy efficiency, energy saving, and peak load shifts. Not only 

are customers able to affect the demand side through altering electricity consumption 

patterns, but also the supply side, where consumers can take on the role of producer 

through distributed generation (Mah et al., 2012). 

 

Moreover, customer action is the main driver behind reaching the policy goals to curb 

climate change, and customer engagement should therefore be a priority (Honebein et 

al., 2011). Smart grids and distributed generation require communication between 

utility companies and their customers. The relationship is likely to change from a one-
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way information flow to a two-way interactive discussion. However, not only will the 

DNOs be required to engage actively with customers once new technologies are 

implemented, through dialogue at an early stage, but DNOs can also learn about their 

customers’ priorities and concerns, and adapt these technologies accordingly. Early 

communication and customer participation is important for building trust and 

confidence among consumers, which in turn is important for achieving customer 

acceptance of new technologies (Gangale et al., 2013). 

 

Ultimately, increasing communication and participation with customers will bring to 

light the heterogeneity of customer behavior, as the same technology may be perceived 

differently among different groups in the same or different communities (Batel and 

Devine-Wright, 2014). The role of the consumer in the sector is shifting. As distribution 

networks change from passive to active utilities, the public is also changing from being 

a passive to active stakeholder. On the other hand, DNOs face the challenge of adapting 

to a new nature of demand. However, rather than adopting a “wait and see” approach, 

the DNOs can also choose to act early and smooth the transition from passive 

transporters of electricity to active participants in between both demand and supply. 

Therefore, policy makers and regulators have the challenging task of providing 

incentives that increase public acceptance and participation in implementing green-

energy innovations. 

 

 

4. Regulation: Incentives work 

 

Maintaining a well-functioning liberalized sector requires supervision and regulation of 

the wholesale and retail markets as well as the networks services. At grid level, this 

becomes more important as there is no competition and the networks are subject to 

incentive-based regulation. The incentive regulation regimes aim to induce the market 

outcomes in this segment of the sector. The expectation is that incentive regulation 

better realizes the objectives of regulators. However, the post-liberalization experience 

has shown that incentive regimes give rise to new challenges, including those related to 

investments and innovation. Additionally, promotion of low-carbon technologies and 

objectives has resulted in new challenges that require regulatory innovation and 

solutions. In what follows, we review some of the most important regulatory challenges 

that will likely affect future development of electricity distribution networks. 

 

4.1 Investment and innovation 

The post-liberalization policies of achieving a low-carbon economy have changed the 

dynamics of the electricity sector. This is reflected in the need for smart technologies, 

distributed-energy resources, EV, network security, and integration of electricity 

markets. Achieving these objectives calls for substantial innovation and investments, 
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and ensuring sufficient and efficient investments in the networks is among the most 

challenging tasks facing regulators. 

 

The current regulatory models of investment treatment are either ex ante, ex post, or a 

combination of the two. Under the ex-ante model, network companies need to submit 

business plans that contain details of their investment needs over the subsequent 

regulatory period. The regulator uses auditing, cost–benefit analysis, and consultants to 

verify the prudence of investments plans. At the end of the regulatory period, if there is 

a deviation from the agreed level of capital expenditures in the business plan, the 

regulator might partially or totally disallow the excess investment. 

 

The ex-ante approach has been criticized on the grounds that it provides incentive for 

strategic behavior. For example, network companies will have incentive to inflate their 

capital costs by reporting high volumes of work or by capitalizing their operational 

expenditures. Averch and Johnson (1967) demonstrated that under this model firms 

will, for a given level of output, employ more capital compared to non-regulated 

companies. The incentive for overcapitalization will be higher if there is no incentive 

attached to downward deviation from the agreed level of investment in the business 

plan. The planned RIIO (Revenue=Incetives+Innovation+Output) which is a framework 

for regulating the network companies in the UK aims to promote innovation and 

efficiency by allowing the firms to retain some of their capital cost saving if they deliver 

the same output with less investment. 

 

In ex-post regulation, the regulator adds the controllable costs incurred to the company, 

including the operating and capital expenditures, in order to construct a single variable 

reflecting the total cost. The total cost is then benchmarked against the similar 

companies in the sector to obtain the cost efficiency. The firms’ revenue is set based on 

their deviation from the optimum frontier. The threat of financial loss from the 

benchmarking process can lead to an efficient level of operating and capital 

expenditure. Poudineh and Jamasb (2016) showed that this model is vulnerable to 

harmonized behaviors, such as over- and under-investment by utilities. Harmonized 

behavior changes the costs for companies uniformly, and within-group comparisons 

cannot detect the incidence of overcapitalization. Additionally, the minimum 

productivity level to pass a benchmarking exercise (that is, no-impact efficiency) is also 

vulnerable to harmonized behavior. 

 

Regulatory treatment of investment presents a trade-off between intervention in firms’ 

operation and distribution of risk between the firms and their consumers. The ex-ante 

model is more interventionist, but the firm bears little risk compared to the consumers. 

This is because consumers are more likely to be exposed to the actual costs of the firm 

rather than the efficient costs. The ex-post model, on the other hand, is less 

interventionist, but firms bear more risk compared to consumers. The choice between 
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the two approaches depends on the regulator’s view of intervention and risk. 

Nevertheless, both models suffer from a lack of incentive for dynamic efficiency. 

 

As noted by Müller et al. (2010), under incentive regimes (both ex ante and ex post), 

efficiency gain has mainly been achieved in operating costs, but regulatory models do 

not incentivize dynamic, efficient behavior among firms. In the case of ex-post 

regulatory treatment of investment, Poudineh et al. (2014) showed that persistent 

inefficiency due to the presence of quasi-fixed inputs, such as capital costs, can affect 

companies’ short-run productivity and regulated revenue. This can create disincentives 

for long-term investment and innovation. In the case of ex-ante regulation, although 

capital costs are excluded from benchmarking, the model does not provide explicit 

incentives for dynamically efficient behavior. 

 

4.2 Incentives and alignment of benefits 

In order to unlock the system-wide benefits of dynamic networks, the incentives that 

guide the behavior of players need to be realigned. Additionally, policies need to serve 

the diverse interests of distributed resource developers and consumers. The public, as 

well as community engagement with the sector as consumers and as citizens, can affect 

the development of the network and energy infrastructures. Some projects have stood 

still because local communities perceive them as failing to meet their objectives. The 

need for involvement of customers in the planning of new projects or through demand-

side participation requires a new consumer–distribution utility relationship. 

 

Consumers with micro-generation, EV, and storage capability are no longer passive 

users, but can benefit or harm the system. The load from EV varies with respect to time 

and location. In the absence of incentives, the EV owner indifferently charges and 

discharges at any time and place. However, the power system would benefit from 

charging during off-peak periods and in uncongested areas, and discharging at peak 

times and in congested zones. Thus, there is a need for incentive signals that coordinate 

the actions of players to the advantage of power system reliability and efficiency. 

However, current regulatory models do not provide such incentives and thus are 

contrary to the paradigm of a sustainable power sector. 

 

The current incentives for the integration of distributed resources are not directly 

relevant in terms of impact on network infrastructure and generation supply. For 

example, siting a distributed generation (DG) close to demand centers or areas served 

by frequently congested lines will be beneficial for a DNO as it can reduce network 

energy losses and have an impact on demand-driven investments. DG can have various 

effects on the grid, depending on factors such as location, technological specification, 

and timing of investments (Vogel, 2009). The lack of a mechanism that aligns these 

benefits between the DG developer and the DNO might reverse the expected advantages 

of DG integration. 
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An example of this is network energy losses. Networks are incentivized to reduce such 

losses and are rewarded or penalized for outperforming or underperforming on the loss 

targets. Although DG can reduce these losses, it is generally bound by time and location 

and, under the condition that capacity exceeds the demand, it can increase overall 

energy losses because the relationship between capacity and loss is U-shaped (Harrison 

et al., 2007). Therefore, DNOs might be exposed to DG-induced losses, with 

consequences for their revenue. On the other hand, generators are not incentivized for 

their positive or negative effect on network energy losses. Hence, there is a conflict 

between the interest of developers wishing to increase DG penetration and the DNO that 

wants to avoid DG-induced losses. 

 

One solution is to use efficient and effective connection and “use of system” (UoS) 

charges—a mechanism that not only includes the real cost of connection but also 

rewards the developer when DG installation is in line with the optimal operation of the 

network (Jamasb et al., 2005). The distribution UoS charges can play a role, as DGs’ 

connection charges could be based on their capacity and the sole-use network asset 

used. On the other hand, rewards can be offered based on generator-exported power at 

system peak, proximity to frequently congested zones, and network assets utilized 

(Poudineh and Jamasb, 2014). This ensures that rewards will reflect the benefits from 

integration of the resource. Taking into account the cost drivers when devising the 

charges and rewards will help to guarantee that they are aligned with the costs imposed 

by DGs on the network. 

 

4.3 Managing uncertainties  

There are several sources of uncertainty in the operating environment of distribution 

network companies, which call for uncertainty to be incorporated into regulatory 

models. These are include future tightening of environmental policies, change in price 

of fossil fuels and its effect on the rate of growth of renewable resources, cost and 

performance of networks, carbon prices, uncertain demand and economic growth, 

availability of capital, and finally, change in the behavior and expectations of 

consumers. 

 

DNOs face significant uncertainty from unexpected changes in the aforementioned 

factors. These factors can impact the existing infrastructures in terms of planning and 

operation, as well as development of new assets. The network infrastructures are long-

lived assets and irreversible investments. Hence, insufficient consideration of 

uncertainty in the regulatory and decision-making process can lead to negative 

consequences for the firm and consumers. The regulatory framework should also 

recognize the increasing importance of local communities as part of the low-carbon 

solution, and provide incentives for these communities to become part of the solution 

for future networks. 
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Thus, given the importance of uncertainty, there is a need for regulatory models that 

reduce the exposure of firms and society to the adverse effects of changes in the 

operating environments of network companies. Furthermore, uncertainty is not 

welcomed by investors, who are interested in a stable return on their investments. 

Uncertainty means risk, which is likely to erode creditworthiness of the utilities and 

manifest in the form of higher capital costs and thus higher bills for consumers. This 

will lead to reduction of capital availability, which affects DNOs’ future investment 

plans. These cycles have previously been experienced in other network industries, 

including telecommunications and airlines. 

 

 

5. The utility business model: What future?  

 

There is limited consensus on the definition of a business model (Desyllas and Sako, 

2013). However, there is more agreement that business models are at the core of 

strategies for surviving in a dynamic environment. In recent years, electricity 

distribution networks have experienced rapid changes in their environment as a result of 

energy and sustainability policies. These changes not only influence technical operation 

of the grid, but also its economics and revenue generation. Evidence suggests that 

network companies cannot continue with traditional business models in the new 

environment (Poudineh and Jamasb, 2014). This section reviews the effects of large-

scale integration of distributed energy resources on the business model of distribution 

companies, and explores possibilities for alternative models. 

 

5.1 Disruptive technologies and DNO revenues 

A variety of new technologies and factors exist, including photovoltaic cells, micro 

turbines, micro CHP, fuel cells, storage facilities, demand response, and energy 

efficiency, which can all have disruptive effects on the revenue of distribution network 

companies. As distributed technologies are on a descending cost trajectory, the 

traditional generation–transmission–distribution paradigm comes under increasing 

pressure to be changed. The threat to the traditional centralized supply will be 

exacerbated by behavioral change, which may lead to reduced load. The proximity of 

distributed resources to demand sites reduces the volume of energy transported in the 

grid and consequently erodes the revenue base of network companies over time. 

 

The current incentives to promote renewable distributed generation are characterized by 

a tendency to work at cross-purpose with the original objective. It is conceivable that 

some consumers will choose to leave the grid entirely if there are other cost-effective 

possibilities available. For example, this can occur when storage facilities such as those 

of plug-in vehicles are combined with suitable distributed generation. In a more 

optimistic scenario, consumers will use the grid only as a backup and aim to be self-
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sufficient otherwise. In this case, the networks will not be able to recover their costs 

from consumers who install self-generation facilities, especially those installed behind 

the meter because they do not pay for grid connection. 

 

Furthermore, while the total network cost will barely change with the exit of an existing 

customer, the remaining consumers will incur the cost burden of the network. These are 

often the same consumers who cannot afford self-generation in the first place. The 

increase of electricity rates will create positive feedback, which results in more 

independence from networks. Moreover, due to the structure of retail tariffs in some 

countries, penetration of distributed resources has not led to a reduction in peak 

demand, but rather a reduction in average demand (Nelson et al., 2014). This implies a 

rise in the network costs imposed by other consumers who do not pay for network 

charges. 

 

Furthermore, the paradoxical nature of consumers-side renewable with the business 

model of utilities deters integration of small-scale, low-carbon technologies from 

gaining sufficient momentum. Although in recent years some incumbent utility 

companies have been providing various services for their consumers, such as consulting 

services on energy efficiency and financial support to install rooftop PV (photovoltaic), 

managers of these utilities often acknowledge that such activities are inherently 

counterproductive given their current business model (Richter, 2013). Thus, as 

residential renewable generation currently does not benefit utility companies, in practice 

the promotion of these resources is not supported by these companies, and where there 

is evidence to the contrary, it is mainly to show political goodwill or to manage the 

consumer–utility-firm relationship. 

 

The challenge of disruptive technologies gives rise to the idea that the power industry 

needs to shift from the traditional business model of selling energy in terms of kWh (or 

MWh) to something that is not in conflict with other policy objectives, such as 

sustainability. As demand for energy is a derived one—that is, consumers do not gain 

utility from energy itself but rather from the services they obtain, such as heat, light, 

computer hours, entertainment, etc.—a solution for utility companies to adapt to their 

dynamic environment is to consider selling the unit of “energy service”. In this view, 

the consumer bill can resemble a list of energy-based services, such as heating, cooling, 

interior and exterior lighting, etc. These ideas are not completely new. Indeed, during 

the last four decades some pioneering energy-policy thinkers have suggested that utility 

companies should sell energy services. Such a model will push utility companies 

towards the business of end-use hardware appliances. Similar models have been 

developed in the telecommunications industry, where consumers actually receive 

kilobits per second (Kbps) while the service providers charge their consumers for 

minutes of talk, number of text messages, amount of data downloaded, etc. 
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The emergence of smart technologies brings such ideas closer to reality. Two-way 

communication and advanced sensors that are becoming increasingly commonplace 

within the current power infrastructure reduce measurement problems that were 

considered an impediment to implementation of this kind of model in the past. 

 

5.2 Innovation in business models 

There have been important discussions around the future business models for 

distribution network companies and potential regulatory models that can support these 

companies through a rapidly changing landscape. Common among many of the 

discussions is that the network companies need to go beyond only connection and UoS 

charges. The utility companies will need to work closely with consumers, resource 

developers, and other stakeholders to create an integrated-value partnership. Decoupling 

the revenue of network companies from aggregate energy usage is not only important 

for the companies, but also for achieving energy-efficiency initiatives that can be 

opposed by distribution networks (Brennan, 2014). 

 

An issue is that even if utility companies have the resources to introduce new ideas and 

products, they often fail to successfully commercialize them. Experiences from the past 

in other industries show that this has sometimes been the case. For example, at the end 

of the 1990s, IBM was among the first companies to develop new technologies such as 

commercial routers and speech recognition, but these entered the market later, produced 

by other companies and not IBM (Richter, 2013). Another issue is that network 

companies are regulated businesses and innovation in such an environment is only 

derived from incentives and institutional frameworks. 

 

Despite these challenges, there are potential areas that can be utilized in an extended 

business model of distribution network companies. Although some research suggests 

that the critical skill for traditional players is not to create new business models but 

instead to identify and implement the already existing ideas into a mass-market scale 

(Nillesen et al., 2014). These arguments are based on experiences from other industries, 

where the majority of new business models have been created by newcomers but 

implemented on a large scale by incumbents. 

 

An important dimension of any future business model would relate to digital-

communication capabilities. The ICT revolution in the last century has embraced all 

sectors, including electricity distribution. The change from capital-intensive to 

information-intensive business has already been initiated in this segment of the power 

sector. This provides valuable system data for distribution utilities, which can be shared 

with developers of distributed energy resources and retail suppliers for efficient 

planning and operation in return for a payoff. 
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Figure 3 presents an extended business model for distribution network companies. 

Transmission system operators (TSOs) often procure balancing services. Penetration of 

distributed energy resources provides an opportunity for DSOs to contribute to national 

balancing services and be compensated for it by the TSO. As seen in Figure 3, the costs 

of a DSO consist of grid reinforcement, use of (transmission) system charges, ancillary 

services procured from the transmission operator, operation and maintenance, and 

finally, energy losses. 

 

On the cost side, a DSO can optimize its capital expenditures through adopting 

innovative approaches to the problem of grid reinforcement. The traditional asset-based 

network service is capital intensive and costly. DSOs can optimize on network 

infrastructures by combining asset-based service and an alternative approach based on 

procurement of distributed energy resources that can provide network capacity. These 

resources can deliver energy at the time of network congestion, and thereby reduce the 

need for costly redundant transformers. 

 

Another important feature of this approach is that it provides more flexibility to DSOs 

compared with traditional network reinforcement. Integrating distributed resources to 

offer services, such as voltage control and congestion management, could provide 

various benefits for utilities, grid users, and wider society. However, for this to happen, 

a suitable business model is required. Poudineh and Jamasb (2014) introduced a 

contract for deferral scheme (CDS) that integrates distributed generation, storage, 

demand response, and energy efficiency as alternatives to grid capacity enhancement. 

This method can lower capital costs for network companies and also boost deployment 

of low-carbon technologies. 

 

On the other hand, as shown in Figure 3 the revenue of a DSO comprises connection 

and UoS charges, data supply to resource developers and retailers (this is likely to be a 

possibility as the future smart grid becomes a reality), contribution to the national 

balancing service, and offering premium reliability. A DSO with smart grid technology 

can communicate with generation facilities and consumption equipment on the 

consumers’ site through a secure connection. This means that the DSO can increase 

generation or reduce demand at times of stress to the national grid, hence stabilizing 

electricity supplies. Furthermore, in many industries the production process is sensitive 

to electricity inputs, and DSOs can be reimbursed by these industries for providing a 

highly reliable connection (Poudineh and Jamasb, 2014). 
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Figure 3. An extended business model for distribution networks 

Source: Poudineh and Jamasb (2014) 

 

 

6. Conclusions  

 

Electricity distribution networks are an important component of the power system that 

delivers energy to end-users and plays a key role in the integration of distributed energy 

resources, security of supply, and demand-side participations. The post-liberalization 

era has necessitated technological, regulatory, and business-model evolution in 

electricity-distribution companies. 

 

Adoption of distributed energy resources and EV require innovation and large-scale 

investment as the grid requires reinforcement and reconfiguration to accommodate 

them. The ICT revolution has extended digital communication capabilities to the grid 

level, with ample opportunities for new services. The DNOs can integrate virtual power 

plants by aggregating many small-scale renewables, thereby providing greater 

efficiency and flexibility. This is important, given that the installed capacity of variable 

generation from wind and solar power is increasing every year. 

 

At the same time, the regulatory framework of network companies needs to evolve in 

order to better align with the objective of an efficient, low-carbon power sector. The 

current regulatory models for investment treatment do not take into account the dynamic 

nature of investment and innovation. Strong emphasis on short-run cost efficiency can 

result in reduction of research and development and capital expenditure as network 
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companies cannot afford persistent inefficiency caused by long-term investment plans. 

Therefore, there is a need for innovative regulatory models that incentivize innovation 

and the right investments without compromising other objectives, such cost efficiency. 

 

Moreover, a shift from an asset-based, capital-intensive business model of distribution 

utility is crucial in order to adapt to an environment with high levels of penetration of 

distributed energy resources. Along with the traditional connection and use of system 

charges, future business models of network companies can tap into smart ICT 

technology to create new and value-added services. 
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1
 This chapter draws substantially from different parts of Poudineh (2014). 

2
 There are two main types of substations associated with the distribution system: the primary substations, 

which act as load centers located near populated areas, and the customer substations, which are situated 

close to consumer sites and convert the voltage to a suitable level for consumption. 


