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Abstract. The potential of Evolution in Materio (EiM) for machine
learning problems is explored here. This technique makes use of evolu-
tionary algorithms (EAs) to influence the processing abilities of an un-
configured physically rich medium, via exploitation of its physical prop-
erties. The EiM results reported are obtained using particle swarm op-
timisation (PSO) and differential evolution (DE) to exploit the complex
voltage/current relationship of a mixture of single walled carbon nan-
otubes (SWCNTs) and liquid crystals (LCs). The computational prob-
lem considered is simple binary data classification. Results presented are
consistent and reproducible. The evolutionary process based on EAs has
the capacity to evolve the material to a state where data classification
can be performed. Finally, it appears that through the use of smooth
signal inputs, PSO produces classifiers out of the SWCNT /LC substrate
which generalise better than those evolved with DE.

1 Introduction and Background

Evolution-in-materio (EiM) is an Unconventional Computing (UC) technique
which focuses on exploiting the underlying properties of materials to bring
them to a computation inducing state [12]. Contrary to traditional computing
with Metal-Oxide-Silicon-Field-Effect-Transistor (MOFSET) technology, where
everything is designed, produced and programmed very carefully, EiM uses a
bottom up approach where computation is performed by the material without
having explicit knowledge of its internal properties [13].

The idea of EiM can be found in early work of G. Pask [2] which was con-
cerned with growing an electrochemical ear. More recent work [21], is based on
observations made when evolutionary algorithms (EAs) were used for designing
electrical circuits on Field-Programmable-Gate-Arrays (FPGAs). The resulting
circuit topologies were influenced by the material of the board used. Because of
feedback provided by the iterative nature of stochastic optimisation interacting
with the material, the identified solutions were based on the specific FPGA’s
properties that were unaccounted for during the board’s design. EiM replaces



the FPGAs with un-configured material systems favouring exploitation of some
physical property by a search algorithm [12].

Here, using an iterative process, the material is configured until it reaches a
state where a pre-specified scheme of interaction is uniquely translated as a com-
putational input/output relationship. Viewing this iterative process as material
training, this type of EiM requires the selection of finite training and verifica-
tion datasets. Since the problem is about a computation, the datasets consist of
known input/output pairs from its domain of definition and range, respectively.
The training process requires the repetitive application of computation inputs
sent to the material and measurements of its corresponding response. Measured
responses are translated into computation outputs, which allows the definition of
an error function. The physical property measured and the interpretation scheme
of the material’s response used for translating it into a computation output are
pre-specified and fully known before the training process starts.

There are two types of incident signals on the material. Computation inputs,
which are used to represent the arguments of a computation, and configuration
inputs, which are used for changing the material’s properties. Modulation of
the incident signals is controlled by an error minimising optimisation algorithm,
which explores the problem’s search space. The search space itself, is a hybrid
of the material’s physical state and the subspace spanned by the independent
configuration inputs. Hence, the optimisation algorithm aims at configuring the
material at a particular state by finding the optimal configuration inputs pro-
ducing that material state, the response of which can be uniquely translated into
a computation. In effect, EiM is a bottom up approach for producing a comput-
ing device where the exact architecture, or material state, remains unknown.
Reservoir computing is based on similar notions [5, 10].

FEiM has a broad scope and can be divided in four inter-dependant dimen-
sions: (a) the type of material used, (b) the physical property manipulated to
obtain a computation, (c) the computational problem itself and (d) the optimi-
sation algorithm used for solving the corresponding problem. Figure 1 illustrates
the basic concept.

An algorithm selects a set of configuration inputs. Computation inputs from
the training dataset are sent to the material; its response is recorded for each
input and is translated into a computation output. For each input/output pair,
an error is calculated to allow an objective function evaluation. This objective
function is minimised by a derivative-free optimisation algorithm.

In our implementation, the evolvable material is connected to a computer via
an mbed micro-controller fixed on a custom-made motherboard. Configuration
and computation input signals are constant voltage charges applied by the mbed
to the material and outputs are direct current measurements. Voltages are sent
to the material through a set of Digital-to-Analogue-Converters (DACs) fixed
on the motherboard. They are connected to the array of gold micro-electrodes
shown in Figure 1 deposited on a glass slide using etch-back photolithography.
The material blend is drop-deposited within a nylon washer (2.5 mm internal
diameter) fixed to this platform for material/electronics interaction.
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Fig. 1: EiM concept and electrode array (50um contacts, 100um pitch)

Different organic and inorganic media have been used as materials, such
as slime moulds [7], bacterial consortia [1], cells (neurons) [18], liquid crystals
(LC) panels [6] and nano-particles [3]. Single walled carbon nanotubes (SWCNT)
based materials have shown the potential to solve computational problems [8,
11,22,14,15]. In [19] it is argued that inorganic materials make a better medium
for unconventional computing exploration. Following this argument, as well as
results in [22], a mixture of SWCNT and LC in liquid form is used here.

These types of materials have a very complex structure and the develop-
ment of analytical or stochastic models of their behaviour is very difficult. In
their absence, EiM treats them as black boxes, leading to the use of derivative
free population based stochastic search algorithms for solving the training prob-
lem. Here, a particle swarm optimisation (PSO) [9] and an implementation of
differential evolution (DE) [17] are used, which will be referred to as EAs.

Several candidate computational problems can be used in the context of
EiM. A more comprehensive review of potential problems can be found in [16].
The problem considered here is a simple binary data classification with different
degrees of separation and data distributions.

2 Evolved Material

A mixture of SWCNT and LC, where nanotubes are dispersed in liquid crystals
at varying concentrations, is used. SWCNT are both semiconducting and con-
ducting; the samples used contain less than 15% impurities (according to vendor
specifications) as residual from the catalytic growth process.

It is shown in [22] that SWCNTs tend to bundle under an applied electric
field, establishing a percolation path between electrodes. The greater length of
these bundles or “ropes” with respect to the dimensions of LC molecules suggests
that they are not highly influenced by movement of the latter. The purpose of
a LC matrix is therefore to provide a fluid medium in which the SWCNTs can



move in response to the field. Formation of percolation paths is variable and
reconfigurable allowing the creation of complex electrical networks. This adds
an extra dimension to the problem, compared to previous experiments where
SWCNTs were mixed with a solid polymer [11, 8].

3 The Classification Problem

Three variants of a binary data classification problem are considered based on
different 2-dimensional datasets. A typical training and verification procedure is
followed and the corresponding datasets have K; = 800 and K,, = 4000 members.
Figure 2 (a) shows the training datasets for the separable (SC) and merged (MC)
classes and (b) for the V1 class (V1C). The units of the two computation inputs
are in Volts. When a particular pair is used, the two electrodes reserved to receive
computation inputs are charged with the corresponding voltages. SC and MC
data are organised into two different squares; the SC ones are not overlapping
and are placed at a distance, whereas the MC ones overlap slightly. V1C’s data
are completely separable, but they are arranged diagonally so as to increase the
problem’s difficulty. After training using those datasets, the material must be
in such a state so as to infer the class (Cy or Cy) for any input pair randomly
selected from the verification dataset. Effectively the objective is to evolve an
analogue machine, capable of distinguishing the class an input belongs to.

SC Class 1 (C1)
° mc Class 2 (G2)

5 s Class 2 (C2) 4

V'™, (Volt)
V", (Volts)
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Fig.2: (a) SC and MC and (b) V1C training datasets.

4 Problem Formulation

Evolution of such a device is formulated as an optimisation problem. There are
sixteen connections on the micro-electrode array twelve of which are used. Two
of those are used for sending computation inputs as voltage pulses of amplitude
V" = (Vj™ V4™) and eight are used for sending configuration voltages as pulses



within the range V; € [Viin, Vimnax], 7 = 1, ..., 8. The remaining two connections
are reserved for measuring outputs currents I = (I, I5) (A) when the material
has been sent V" and is under charge of the Vi’s.

By considering as a decision variable only the possible locations where the
two components of V" are applied and using a simple increasing index scheme
for assigning configuration voltages (e.g. if V" is assigned to electrode 3 and
V™ is assigned to 5, then the following assignment for the configuration inputs
takes place: Vi = 1, Vo =2, V53 -4V, —6, V5 =7, Vg — 8, V7 — 9 Vg — 10)
then there are 9P, = 90 possible connection assignments. A continuous variable
p € [1,90] is defined and updated by the EA used rounded to the nearest integer
during the iterations.

The optimisation problem’s vector of decision variables is defined as

x=[Vi...Vs Rp|" (1)

where R is a scaling factor. It is for a specific electrode assignment p and set
of configuration voltages V;, that the material’s response to an input V™ is
recorded. The response is a pair of measurements I = (I1,15) (A) of the direct
current at the two output locations, which are the basis of a comparison scheme
using R for deciding the class V" belongs to.

Let I®) denote the pair of direct current measurements taken when input
data V" (k) from class C;, i = 1 or i = 2, are applied while the material is
subjected to configuration voltages Vj(k). Vin(k) and Vj(k) are applied according
to electrode assignment number p*) and scaling factor R*) is used. Also, let
C(V™(k)) denote V" (k)’s real class and Cp (V™ (k),x) the material’s assess-
ment of it calculated according to the following rule:

in B Cyif Il(k> > RIQ(]C)
CM(V (k)ax) - {02 if Il(k‘) < ng(k‘). (2)
For every training pair of data Vi*(k), k = 1,..., K; the error from trans-
lating the material response according to rule (2) is

3)

ex(k) = {?i)ftherwise. Cm(V™(k),x) = C(V™ (k)

The mean total error is given by

1 &
P (x) = yre > exlk). (4)
k=1

Two penalty terms are added to (4), H and U. H(x) penalises solutions with
high configuration voltages and is given by

S VP
H(x) = =5

max

()



The rationale behind this penalisation is that incremental and generally low
levels of configuration voltages are preferable. Solutions where high v ® are
applied can destroy material structures favourable to the problem formed during
evolution. On the other hand, solutions that render the material unresponsive
need to be avoided. A measure of such unresponsiveness is calculated at the end
of each search iteration ¢, where a sample equal to the population size S of error
function evaluations is available. Let O’E,L denote the variance of @(x) and 0‘2/7 .

. 8 . . . .
the variance of > =1 Vf at iteration ¢. A value of o2, close to zero indicates a

non-responsive material and the penalty term takes the form

o2 ?
U = (1— g”) : (6)
UV,L

Hence, the total objective function @, (x) for an arbitrary individual s at iteration
¢ is given by

&y(x) =P (x) + H(x)+ U,. (7)

U, aims at leading the optimisation away from material states where the same
response is given for different inputs.

The optimisation problem to be solved is that of minimising (7) for a popu-
lation of size S, subject to voltage bound constraints V; € [Vinins Vinax], B > 0,
electrode assignment p and classification rule (2). Viuin = 0 Volts and for the SC
problem Vy,., = 4 Volts whereas for the MC and V1C V.. = 7 Volts.

Two different stochatic optimisation algorithms are used for solving this prob-
lem, differential evolution (DE) [20] and particle swarm optimisation (PSO) [4].
A constricted version of PSO with parameters taken from [9] is implemented.
The DE algorithm implementation uses the parameters suggested in [17]. A
population size of S = 10 is used for DE and PSO.

5 Results and Discussion

The first column of Table 1 presents the minimum error @} achieved during
training. Once training is terminated, verification is performed on the trained
material by applying back the optimal solution achieved along with the previ-
ously unused verification data. The same verification procedure is repeated ten
times. The other four columns of Table 1 refer to results of these runs. &7 , is
the minimum error, @, the worst, . , the average and o, the variance. For
both DE and PSO, the penalty terms H(x) and U, are not included and the
classification error for @, is given, for the sake of brevity.

Table 1 shows that for all problems, except outliers, and both algorithms,
the observed error increase at the verification phase is &7 — & ,, < 2.125%. This
indicates that the material’s behaviour is consistent and generalises well as a
classifier. Solutions obtained during training using DE can be better than those
of PSO, especially for the SC and V1C datasets. However, PSO outperforms DE
with respect to consistency across experiments and generalisation of the solution.



Table 1: Training and verification errors for SC, MC and V1C problems.

SC Experiments % (%) €% (%) L (%) Pe,v (%) %e R

PSO 1SC 1.3 1.675 2.35 2.0375 0.0527
PSO 2SC 1.6 2.125 3.2 2.6175 0.1277
PSO 38C 1.3 1.975 2.45 2.25 0.0305
DE 1SC 0.7 1.05 1.625 1.3975 0.03193
DE 2SC 10.4 16.325 18.5 17.4035 0.3652
DE 3SC 1.6 1.675 2.55 2.185 0.06565
MC Experiments &2(%) @7 (%) ¢, (%) Pe,v (%) age N

PSO 1MC 5.8 6.6 7.075 6.815 0.0171
PSO 2MC 5.2 6.325 8.8 7.7225 0.648

PSO 3MC 5.7 7.825 9.025 8.5975 0.1184
DE 1MC 3.4 3.975 4.625 4.38 0.0439
DE 2MC 6.4 7.525 8.95 8.145 0.1739
DE 3MC 5.7 18.25 19.425 18.8375 0.1321

VIC Experiments 5 (%) 27 (%) P, (%) Po,u (%) 0%

PSO 1ViIC 2.7 3.975 5.175 4.6525 0.1318
PSO 2V1C 2.6 3.5 4.25 3.8625  0.0559
PSO 3V1C 1.1 2.525 3.375 2.915 0.063
DE 1V1C 1.3 2.325 2.725 2.4975  0.016
DE 2V1C 1.7 3.125 4.00 3.4975 0.071
DE 3V1C 0.007 4.55 6.2 5.575 0.2617
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Fig. 3: Convergence patterns for training the material based on the V1C data.

This can also be observed for the MC dataset where DE obtains both the smallest
and largest error for verification (@7 , = 4.37% and 18.25% respectively) whilst
variance of PSO verification tests tends to be lower.

Figure 3 shows the convergence pattern of the error for DE and PSO and
is representative of the 18 experiments in Table 1. The baseline tests were per-
formed using samples containing only LCs as material, without any SWCNTs.
When DE is used, the material adapts within few iterations; subsequently the
algorithm spends more iterations exploiting the minimum found. On the other
hand, the PSO algorithm achieves better results at a later stage exploring more
the search space.

Figures 4(a) and (b) present the verification error distribution of the 3rd runs
of DE and PSO, respectively, using the MC dataset. Both converged to solutions
with the same training error ®* = 5.7%, but with different @, ,. The overlapping
area of the two classes forms the core of the points that are erroneously classified.
However, the better generalisation property of the PSO solution compared to
that produced by DE is evident, as the errors outside the overlap are fewer. When



DE 3MC ill-classified data-points
C1 1
4 Cy 1 4+ Cy

PSO 3MC ill classified ‘data-poincts‘;

EN EN
= =
2t 2t
1 1
0 0
0 1 2 3 4 5 0 1 2 3 4 5
Vm1 Vm1
(a) DE 3MC - &7 , distribution (b) PSO 1IMC - &; , distribution
7 : ‘ 7 ——
DEGMCVI — — PSOBMC VI — —
ol DE 3MC V3 ] ol PSO 3MC V3
; DE 3MC V5 PSO 3MC V5
‘ DE 3MC V7 | | PSO 3MC V7
2 z 4
o o
2 2
= = 3 1
ol - e s
1r \q/ i ]
- : 0
0 5 100 150 200 250 300 0 20 40 60 80 100 120 140 160 180 200
Iteration 1 Iteration 1
(c) DE training - V}° trajectories. (d) PSO training - V}° trajectories.
100 " DE1VIC ——
DE 2V1C
80 | DE 3V1C
¥ PSO 1V1C
PSO 2V1C
60 PSO 3 V1C
Q b
40
20 |!
0 -
0 50 100 150 200 250 300 350
lteration 1
(e) V1C - p trajectory. (f) Most favoured input location

Fig. 4: Visualisation of p and sample V trajectories for PSO and DE.

the DE solution is applied, the errors are far more widely dispersed and densely
distributed into the area of C5, making a poor classifier out of the material.

Figures 4 (c¢) and (d) show the distinctive difference between the two algo-
rithm’s configuration voltages’ trajectories, averaged over S, per iteration. It
can be seen that the search performed by DE is more noisy even when the algo-
rithm aims to exploit a minimum. On the other hand, PSO’s exploration of the
search space is based on smoother inputs. Figure 4 (e) depicts the convergence
trajectory of p for all experiments using the V1C dataset. Convergence is not
towards the same value of p, but resulting input pin location is similar. Figure



4 (f) presents the corresponding mapping of p with regard to input location on
the micro-electrode array for the optimal solutions of the three problems. Ex-
periments resulting to errors between 4-10% for @7 and &} , tend to have a p
corresponding to the most favoured locations shown in Figure 4(f).

Our current hypothesis is that the poorer generalisation of the solutions ob-
tained by DE is due to the pattern of average configuration voltages per iteration.
The PSO algorithms smoother trajectories of V build structures inside the ma-
terial, reinforcing responses minimising the classification error. The noisy Vf
applied by DE appears to make the formation of such structures more difficult.
Over the different experiments, DE is less consistent in its performance; explo-
ration of the search space by the PSO algorithm results in better conductive
circuit formation within the material. This hypothesis needs to be supported by
more experiments and evidence, such as image analysis of the material before
and after training.

6 Conclusion

This paper has presented the results of an investigation on evolution in materio
for a mixture of single walled carbon nanotubes and liquid crystals. Under the
influence of different levels of voltage applied at various locations of its body,
conductive networks are formed by the nanotubes. Three simple classification
problems are considered and training of the material as a data classifier is for-
mulated as an optimisation problem. Results obtained with training and verifi-
cation datasets are reported, showing that the solution can perform classification
for similar problems with different instances. The stronger exploration element
of PSO and the smoother input signals sent appear to result to classifiers that
generalise better.

This is quite a new area of research and many issues need to be addressed. A
more detailed investigation needs to be performed on the optimisation algorithms
used and the impact of their search pattern on the solutions’ quality. More recent
variants of evolution-inspired algorithms need to be implemented as well. The
impact of the SWCNT and LC concentration in the mix needs to be evaluated.
Finally, more complicated problems will be considered and it would be very
interesting to observe the material structure patterns formed for this purpose in
each particular case.
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