
Polymorphisms, and How to Use Them
Libor Barto∗1, Andrei Krokhin2, and Ross Willard†3

1 Department of Algebra, Faculty of Mathematics and Physics, Charles
University, Prague, Czech Republic
libor.barto@gmail.com

2 School of Engineering and Computing Sciences, University of Durham,
Durham, UK
andrei.krokhin@durham.ac.uk

3 Department of Pure Mathematics, University of Waterloo, Waterloo, Canada
ross.willard@uwaterloo.ca

Abstract
This article describes the algebraic approach to Constraint Satisfaction Problem that led to
many developments in both CSP and universal algebra. No prior knowledge of universal algebra
is assumed.

1998 ACM Subject Classification F.2.0 [Analysis of Algorithms and Problem Complexity] Gen-
eral, F.2.0 [Discrete Mathematics] General

Keywords and phrases Constraint satisfaction, Complexity, Universal algebra, Polymorphism

Digital Object Identifier 10.4230/DFU.Vol7.15301.1

1 Introduction

The Constraint Satisfaction Problem (CSP) provides a common framework for expressing a
wide range of both theoretical and real-life combinatorial problems [111]. Roughly, these are
problems where one is given a collection of constraints on overlapping sets of variables and the
goal is to assign values to the variables so as to satisfy the constraints. This computational
paradigm is very general, and includes many specific well-known problems from several areas
of Computer Science and Mathematics. In the last 20 years, complexity-theoretic aspects
of CSPs have attracted a great deal of attention at the top level in Theoretical Computer
Science. The main reason for this is that the CSP paradigm strikes a perfect balance between
generality and structure: it is general enough to reflect very many important computational
phenomena, yet it has enough structure that can be exploited to gain very deep insights
into these phenomena. The CSP paradigm is often used to tackle the following fundamental
general question: What kind of mathematical structure in computational problems allows for
efficient algorithms?

The topic of this paper is a very active theoretical subfield which studies the computational
complexity and other algorithmic properties of the decision version of CSP over a fixed
constraint language on a finite domain. This restricted framework is still broad enough to
include many decision problems from the class NP, yet it is narrow enough to potentially
allow for complete classifications of all such CSP problems.

∗ L. Barto gratefully acknowledges the support of the Grant Agency of the Czech Republic, grant GAČR
13-01832S.

† R. Willard gratefully acknowledges the support of the Natural Sciences and Engineering Research
Council of Canada.

© Libor Barto, Andrei Krokhin, and Ross Willard;
licensed under Creative Commons License BY

The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, ISBN
978-3-95977-003-3.
Editors: Andrei Krokhin and Stanislav Živný; pp. 1–44

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol7.15301.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3

2 Polymorphisms, and How to Use Them

One particularly important achievement is the understanding of what makes the problems
over a fixed constraint language computationally easy or hard. It is not surprising that
hardness comes from a lack of symmetry. However, the usual objects capturing symmetry,
automorphisms (or endomorphisms) and their groups (or semigroups), are not sufficient in
this context. It turns out that the complexity of the CSP over a fixed constraint language is
determined by more general symmetries of it: polymorphisms and their clones.

Our aim is to introduce the basics of this exciting area in a way that is understandable
to readers with a basic knowledge of computational complexity (see [106, 3]). Our particular
focus is on explaining, with worked-out examples, how polymorphisms are applied to obtain
positive and negative algorithmic results and why this approach is natural for many classi-
fication problems about CSPs and constraint languages. We do not assume any knowledge
of algebra and minimize the algebraic terminology that we (define and) use, so the deep
universal algebra, which is at the technical core of many advanced results in this direction,
stays in the background. Many papers in the reference list contain deep algebra, though.

The structure of the survey is as follows. In Section 2 we give the basic definitions and
examples of CSPs over a fixed constraint language, and discuss the main goals of the research
programme that we survey. In Section 3 we describe various standard reductions between
CSPs with different constraint languages, which on the one hand allows one to group together
constraint languages with the same computational properties of the corresponding decision
CSPs, and on the other hand paves the path to the algebraic approach to our classification
problems. In Section 4 we explain how polymorphisms are used as classifiers for constraint
languages and how this leads to hardness results and complexity classification conjectures.
In Section 5 we explain how polymorphisms are used to guarantee correctness of algorithms
that do not use polymorphisms in their execution. In Section 6 we discuss an algorithm that
does use polymorphisms in an essential way in its execution.

2 CSP over a Fixed Constraint Language

A constraint – such as R(x3, x1, x4) – restricts the allowed values for a tuple of variables
– in this case (x3, x1, x4) – to be an element of a particular relation on the domain – in
this case R ⊆ D3.1 By an n-ary relation R on a domain D we mean a subset of the n-th
cartesian power Dn. It is sometimes convenient to work with the corresponding predicate
which is a mapping from Dn to {true, false} specifying which tuples are in R. We will use
both formalisms, so e.g. (a, b, c) ∈ R and R(a, b, c) both mean that the triple (a, b, c) ∈ D3

is from the relation R.
An instance of the CSP is a list of constraints, e.g.,

R(x), S(y, y, z), T (y, w),

where R, S, T are relations of appropriate arity on a common fixed domain D and x, y, z, w
are variables. A mapping f assigning values from the domain to the variables is a solution if
it satisfies all the constraints, that is, in our example,

R(f(x)) and S(f(y), f(y), f(z)) and T (f(y), f(w)) .

A standard formal definition of an instance of the CSP over a finite domain goes as
follows.

1 There are also other types of constraints considered in the literature, e.g. valued and global con-
straints [111].

L. Barto, A. Krokhin, and R. Willard 3

I Definition 1. An instance of the CSP is a triple P = (V,D, C) with
V a finite set of variables,
D a finite domain,
C a finite list of constraints, where each constraint is a pair C = (x, R) with

x a tuple of variables of length n, called the scope of C, and
R an n-ary relation on D, called the constraint relation of C.

An assignment, that is, a mapping f : V → D, satisfies a constraint C = (x, R) if f(x) ∈ R,
where f is applied component-wise. An assignment f is a solution if it satisfies all constraints.

Three basic computational problems associated with an instance are the following:
Decision. Does the given instance have a solution? (A related problem, the search
problem, is to find some solution if at least one solution exists.)
Optimization. Even if the instance has no solution, find an optimal assignment, i.e., one
that satisfies the maximum possible number of constraints. (Approximation algorithms
are also extensively studied, where the aim is, for example, to find an assignment that
satisfies at least 80% of the number of constraints satisfied by an optimal assignment.)
Counting. How many solutions does the given instance have? (This problem also has an
approximation version: approximate counting.)

To study the computational complexity of these problems we need to specify a representation
of instances. In particular, we will assume that the constraint relation in every constraint is
given by a list of all its members. Note, however, that for most of the problems considered
in this article any reasonable representation can be taken.

2.1 Constraint Languages
Even the easiest of the problems, decision, is computationally hard: It contains many
NP-complete problems including, e.g., 3-SAT (see Example 3). However, certain natural
restrictions ensure tractability. The main types of restrictions that have been studied are
structural restrictions, which limit how constraints interact, and language restrictions, which
limit the choice of constraint relations.

In this paper, we focus just on decision problems with language restrictions. See [92]
for optimization problems and a generalization to valued CSPs, [70, 102] for approximation,
[81] for counting, [24, 25, 107] for a generalization to infinite domains, and [105] for work on
structural restrictions.

I Definition 2. A constraint language D is a finite set of relations on a common finite
domain, D. We use CSP(D) to denote the restriction of the general CSP decision problem
to instances in which the domain is D and all constraint relations are from D.

We remark that constraint languages (on a finite domain) are often defined to also include
infinite sets of relations. For such languages, one can define the complexity in terms of finite
subsets, or else one has to specify the choice of representation of instances. For simplicity,
we focus on finite constraint languages.

2.2 Examples
I Example 3. An instance of the standard NP-complete problem [106, 3], 3-SAT, is a
Boolean formula in conjunctive normal form with exactly three literals per clause. For
example, the formula,

ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x4 ∨ x5 ∨ ¬x1) ∧ (¬x1 ∨ ¬x4 ∨ ¬x3)

Chapte r 01

4 Polymorphisms, and How to Use Them

is a satisfiable instance of 3-SAT. (Any assignment making x1 and x2 false, satisfies ϕ.)
3-SAT is equivalent to CSP(D3SAT), where D3SAT = {0, 1} and

D3SAT = {Sijk : i, j, k ∈ {0, 1}}, where Sijk = {0, 1}3 \ {(i, j, k)} .

For example, the above formula ϕ corresponds to the following instance of CSP(D3SAT)

S010(x1, x2, x3), S101(x4, x5, x1), S111(x1, x4, x3) .

More generally, for a natural number k, k-SAT denotes a similar problem where each
clause is a disjunction of k literals.

Since 3-SAT is NP-complete, it follows that k-SAT is NP-complete for each k ≥ 3. On the
other hand, 2-SAT is solvable in polynomial time, and is in fact complete for the complexity
class NL (non-deterministic logarithmic space) under log-space reductions [106, 3] (see also
Example 9).

I Example 4. 1-in-3-SAT is CSP(D1in3SAT) where D1in3SAT contains the single relation
{(0, 0, 1), (0, 1, 0), (1, 0, 0)}. This problem is well known to be NP-complete [112].

I Example 5. HORN-3-SAT is a restricted version of 3-SAT, where each clause may have
at most one positive literal. This problem is equivalent to CSP(DHornSAT) for DHornSAT =
{S110, S111, C0, C1} where C0 = {0} and C1 = {1}. HORN-3-SAT is solvable in polynomial
time, in fact, it is a P-complete problem under log-space reductions [3, 106].

I Example 6. For a fixed natural number k, the k-COLORING problem is to decide whether
it is possible to assign colors {0, 1, . . . , k − 1} to the vertices of an input graph in such a way
that adjacent vertices receive different colors. This problem is equivalent to CSP(DkCOLOR),
where Dk = {0, 1, 2, . . . , k − 1} and DkCOLOR = {6=k} consists of a single relation – the
binary inequality relation 6=k = {(a, b) ∈ D2

k : a 6= b}.
Indeed, given an instance of CSP(DkCOLOR), we can form a graph whose vertices are the

variables and whose edges correspond to the binary constraints (that is, x has an edge to y
iff the instance contains the constraint x 6=k y). It is easily seen that the original instance
has a solution if and only if the obtained graph is k-colorable. The translation in the other
direction is similar.

The k-COLORING problem is NP-complete for k ≥ 3 [106, 3]. 2-COLORING is equivalent
to deciding whether an input graph is bipartite. It is solvable in polynomial time, in fact, it
is in the complexity class L (where L stands for logarithmic space) by a celebrated result of
Reingold [109], and it is an L-complete problem under first-order reductions.

I Example 7. Given two digraphs G = (V (G), E(G)) and H = (V (H), E(H)), a mapping
f : V (G) → V (H) is a homomorphism from G to H if f preserves edges, that is, (u, v) ∈
E(G) implies (f(u), f(v)) ∈ E(H). The problem whether an input digraph G admits a
homomorphism to a fixed digraph H is also known as the H-COLORING problem and has
been actively studied in graph theory [72], see also [96]. The k-COLORING problem is a
special case of H-COLORING where H is the complete graph on k vertices.

For any digraph H, let D = V (H) and let DH be the language that contains just the
binary relation E(H). For any digraph H, the problem CSP(DH), corresponds to the H-
COLORING problem, where the input digraph G is given by the scopes of the constraints.
If we add all nonempty subsets of V (H) as unary relations to DH , then the resulting CSP is
known as LIST H-COLORING [72]. If we add just the singleton subsets of V (H) as unary
relations to DH , then the resulting CSP is known as One-or-All LIST H-COLORING [63, 64].

L. Barto, A. Krokhin, and R. Willard 5

I Example 8. Let p be a prime number. An input of 3-LIN(p) is a system of linear equations
over the p-element field GF(p), where each equation contains 3 variables, and the question
is whether the system has a solution. This problem is equivalent to CSP(D3LINp), where
D3LINp = GF(p) and D3LINp consists of all affine subspaces Rabcd of GF(p)3 of dimension 2,
where

Rabcd = {(x, y, z) ∈ GF(p)3 : ax+ by + cz = d} .

This problem is solvable in polynomial time, e.g. by Gaussian elimination.2 It is complete
for a somewhat less familiar complexity class ModpL [46].

I Example 9. An instance of the s, t-connectivity problem, STCON, consists of a directed
graph and two of its vertices, s and t. The question is whether there exists a directed path
from s to t.

A closely related (but not identical) problem is CSP(DSTCON), where the domain is
DSTCON = {0, 1} and DSTCON = {C0, C1, I}, C0 = {0}, C1 = {1}, I = {(0, 0), (0, 1), (1, 1)}.
Indeed, given an instance of CSP(DSTCON) we form a directed graph much as we did in
Example 6 and label some vertices 0 or 1 according to the unary constraints. Then the
original instance has a solution if and only if there is no directed path from a vertex labeled
1 to a vertex labeled 0. Thus CSP(DSTCON) can be solved by invoking the complement of
STCON, the s, t-non-connectivity problem, several times.

Both STCON and CSP(DSTCON) can clearly be solved in polynomial time. By the
Immerman-Szelepcsényi theorem [75, 115] both problems are NL-complete (under log-space
reductions).

In the same way, the s, t-connectivity problem for undirected graphs is closely related
to CSP(DUSTCON), where DUSTCON = {0, 1} and DUSTCON = {C0, C1,=}. These problems
are L-complete by [109].

2.3 The Dichotomy Conjecture
The most fundamental problem in the area was formulated in the landmark paper by Feder
and Vardi [65].

I Conjecture 10 (The Dichotomy Conjecture). For each finite constraint language D, the
problem CSP(D) is in P or is NP-complete.3

Recall that if P 6= NP, then there are problems of intermediate complexity in NP [95].
Feder and Vardi argued that the class of CSPs over fixed constraint languages is a good
candidate for the largest natural class of problems which exhibit a P versus NP-complete
dichotomy.

At that time the conjecture was supported by two major cases: the dichotomy theorem
for all languages over a two-element domain by Schaefer [112] and the dichotomy theorem
for languages consisting of a single binary symmetric relation by Hell and Nešetřil [71].

2 The problem of solving general systems of linear equations over GF(p) without the restriction on number
of variables cannot be faithfully phrased as CSP(D), even if we allow D to consist of all affine subspaces,
since the input representation of the latter problem can be substantially larger. However, a system of
linear equations can be easily rewritten to an instance of 3-LIN(p) by introducing new variables.

3 It is conjectured in [34] that the dichotomy remains true without the finiteness assumption on D (the
domain D still needs to be finite), if constraint relations in inputs are given by full lists of their members.
Namely, the local-global conjecture states that CSP(D) is in P (NP-complete) whenever CSP(D′) is in
P (NP-complete) for every (some) finite D′ ⊆ D.

Chapte r 01

6 Polymorphisms, and How to Use Them

Feder and Vardi identified two sources of polynomial-time solvability and made several
important contributions towards understanding them. In particular, they observed that
the known polynomial cases were tied to algebraic closure properties and asked whether
polynomial solvability for CSP can always be explained in such a way. This was confirmed
by Jeavons, Cohen and Gyssens [80, 78], and these and subsequent papers based on this
connection to algebra brought the area to another level, which probably could not be accessed
with only combinatorial tools (such as those in [112] or [71]).

2.4 Alternative Views

Note that if we order (or just name) relations in a constraint language D with domain D,
then D can be viewed as a relational structure (D;R1, R2, . . .), or equivalently as a relational
database, with universe D.

Recall that a Boolean conjunctive query over the database D is an existential sentence
whose quantifier-free part is a conjunction of atoms. CSP(D) is exactly the problem of
deciding whether D satisfies a given Boolean conjunctive query. For example, the instance

R1(x), R1(w), R3(y, y, z), R7(y, w), R7(x, y) (1)

has a solution if and only if the sentence

(∃x, y, z, w ∈ D) R1(x) ∧R1(w) ∧R3(y, y, z) ∧R7(y, w) ∧R7(x, y)

is true in D.
From this perspective, it is natural to ask what happens if we allow some other combination

of logical connectives from {∃,∀,∧,∨,¬,=, 6=}. It turns out that out of the 27 cases only
3 are interesting (the other cases either reduce to these, or are almost always easy or hard
by known results): {∃,∧} which is CSP, {∃,∀,∧} which is so-called quantified CSP, and
{∃,∀,∧,∨}. Determining the complexity of quantified CSP is also an active research area [49]
with a possible trichotomy – P, NP-complete or PSPACE-complete. Recently, a tetrachotomy
was obtained for the last case [101] – for every D, the corresponding problem is either in P,
NP-complete, co-NP-complete, or Pspace-complete.

The CSP over a fixed language can also be formulated as the homomorphism problem
between relational structures with a fixed target structure [65, 78]. Assume that we have
two relational structures E = (E;S1, S2, . . .) and D = (D;R1, R2, . . .) which are similar,
i.e. they have the same number of relations and the corresponding relations have the same
arity. A homomorphism from E to D is a mapping h : E → D such that, for all i, if
a = (a1, a2, . . .) ∈ Si then h(a) = (h(a1), h(a2), . . .) ∈ Ri. Then CSP(D) is equivalent to the
problem of deciding whether a given relational structure E similar to D has a homomorphism
to D. The idea of the translation is shown in Examples 6 and 9. In general, to see the
translation from the homomorphism form to the constraint form, view the set E as the
set of variables and transform every tuple x in a relation Si in E to a constraint Ri(x).
To see the translation back, let E (the domain of E) be the set of all variables appearing
in a given CSP instance, and let each relation Si contain all tuples x such that this CSP
instance contains a constraint Ri(x). For example, if we translate the CSP(D) instance
appearing above in (1) into a relational structure E , then we have E = {x, y, z, w} and
S1 = {x,w}, S3 = {(y, y, z)}, S7 = {(y, w), (x, y)}, with all the other relations Si empty.

L. Barto, A. Krokhin, and R. Willard 7

3 Reductions Between Constraint Languages

This section describes relational constructions that allow one to reduce one CSP with a fixed
constraint language to another. These constructions have algebraic counterparts, described
in the following section, and this translates many (complexity) classification problems about
constraint languages into algebraic classifications.

If a computational problem A can simulate (in some sense) another problem B, then A
is at least as hard as B. This simple idea is widely used in computational complexity; for
instance, NP-completeness is often shown by a gadget reduction of a known NP-complete
problem to the given one. A crucial fact for the algebraic theory of the CSP is that a so
called primitive positive (pp-, for short) interpretation between constraint languages gives
such a reduction between corresponding CSPs (more precisely, if D pp-interprets E , then
CSP(E) is reducible to CSP(D)). Pp-interpretations have been, indirectly, one of the main
subjects of universal algebra for the last 80 years!

We will define three increasingly more general techniques for simulation between CSPs:

pp-definition ⊆ pp-interpretation ⊆ pp-construction .

In Section 4 we give algebraic characterizations for these techniques, which guide the algebraic
approach.

The algebraic theory of CSPs was developed in a number of papers including [80, 78, 34,
97, 20]. The viewpoint taken here is close to [20, 24]. All results in this section come from
these sources unless stated otherwise.

To simplify formulations, all structures (relational or algebraic) are assumed to have finite
domains, all constraint languages are assumed to contain finitely many relations, all of them
nonempty. By a reduction we mean a log-space reduction (although first-order reductions
are often possible under additional weak assumptions).

3.1 Primitive Positive Interpretations (= Gadgets)
An important special case of pp-interpretability is pp-definability.

I Definition 11. Let D, E be constraint languages on the same domain D = E. We say
that D pp-defines E (or E is pp-definable from D) if each relation in E can be defined by a
first order formula which only uses relations in D, the equality relation, conjunction and
existential quantification.

This terminology comes from model theory, where a first order formula is called primitive
if it has the form ∃ȳ

∧
i<n αi(x̄, ȳ) where each αi(x̄, ȳ) is an atomic or negated atomic formula.

A primitive positive (or pp-) formula is a negation-free primitive formula.
Rephrasing the above definition without using logic, D pp-defines E if D and E have the

same domain and every relation Ri in E can be represented by a gadget using relations from
D, as follows. There is an instance Pi of CSP(D∪{=}) and subset Xi of variables in Pi such
that the set of all solutions to Pi, when projected down to Xi, gives precisely the relation Ri.

I Example 12. Recall constraint languages D3SAT,DHorn3SAT, and DSTCON from Ex-
amples 3, 5, and 9. We now show that D3SAT pp-defines DHorn3SAT, which in turn
pp-defines DSTCON. To show the first definition, notice that C0(x) = S111(x, x, x) and
C1(x) = S000(x, x, x). For the second, it is enough to check that I(x, y) holds if and only if
∃z(C1(z) ∧ S110(z, x, y)) holds.

I Theorem 13. If D pp-defines E, then CSP(E) is reducible to CSP(D).

Chapte r 01

8 Polymorphisms, and How to Use Them

Proof by Example. Let R be an arbitrary ternary relation on a domain D. Consider the
relations on D defined by

S(x, y) iff (∃z)R(x, y, z) ∧R(y, y, x), T (x, y) iff R(x, x, x) ∧ (x = y) ,

where the existential quantification is understood over D. The relations S and T are defined
by pp-formulae, therefore the constraint language D = {R} pp-defines the constraint language
E = {S, T}.

We sketch the reduction of CSP(E) to CSP(D) using the instance

S(x3, x2), T (x1, x4), S(x2, x4) .

We first replace S and T with their pp-definitions by introducing a new variable for each
quantified variable:

R(x3, x2, y1), R(x2, x2, x3), R(x1, x1, x1), x1 = x4, R(x2, x4, y2), R(x4, x4, x2)

and then we get rid of the equality constraint x1 = x4 by identifying these variables. This
way we obtain an instance of CSP(D):

R(x3, x2, y1), R(x2, x2, x3), R(x1, x1, x1), R(x2, x1, y2), R(x1, x1, x2) .

Clearly, the new instance of CSP(D) has a solution if and only if the original instance
does. J

This simple theorem provides a quite powerful tool for comparing CSPs over different
languages on the same domain. A more powerful tool, which can also be used to compare
languages with different domains, is pp-interpretability. Informally, a constraint language D
pp-interprets E , if the domain of E is a pp-definable relation (from D) modulo a pp-definable
equivalence, and the relations of E (viewed, in a natural way, as relations on D) are also
pp-definable from D.4 Formally:

I Definition 14. Let D, E be constraint languages. We say that D pp-interprets E if there
exist a natural number n, a set F ⊆ Dn, and an onto mapping f : F → E such that D
pp-defines

the relation F ,
the f -preimage of the equality relation on E, and
the f -preimage of every relation in E ,

where by the f -preimage of a k-ary relation S on E we mean the nk-ary relation f−1(S) on
D defined by

f−1(S)(x11, . . . , x1k, x21, . . . , x2k, . . . , xn1, . . . , xnk)

iff

S(f(x11, . . . , xn1), . . . , f(x1k, . . . , xnk)) .

When F = E = Dn and f is the identity mapping, we also say that E is a pp-power of D.

I Theorem 15. If D pp-interprets E, then CSP(E) is reducible to CSP(D).

Proof Sketch. The properties of the mapping f from Definition 14 allow us to rewrite an
instance of CSP(E) to an instance of the CSP over a constraint language which is pp-definable
from D. Then we apply Theorem 13. J

4 This is the classical notion of interpretation from model theory restricted to pp-formulas.

L. Barto, A. Krokhin, and R. Willard 9

3.2 Homomorphic Equivalence, Cores and Singleton Expansions
Let D and E be constraint languages with domains D and E, respectively. We say that D
and E are homomorphically equivalent if the relations in them can be ordered so that D and
E become similar structures and there exist homomorphisms e : D → E and g : E → D (recall
definitions from Section 2.4).

I Theorem 16. Let D and E be homomorphically equivalent constraint languages. Then
CSP(D) and CSP(E) are reducible to each other.

Proof Idea. An instance of CSP(D) has a solution if and only if the corresponding instance
of CSP(E), obtained by replacing each Ri ∈ D with Si ∈ E , has a solution. Specifically,
direct applications of mappings e and g transform solutions of one instance to solutions of
another one. J

A mapping f : D → D is called an endomorphism of D if it is a homomorphism from D
to itself, that is, f(R) := {(f(a1), f(a2), . . .) | (a1, a2, . . .) ∈ R} ⊆ R for every R ∈ D.

A language D is a core if every endomorphism of D is a bijection. It is not hard to
show that if f is an endomorphism of a constraint language D with minimal range, then
f(D) = {f(R) | R ∈ D} is a core. Moreover, this core is unique up to isomorphism, therefore
we speak about the core of D.

An important fact is that we can add all singleton unary relations to a core constraint
language without increasing the complexity of its CSP. For a constraint language D, its
singleton expansion is the language E = D ∪ {Ca : a ∈ D}, where Ca denotes the unary
relation Ca = {a}.

I Theorem 17. Let D be a core constraint language and let E be the singleton expansion of
D. Then CSP(E) is reducible to CSP(D).

Proof Idea. The crucial step is to observe that the set of endomorphisms of D, viewed as a
|D|-ary relation, is pp-definable from D. More precisely, the relation

S = {(f(a1), . . . , f(an)) : f is an endomorphism of D} ,

where a1, . . . , an is a list of all elements of D, is pp-definable from D (even without existential
quantification). Indeed, f is, by definition, an endomorphism of D if for every R ∈ D of arity
ar(R) and every (b1, . . . , bar(R)) ∈ R we have (f(b1), . . . , f(bar(R))) ∈ R. This directly leads
to a pp-definition of S:

S(xa1 , . . . , xan
) iff

∧
R∈D

∧
(b1,...,bar(R))∈R

R(xb1 , . . . , xbar(R)) .

Given an instance of CSP(E) we introduce new variables xa1 , . . . , xan
, we replace every

constraint of the form Ca(x) by x = xa, and we add the constraint S(xa1 , . . . , xan). In this
way we obtain an instance of CSP(D ∪ {=}). Clearly, if the original instance has a solution,
then the new instance has a solution as well. In the other direction, if g is a solution to the
new instance, then its values on xa1 , . . . , xan

determine an endomorphism f of D. As D is a
core, f is a bijection, thus f−1 is an endomorphism as well, and f−1 ◦ g restricted to the
original variables is a solution of the original instance. J

We will call constraint languages containing all singleton unary relations idempotent. Note
that an idempotent constraint language is automatically a core as the only endomorphism is
the mapping that sends each element to itself.

Chapte r 01

10 Polymorphisms, and How to Use Them

An interesting property of an idempotent constraint language D is that the search problem
for CSP(D) is solvable in polynomial time whenever CSP(D) is. The idea is to use self-
reduction: for a satisfiable instance, find good values for variables, in order, by checking
satisfiability of the instance enhanced with appropriate unary singleton constraints.

3.3 Example
I Example 18. We show that 3-SAT is reducible to 3-COLORING via singleton expansion
and a pp-interpretation with n = 1.

Recall the constraint language D3COLOR = {6=3} of 3-COLORING from Example 6 and
the constraint language D3SAT = {S000, . . . , S111} of 3-SAT from Example 3.

Since D3COLOR is a core, CSP(D′3COLOR), where D′3COLOR = {6=3, C0, C1, C2}, is redu-
cible to CSP(D3COLOR) by Theorem 17. By Theorem 15, it is now enough to show that
D′3COLOR pp-interprets D3SAT. We give a pp-interpretation with n = 1, F = {0, 1}, and f
the identity map (see Definition 14). The unary relation {0, 1} can be pp-defined by

F (x) iff (∃y) C2(y) ∧ x 6=3 y (iff x 6= 2) .

The preimage of the equality relation is the equality relation on {0, 1} which is clearly
pp-definable. The relation S000 can be defined by

S000(x1, x2, x3) iff (∃y1, y2, y3, z) C2(z) ∧ y1 6=3 y2 ∧ y2 6=3 y3 ∧ y1 6=3 y3

∧
∧

i=1,2,3
z 6=3 xi ∧ T (xi, yi) ,

where T is the binary relation

T (x, y) iff (∃u, v) C1(u) ∧ u 6= v ∧ x 6= v ∧ y 6= v

The other relations Sijk are defined similarly.
While it is easy to verify that the presented pp-definitions work, it is not so easy to

find them without any tools. The proof of Theorem 32 gives an algorithm to produce
pp-definitions whenever they exist (although the obtained definitions will usually be very
long).

3.4 Pp-Constructibility
We now discuss how the reductions from the previous two subsections can be combined.
I Definition 19. A constraint language D pp-constructs a constraint language E if there is
a sequence of constraint languages D = C1, . . . , Ck = E such that, for each 1 ≤ i < k

Ci pp-interprets Ci+1, or
Ci is homomorphically equivalent to Ci+1, or
Ci is a core and Ci+1 its singleton expansion.
The following is a corollary of Theorems 15, 16, and 17.

I Corollary 20. If D pp-constructs E, then CSP(E) is reducible to CSP(D).
It turns out that any finite sequence of operations in pp-constructibility can be replaced

by only two operations. Recall the notion of pp-power from Definition 14.
I Theorem 21. A constraint language D pp-constructs a constraint language E if and only
if E is homomorphically equivalent to a pp-power of D.

An example of idempotent constraint languages D and E such that D pp-constructs E ,
but does not pp-interpret E , can be found in [20].

L. Barto, A. Krokhin, and R. Willard 11

3.5 Tractability Conjecture
Pp-constructibility is a reflexive and transitive relation on the class of constraint languages.
By identifying equivalent languages, i.e. languages which mutually pp-construct each other,
we get a partially ordered set, the pp-constructibility poset, in which D ≤ E iff D pp-constructs
E . Corollary 20 then says that the “higher” we are in the poset the “easier” the CSP we are
dealing with. 3-SAT is terribly hard – we will see later (see Example 33) that its constraint
language is the least element of this poset. Strikingly, all known NP-complete CSPs have
this property. Bulatov, Jeavons and Krokhin [34] conjectured that this is not a coincidence.

I Conjecture 22 (Tractability Conjecture). If a constraint language D does not pp-construct
the language of 3-SAT, then CSP(D) is solvable in polynomial time.

This conjecture (together with the matching hardness result) is also known as the algebraic
dichotomy conjecture because many equivalent formulations, including the original one, are
stated in terms of algebraic operations; see subsection 4.4.

Actually, the original conjecture in [34] was stated (in an equivalent algebraic form) for
the case when D is an idempotent language and instead of pp-construction it used what was
essentially pp-interpretation with n = 1, but this is equivalent to the conjecture stated above
(see [33, 20]).

Remarkably, the seminal paper of Feder and Vardi included a conjecture very similar
to the Tractability conjecture; see [65, Conjecture 2]. In essence, their conjecture was that
CSP(D) should be solvable in polynomial time provided the core of D does not pp-define a
constraint language whose core is isomorphic to the language of 1-in-3-SAT (see Example 4).
This conjecture as stated is false. Indeed, the language D3COLOR = {6=3} of 3-COLORING
is a core, it is invariant under under all permutations of {0, 1, 2}, and it is easy to see that all
relations pp-definable in D3COLOR also have this invariance property. Therefore, D3COLOR
cannot pp-define any relation whose core has a two-element domain, and yet CSP(D3COLOR)
is obviously NP-complete. Note that we showed in Example 18 that the singleton expansion
of D3COLOR can pp-interpret (with n = 1) the language of 3-SAT. In fact, it follows (see
Example 33) that D3COLOR pp-constructs all constraint languages.

Similar hardness results and conjectures have been formulated for other computational/-
descriptive complexity classes. See subsection 4.4.

3.6 Other Reductions
Recall that if two constraint languages pp-construct each other, then their corresponding
CSP problems are equivalent up to logspace reductions. Thus to understand the complexity
of CSPs (for example, to resolve the Tractability conjecture), it suffices to consider just one
constraint language from each equivalence class in the pp-constructibility poset.

By combining Theorems 16 and 17, we obtain the “reduction to the idempotent case.”

I Theorem 23. For every constraint language D there is an idempotent constraint language
D′ such that D and D′ pp-construct each other.

The following theorem has appeared in various closely related forms in the literature. It
is useful because it allows one to work only with binary constraints, which often simplifies
the design and analysis of algorithms for CSPs.

I Theorem 24. For any constraint language D, there is a constraint language D′ such that
all relations in D′ are at most binary, and
D and D′ pp-construct each other.

Chapte r 01

12 Polymorphisms, and How to Use Them

Proof Sketch. Let ` be the maximum arity of a relation in D. Define a constraint language
D′ as follows. Let D′ = D`. For each relation R (say of arity k) in D, D′ contains a unary
relation R′ such that (a1, . . . , a`) ∈ R′ if and only if (a1, . . . , ak) ∈ R. In addition, for all
1 ≤ k ≤ `, D′ contains a binary relation Ek defined as follows: ((a1, . . . , a`), (b1, . . . , b`)) ∈ Ek
if and only if a1 = bk. It can be seen directly from definitions that D′ is a pp-power of D,
and so D pp-constructs D′.

In the opposite direction, for each unary relation R′ ∈ D′, consider the following relation on
D′: R′′(x1, . . . , xk) = ∃xR : R′(xR)∧E1(x1, xR)∧ . . .∧Ek(xk, xR). Let D′′ = {R′′ | R ∈ D},
so D′ pp-defines D′′. Now, it is straightforward to check that D and D′′ are homomorphically
equivalent, with mappings e : D → D` and g : D` → D defined as e(x) = (x, . . . , x) and
g((x1, . . . , x`)) = x1. J

By using Theorem 23, Theorem 24 can be strengthened to make D′ idempotent.
At the expense of forgoing pp-constructible equivalence, we can replace any constraint

language with a language consisting of a single binary relation. The following result is
essentially from [65]; see also the improvement in [45].

I Theorem 25. For every constraint language D there is a digraph H = (V,E) such that
1. {E} pp-constructs D, and
2. CSP({E}) is logspace-reducible to (and hence equivalent to) CSP(D).

It is known [83] that the previous theorem cannot be improved so that D and {E} each
pp-construct the other.

It follows from the previous theorem that every CSP(D) is logspace-equivalent to an
H-coloring problem. In a similar vein, Feder and Vardi proved [65] that every CSP(D) is
logspace-equivalent to some CSP(E) where E is the singleton expansion of a partial ordering,
and also to CSP(E ′) where E ′ is the singleton expansion of the (symmetric irreflexive)
edge relation of a bipartite graph. These results, while undoubtedly interesting, might be
taken to suggest that the CSP classification problem needs to be tackled through a careful
analysis of combinatorial objects such as digraphs, posets, or bipartite graphs. However,
another interpretation is that these objects are complex enough to encode all CSPs. The
algebraic approach, that we are about to describe, gives a better, more fruitful, alternative
for complexity analysis of CSPs.

4 Polymorphisms as Classifiers of Constraint Languages

4.1 Definitions and Examples

The link between relations and operations is provided by a natural notion of compatibility.
An n-ary operation f on a finite set D (that is, a mapping f : Dn → D) is compatible with a
k-ary relation R ⊆ Dk if f applied component-wise to any n-tuple of elements of R gives an
element of R. In more detail, whenever (aij) is an n× k matrix such that every row is in R,
then f applied to the columns gives a k-tuple which is in R as well. If f is compatible with
R then one also says that f is a polymorphism of R, and that R is invariant under f .

I Example 26. Consider the ternary majority operation f on {0, 1}, which always returns
the (unique) repeated value among its arguments. It is a very easy exercise to check that
this operation is compatible with any binary relation on {0, 1}: indeed, applying f to the
columns of any 3× 2 matrix with 0/1 entries always gives one of the rows of this matrix.

L. Barto, A. Krokhin, and R. Willard 13

We say that an operation f on D is a polymorphism of a constraint language D if f is
compatible with every relation in D. Note that a unary polymorphism is the same as an
endomorphism. Endomorphisms can be thought of as symmetries, so polymorphisms can be
viewed as symmetries of higher arities.

I Example 27. Every polymorphism f of an idempotent constraint language is algebraically
idempotent, that is, it satisfies f(a, a, . . . , a) = a for each a in the domain.

I Example 28. It is very easy to check that the binary operation f(x, y) = min(x, y) on {0, 1}
is a polymorphism of DHornSAT from Example 5. For example, to see that f is compatible
with the relation S110 = {0, 1}3 \{(1, 1, 0)}, notice that, for any 2×3 matrix with 0/1 entries,
if f applied to the columns of the matrix gives tuple (1, 1, 0) then one of the rows of the
matrix must be this same tuple.

I Example 29. The ternary operation f(x, y, z) = x − y + z mod p on GF(p) is a poly-
morphism of D3LINp from Example 8. Indeed, each relation in this structure is an affine
subspace of GF(p)3 and f applied to the columns of a 3× 3 matrix gives a triple, which is
an affine combination of its rows (with coefficients 1, -1, 1).

In fact, it is easy to check that f is compatible with R ⊆ GF(p) if and only if it is an
affine subspace of GF(p). It follows that if f is a polymorphism of D, then an instance of
CSP(D) can be written as a system of linear equations over GF(p) and therefore CSP(D) is
solvable in polynomial time, for example, by Gaussian elimination.

Observe that for p = 2, f is the ternary minority function f(x, y, z) = x+ y + z mod 2.

I Example 30. Consider the following generalisation of the operation f from Example 26.
For any finite set D, the dual discriminator operation on D is the ternary operation d such
that d(x, y, z) = x if x, y, z are all different and, otherwise, d(x, y, z) is the repeated value
among x, y, z. It is a useful easy exercise to check that d is compatible with a binary relation
R on D if and only if the relation has one of the following forms:
(∨) x = a ∨ y = b for a, b ∈ D,
(π) x = π(y) where π is a permutation on D,
(×) A×B where A and B are subsets of D,
(∩) intersection of a relation of type (∨) or (π) with a relation of type (×).
The key observation is that, for any binary relation R compatible with d, and for any
a, a′, b, b′, c ∈ D with b 6= b′, we have d((a′, c)(a, b), (a, b′)) = (a, c). We remark that, generally,
it is rare to have such an explicit description of relations having a given polymorphism.

Another useful way of viewing polymorphisms is that they provide an algebraic structure
on solution sets of instances. In other words, they provide a uniform way to combine solutions
to instances to form a new solution, which we illustrate with the following example.

I Example 31. Recall the majority operation f on {0, 1} from Example 26. Consider any
2-SAT instance, for example, this one: (x ∨ y) ∧ (y ∨ z) ∧ (y ∨ u) ∧ (x ∨ u). Take any three
solutions to this instance: for example, a,b, c described in the diagram below. It is easy to
check that they are indeed solutions: simply check that each of them satisfies each constraint
in the instance. If we apply f to these solutions coordinate-wise, as described in the diagram,
we obtain a new assignment f(a,b, c). It is also a solution to this instance, and there is no
need to go through the constraints in the instances to check that each constraint is satisfied,
since this is directly guaranteed by the fact that f is compatible with all binary relations on
{0, 1}.

Chapte r 01

14 Polymorphisms, and How to Use Them

x y z u

a = (1 1 1 0) sat
b = (1 1 0 1) sat
c = (1 0 0 0) sat

f ↓ f ↓ f ↓ f ↓

f(a,b, c) = (1 1 0 0) sat

Notice that f cannot be used to combine solutions to HORN-3-SAT or 3-SAT instances.
Indeed, the relation S111 = {0, 1}3 \ {(1, 1, 1)} is not compatible with f ; it is easy to see that
applying f to tuples (0, 1, 1), (1, 0, 1), (1, 1, 0) ∈ S111 gives (1, 1, 1). We discuss polymorphisms
of D3SAT again in Example 33.

We remark that many algorithms that we discuss in the subsequent sections use poly-
morphisms, in design or in analysis, to combine solutions of subinstances of a given CSP
instance in order to maintain or improve useful problem-specific properties of such solutions.

4.2 Polymorphisms as an Algebraic Counterpart of pp-Definability
The set of all polymorphisms of D will be denoted by D. This algebraic object has the
following two properties.

D contains all projections5, that is, all operations of the form

πni (a1, . . . , an) = ai.

D is closed under composition, that is, any operation built from operations in D by
composition also belongs to D.

For example, if D contains a unary operation h, a binary operation g and a ternary operation
f then the operation f ′(x, y, z) = f(f(x, x, h(y)), g(y, z), g(z, x)) is also in D.

Sets of operations with these properties are called concrete clones (or function clones, or
simply clones); therefore we refer to D as the clone of polymorphisms of D 6. It is known
that every concrete clone is the clone of polymorphisms of some (possibly infinite) constraint
language [67, 26].

The notions of polymorphism and invariance form the basis of a well-known Galois
correspondence between sets of relations and operations on a finite set [67, 26], which implies
that the clone of polymorphisms controls pp-definability in the following sense.

I Theorem 32. Let D, E be constraint languages with D = E. Then D pp-defines E if and
only if D ⊆ E.

Proof Sketch. The implication “⇒” follows directly from definitions. For the other implica-
tion it is enough to prove that if R is a relation compatible with every polymorphism of D,
then R is pp-definable from D. A crucial step is a more general version of the observation
made in the proof of Theorem 17: For any k, the set of k-ary polymorphisms of D can be
viewed as a |D|k-ary relation S on D, and this relation is pp-definable from D. Now R can
be defined from such a relation S (where k is the number of tuples in R) by existential
quantification over suitable coordinates. This proof is illustrated in Example 34 below. J

5 In some research communities such operations are called dictators.
6 Similar fonts will be used to denote other languages and their corresponding clones, e.g. E and E.

L. Barto, A. Krokhin, and R. Willard 15

In view of this result, Theorem 13 says that the complexity of CSP(D) only depends
on the clone D. More precisely, if D ⊆ E, then CSP(E) is reducible to CSP(D). Moreover,
the proof of Theorem 32 gives a generic pp-definition of E from D, which gives us a generic
reduction of CSP(E) to CSP(D).

I Example 33. It is a nice exercise to show that the language D3SAT of 3-SAT has no
polymorphisms except for the projections, and the same holds for the language of 1-in-3-SAT.
This means (by Theorem 32) that D3SAT pp-defines every constraint language with domain
{0, 1}. It follows (see also Theorem 38) that D3SAT pp-constructs (in fact, even pp-interprets)
every constraint language, so it is the least element of the pp-constructibility poset, as
claimed earlier. Moreover, it follows from Theorem 32 that D3SAT and D1in3SAT pp-define
each other, hence they are in the same (i.e. the least) element of the pp-constructibility poset.

I Example 34. Another nice exercise for the reader is to show that the language D′3COLOR =
{6=3, C0, C1, C2} on the domain {0, 1, 2} (see Example 18) also does not have any polymorph-
isms except for projections. It follows that every relation on {0, 1, 2} is pp-definable from
D′3COLOR. We show how the proof of Theorem 32 produces a pp-definition of some relation,
say, the binary relation

R = {(0, 1), (0, 2), (1, 1), (2, 2)} .

Since R contains 4 pairs, we pp-define the 34-ary relation

S = {(f(0, 0, 0, 0), f(0, 0, 0, 1), . . . , f(2, 2, 2, 2)) : f is a 4-ary polymorphism
of D′3COLOR}.

which corresponds to the set of all 4-ary polymorphisms of D′3COLOR:

S(x0000, . . . , x2222) iff
∧
i

xiiii = i ∧
∧

i1 6=i2,j1 6=j2,k1 6=k2,l1 6=l2

xi1j1k1l1 6=3 xi2j2k2l2 .

Let’s see that the above formula actually defines S: it is clear that indices show how to
interpret each 34-tuple in S as a 4-ary operation on {0, 1, 2}. The first

∧
-part in the above

formula states that the interpreted operation is compatible with C0, C1, C2, while the second
one states that it is compatible with 6=3. Now we existentially quantify over all variables
in S but x0012 and x1212 – the exceptions are those variables whose indices correspond to
the first and the second (resp.) coordinates of pairs in R. The obtained binary relation
R′(x0012, x1212) contains R since S contains the four tuples corresponding to the cases when
f is a projection π4

i : {0, 1, 2}4 → {0, 1, 2}, and R′ is contained in R since R is compatible
with every polymorphism of D′3COLOR.

Note that the definition of S000 from Example 18 obtained in this way contains 37

variables.

For other examples similar to Example 34, but worked out in more detail, see [77].
The proof of Theorem 32 (see also the above example) gives an algorithm for constructing

a pp-definition of a relation R from a given structure D, whenever there is one. This
pp-definition can be terribly long. However, the algorithm is optimal in the sense that the
problem of deciding of whether such a pp-definition exists is co-NEXPTIME-hard [118].

4.3 Height-1 Identities and pp-Constructibility
We explained above that the complexity of CSP(D) depends only on the polymorphisms of
D. In this section, we refine this statement by specifying the properties of polymorphisms

Chapte r 01

16 Polymorphisms, and How to Use Them

that determine the complexity: these are identities satisfied by polymorphisms, i.e. equations
that hold for all choices of values for the variables, and more specifically height-1 identities,
i.e. those in which each side has exactly one occurrence of an operation symbol.

We will explain identities by example.

I Example 35. A binary operation f on D is called a semilattice operation if it satisfies the
following three identities

f(f(x, y), z) = f(x, f(y, z)), f(x, y) = f(y, x), and f(x, x) = x,

which means that the above equalities hold for all choices of values in D for the variables.
The first identity above (known as associativity) is not height-1, as both sides have two
occurrences of f . The second identity (commutativity) is height-1. The third identity
(idempotence) is not height-1 as its right side has no occurrence of an operation symbol.

In general, identities can involve more than one operation, e.g. f3(x, x, y) = f4(x, x, x, y).
Note that height-1 identities involving operations in a clone can be expressed “within” the
clone. For example, the identity f3(x, x, y) = f4(x, x, x, y) is satisfied iff the statement
f3(π2

1 , π
2
1 , π

2
2) = f4(π2

1 , π
2
1 , π

2
1 , π

2
2) is true in the clone.

I Definition 36. A mapping H from a clone D to a clone E is called an h1 clone homo-
morphism if

it preserves the arities of operations,
it preserves height-1 identities; that is,

H(g(πki1 , . . . , π
k
in)) = H(g)(πki1 , . . . , π

k
in)

where g ∈ D is n-ary.

Note that while an h1 clone homomorphism preserves height-1 identities, it is not required
to preserve non-height-1 identities.

I Example 37. Assume that D contains a semilattice operation f and H is an h1 clone
homomorphism from D to E. Then the operation H(f) on E is commutative, but not
necessarily idempotent or associative. However, if g = f(f(x, y), z) then H(g) satisfies iden-
tities such as H(g)(x, y, z) = H(g)(y, z, x) = H(g)(y, x, z) and H(g)(x, x, y) = H(g)(x, y, y)
because they are height-1 and g satisfies them.

The following is proved in [20].

I Theorem 38. Let D, E be constraint languages. Then D pp-constructs E if and only if
there exists an h1 clone homomorphism from D to E.

Thus if D ≤ E in the pp-constructibility ordering (i.e. D pp-constructs E), then E satisfies
all properties of the form “there exist operations f1, . . . , fn satisfying height-1 identities
Λ1, . . . ,Λk” which are satisfied by D.7 A compactness argument shows that the converse is
also true: if D � E , then there is a finite system of height-1 identities which is satisfied by
some operations from D but is not satisfied by any operations in E. Since the position of
D in the pp-constructibility ordering determines the complexity of CSP(D) up to logspace
reductions, we have that the following holds unconditionally:

7 Algebraists call such properties strong (height-1) Mal’tsev conditions.

L. Barto, A. Krokhin, and R. Willard 17

The complexity of CSP(D), up to logspace reductions, depends only on
the finite systems of height-1 identities satisfied by the operations in the
clone of polymorphisms of D.

More is true. Suppose C is a set of constraint languages with the property that if D ∈ C and
CSP(E) is logspace reducible to CSP(D), then E ∈ C. (For example, C could be the class of
D for which CSP(D) is in P.) Then C is an upward-closed subset of the pp-constructibility
partial order. Assume that C is not the set of all constraint languages. It follows that
1. There exist E1, E2, . . . such that C = {D : D � Ei for all i}, and hence
2. C is the set of constraint languages D such that for every i there exists a finite system of

height-1 identities which is not satisfied by Ei but is satisfied by D.
In other words, C can be characterized by a set of “forbidden” constraint languages (with
respect to pp-constructibility), and also by a (possibly infinite) disjunction of (possibly
infinite) systems of height-1 identities on polymorphisms. One advantage of this perspective
is that it replaces a negative characterization of a class of interest (forbidden constraint
languages) with a positive one (existence of polymorphisms satisfying height-1 identities).
For this observation to be useful, however, the height-1 identities must be manageable, and
the discovery of manageable height-1 identities characterizing classes of interest is one of the
achievements of the algebraic method. We will illustrate this in the following subsection.

4.4 Classifications and Conjectures
In this section we give examples in which classes of constraint languages are characterized
both by forbidden constraint languages and by height-1 identities of polymorphisms.

For the sake of readability, our terminology will stray from longstanding traditions in the
literature. Specifically, our definitions of Taylor, weak NU, cyclic, and Siggers operations do
not require that the operation is idempotent. We will write idempotent Taylor, idempotent
weak NU, etc. for what is ordinarily called Taylor, weak NU, etc.8 (Note that we cannot
bring ourselves to apply this convention to Mal’tsev, majority and NU operations.) It’s easy
to see that a language D has one of the polymorphisms mentioned in this section (e.g. Taylor)
if and only if the core of D has an idempotent version of that polymorphism. Hence, even
though we state all conjectures in this section without assuming idempotence, it is enough
to prove them in the idempotent case.

I Definition 39. A Taylor operation is a k-ary (k ≥ 2) operation f such that, for each
1 ≤ i ≤ k, f satisfies an identity of the form

f(zi,1, . . . , zi,i−1, x
i
, zi,i+1, . . . , zi,k) = f(z′i,1, . . . , z′i,i−1, y

i
, z′i,i+1, . . . , z

′
i,k) (2)

where all zi,j , z′i,j are in {x, y}.

A useful way to view this definition is that the identities (2) prevent f from being the ith
projection (for each i) whenever the domain has more than one element. In fact, it is easy to
see that Taylor identities are the weakest height-1 identities involving a single operation that
prevent this operation from being a projection.

The following theorem can be derived from [116] (see also [34]).

8 [50] uses quasi-Taylor, quasi-WNU etc. for the not-necessarily-idempotent versions.

Chapte r 01

18 Polymorphisms, and How to Use Them

I Theorem 40. For any constraint language D, the following are equivalent:
1. D does not pp-construct the language of 3-SAT.
2. D has a Taylor polymorphism of some arity.

The class of constraint languages which do not pp-construct the language of 3-SAT is
precisely the class of D for which the Tractability conjecture asserts that CSP(D) is in P.
Hence constraint languages with Taylor polymorphisms are of particular interest. Although
the defining condition of a Taylor operation looks rather cumbersome, it has been shown
that, rather surprisingly, for any constraint language D, the property of having a Taylor
polymorphism is equivalent to a number of simpler conditions, as described below.

A weak near-unanimity (WNU) operation is a k-ary (k ≥ 2) operation f satisfying the
identities

f(y, x, x, . . . , x, x) = f(x, y, x, . . . , x, x) = . . . = f(x, x, x, . . . , x, y); (3)

A cyclic operation is a k-ary (k ≥ 2) operation f satisfying the identity

f(x1, x2, . . . , xk) = f(x2, . . . , xk, x1); (4)

A Siggers operation is a 4-ary operation f satisfying the identity 9

f(y, x, y, z) = f(x, y, z, x). (5)

I Theorem 41. For every constraint language D, the following are equivalent:
1. D has a Taylor polymorphism;
2. D has a WNU polymorphism [104];
3. D has a cyclic polymorphism [13];
4. D has a Siggers polymorphism [85, 113].

For other conditions equivalent to the presence of an (idempotent) Taylor polymorphism,
see [18, 33, 34, 73, 94].

I Corollary 42. If a constraint language D has no Taylor (equivalently, no WNU, cyclic, or
Siggers) polymorphism then CSP(D) is NP-complete.

Using the above results, the Tractability conjecture (Conjecture 22), combined with
Corollary 42, can be re-stated as follows.

I Conjecture 43 (Algebraic Dichotomy Conjecture). If a constraint language D has a Taylor
(equivalently, a WNU, cyclic, or Siggers) polymorphism, then CSP(D) is solvable in polyno-
mial time; otherwise, it is NP-complete.

More informally, the (open part of the) Algebraic Dichotomy Conjecture says:

If D has a nontrivial higher-dimensional symmetry (hence providing a
nontrivial way to combine solutions), then CSP(D) should be tractable.

We remark that Conjecture 43 is often misquoted as “CSP(D) is NP-complete if all poly-
morphisms of D are projections, and CSP(D) is tractable otherwise.” This form of the
conjecture is false, as the following example shows.

9 Using different variables, f(r, a, r, e) = f(a, r, e, a) – mnemonic due to Ryan O’Donnell.

L. Barto, A. Krokhin, and R. Willard 19

I Example 44. Consider the map f : {0, 1, 2} → {0, 1} such that f(0) = 0 and f(1) =
f(2) = 1 and consider the constraint language D = {f−1(Sijk) | Sijk ∈ D3SAT} on {0, 1, 2}.
Note that any relation in D cannot distinguish elements 1 and 2, in the sense that any 1
anywhere in it can be replaced by 2 and vice versa. Hence, if we take any projection πni on
{0, 1, 2} and any operation f : {1, 2}n → {1, 2} and define f ′ on {0, 1, 2} so that

f ′(t) =
{

f(t), if t ∈ {1, 2}n
πni (t), otherwise

then f ′ is a polymorphism of D. It is clear that CSP(D) is NP-complete and has many
polymorphisms other than projections. One can even take the singleton expansion of D – it
would be a core, and each operation f ′ built above would remain a polymorphism provided
f is idempotent. However, all height-1 identities satisfied by such operations must also be
satisfied by projections.

I Example 45. We show how to apply cyclic operations to prove the dichotomy theorem for
undirected graphs [71].

Let R be a symmetric binary relation viewed as an undirected graph and let D = {R}. If
R contains a loop then CSP(D) is trivially tractable. If R is bipartite, then the core of D is
an edge and CSP(D) is essentially 2-COLORING, which is tractable.

Let D′ = {R′,} be the singleton expansion of the core of D. If R is not bipartite and
does not contain a loop, then R′ does not contain a loop, but does contain a closed walk
a1, a2, . . . , ap, a1 for some prime p > |D′|. It was shown in [13] that if D′ contains some
idempotent cyclic operation then it contains such an operation of every prime arity greater
than |D′|, so we can assume that D′ contains a cyclic operation t of arity p. Since t is a
polymorphism, the pair

t((a1, a2), . . . , (ap−1, ap), (ap, a1)) = (t(a1, . . . , ap), t(a2, . . . , ap, a1))

is in R′, but it is a loop since t is cyclic. This contradiction shows that D′ does not contain
an idempotent cyclic operation of arity p, and hence it does not have an idempotent cyclic
operation of any arity. Because D′ is idempotent, D′ has no cyclic operation. D pp-constructs
D′; hence D has no cyclic operation (as the height-1 identity characterizing a cyclic operation
of D would also be satisfied by some operation of D′). Hence D does not have a cyclic
polymorphism, so CSP(D) is NP-complete.

I Example 46. A digraph is called smooth if it contains neither sources nor sinks, i.e. all
its vertices have positive in- and out-degrees. It was shown in [17] that if a smooth digraph
has a WNU polymorphism then its core must be a disjoint union of directed cycles. If a
smooth digraph H has such a form, it is an easy exercise to show that the corresponding
H-COLORING problem CSP(DH) is solvable in polynomial time. If H does not have such
a form, then CSP(DH) is NP-complete by Corollary 42.

Consider the digraph H having only 3 vertices x, y, z and 4 edges yx, xy, yz, zx. It is a
smooth core digraph, so it follows from the above that the corresponding problem CSP(DH)
is NP-complete. It can be easily checked that it is the smallest digraph with this property.
Moreover, this digraph was used in [85] to obtain identity (5) above, which can be viewed as
follows: if a digraph with a Siggers polymorphism contains H as a subdigraph, then it also
contains a loop.

Next, we consider the class of constraint languages D for which CSP(D) has bounded width
(meaning that all unsatisfiable instances of CSP(D) can be refuted via local propagation).

Chapte r 01

20 Polymorphisms, and How to Use Them

The “obvious” obstructions to bounded width, besides 3-SAT, are 3-LIN(p) for primes p. Let
C be the set of constraint languages which do not pp-construct the language of 3-LIN(p) for
any prime p. A notable success of the algebraic method was the proof that C is precisely the
set of constraint relations having bounded width [14, 31]. The original proof of Barto and
Kozik [12] hinged on the equivalence of the first and second items in the following theorem.

I Theorem 47. For any constraint language D, the following are equivalent:
1. D does not pp-construct the language of 3-LIN(p), for any p;
2. D has WNU polymorphisms of all but finitely many arities [99, 104];
3. D has a k-ary WNU polymorphism for each k ≥ 3 (see [91]);
4. D has a ternary WNU polymorphism f3 and a 4-ary WNU polymorphism f4 such that

f3(x, x, y) = f4(x, x, x, y) [91];
5. for some k ≥ 3, D has a k-ary polymorphism f satisfying, for each 1 ≤ i ≤ k, an identity

of the form

f(zi,1, . . . , zi,i−1, x
i
, zi,i+1, . . . , zi,k) = f(zi,1, . . . , zi,i−1, y

i
, z′i,i+1, . . . , z

′
i,k) (6)

where all zi,j , z′i,j are in {x, y} [91].

For other conditions equivalent to those from Theorem 47, see [18, 73, 82, 94].
We will discuss CSPs of bounded width in detail in Section 5.
As a third example, consider the class of constraint languages D for which CSP(D) has

bounded linear width, meaning that all unsatisfiable instances of CSP(D) can be refuted
via local propagation in a linear fashion (think refuting unsatisfiable 2-SAT instances by
following paths). This refutation property can be formalised via Linear Datalog, among
other equivalent ways, see [44]. Another way to express this property is that every instance
CSP(D) can solved by forming, in logspace, a certain directed graph (of local inferences) and
solving STCON on this digraph, see [44, 62]. This shows that problems CSP(D) of bounded
linear width are in complexity class NL.

The obvious obstructions to bounded linear width are 3-LIN(p) for primes p and HORN-
3-SAT. Let C ′ be the class of constraint languages which do not pp-construct the language
of 3-LIN(p) for any prime p, nor the language of HORN-3-SAT. Thus C ′ contains the class
of constraint languages whose CSP has bounded linear width (and possibly more). The
following theorem gives a manageable algebraic characterization of C ′.

I Theorem 48. For any constraint language D, the following are equivalent:
1. D pp-constructs neither the language of 3-LIN(p), for any p, nor that of HORN-3-SAT;
2. for some n ≥ 2, D has ternary polymorphisms d0, . . . , dn satisfying the following identit-

ies [73]:

d0(x, y, z) = d0(x, x, x), (7)
dn(x, y, z) = dn(z, z, z), (8)
di(x, y, y) = di+1(x, y, y) and di(x, y, x) = di+1(x, y, x) if i is even, i < n, (9)
di(x, x, y) = di+1(x, x, y) if i is odd, i < n. (10)

3. for some k ≥ 3, D has a k-ary polymorphism f satisfying, for each 1 ≤ i ≤ k, an identity
of the form

f(x, . . . , x, x
i
, zi,i+1, . . . , zi,k) = f(x, . . . , x, y

i
, z′i,i+1, . . . , z

′
i,k) (11)

where all zi,j , z′i,j are in {x, y} [66].

L. Barto, A. Krokhin, and R. Willard 21

It is known [91] that the above theorem cannot have an equivalent condition involving
only a bounded number of functions of bounded arity (such as Siggers polymorphism or
condition (4) from Theorem 47), so at least one of the number and the arity of operations
involved in any characterization must be unbounded.

This theorem has an interesting complexity-theoretic consequence. HORN-3-SAT is
P-complete (and thus unlikely to be in NL). The relationship of problems 3-LIN(p), and
hence of classes ModpL, with the class NL is unknown (though there is evidence that NL
is contained in ModpL for every p [2, 110]). As mentioned above, bounded linear width
guarantees membership in NL [52], and moreover, all problems CSP(D) known to be in NL
have bounded linear width.

I Corollary 49. Let D be a constraint language having polymorphisms satisfying one of
the equivalent conditions in Theorem 47. If D has no ternary polymorphisms satisfying
conditions (7)–(10), or equivalently, no polymorphism satisfying condition (11), of Theorem 48,
then CSP(D) is P-complete and cannot have bounded linear width.

As mentioned earlier, the class of constraint languages having polymorphisms witnessing
the equivalent conditions of Theorem 48 contains the class of constraint languages whose CSP
has bounded linear width. It was suggested in [97] that the two classes actually coincide.

I Conjecture 50 (Bounded Linear Width Conjecture). If a constraint language D has poly-
morphisms as described in one of the equivalent conditions in Theorem 48 then CSP(D) has
bounded linear width and hence belongs to NL.

We discuss progress towards resolving Conjecture 50 in Section 5.7.
If for some reason you are interested in the class of constraint languages which do not

pp-construct the language of HORN-3-SAT, but with no restriction on pp-constructing the
language of any 3-LIN(p), then you are in luck; algebraic descriptions of this class are also
known. For example:

I Theorem 51 ([73]). For any constraint language D, the following are equivalent:
D does not pp-construct the language of HORN-3-SAT.
for some k ≥ 3, D has a k-ary polymorphism f satisfying, for each 1 ≤ i ≤ k, an identity
of the form

f(x, . . . , x, x
i
, zi,i+1, . . . , zi,k) = f(z′i,1, . . . , z′i,i−1, y

i
, z′i,i+1, . . . , z

′
i,k) (12)

where all zi,j , z′i,j are in {x, y}.

Example 12 shows that the structure DHornSAT from Example 5 pp-defines the structure
DSTCON from Example 9. Thus, by forbidding DSTCON instead of DHornSAT in Theorem 51,
we further restrict the class of constraint languages, but again obtain a class with a known
algebraic characterization.

I Theorem 52 ([68]). For any constraint language D, the following are equivalent:
D does not pp-construct DSTCON;
for some t ≥ 2, D has ternary polymorphisms p0, . . . , pt satisfying the following identities:

p0(x, y, z) = p0(x, x, x), (13)
pt(x, y, z) = pt(z, z, z), (14)
pi(x, x, y) = pi+1(x, y, y) for all i < t. (15)

Chapte r 01

22 Polymorphisms, and How to Use Them

Here is one final example characterizing forbidden languages by height-1 identities.

I Theorem 53 ([73]). For any constraint language D, the following are equivalent:
D pp-constructs neither the language of 3-LIN(p), for any p, nor that of STCON;
for some n ≥ 0, D has 4-ary polymorphisms f0, . . . , fn satisfying the following identities:

f0(x, y, y, z) = f0(x, x, x, x) (16)
fn(x, x, y, z) = fn(z, z, z, z) (17)
fi(x, x, y, x) = fi+1(x, x, y, x) and fi(x, x, y, y) = fi+1(x, x, y, y), for i < n. (18)

Some problems CSP(D) can be solved by forming a certain undirected graph (of local
inferences) on a given instance and then solving STCON on this graph, see [62]. This property
is called bounded symmetric width, and the corresponding CSPs belong to the complexity
class L.

It was shown in [97] that any language not satisfying the conditions of Theorem 53 cannot
have bounded symmetric width and that the corresponding CSP is hard for at least one of
complexity classes NL and ModpL (for some p).

I Conjecture 54 (Bounded Symmetric Width Conjecture, [97]). If a constraint language D has
polymorphisms as described in one of the equivalent conditions in Theorem 53 then CSP(D)
has bounded symmetric width and hence belongs to L.

We discuss progress towards resolving Conjecture 54 in Section 5.7.
It is interesting to note that the complexity classifications obtained or conjectured through

these algebraic results are obviously conditional on complexity-theoretic assumptions, while
the classifications related to (various notions of) width are unconditional.

4.5 Taxonomy of Systems of Linear Identities
Although the reader might find the identities in Theorems 40, 41, 47, 48, 51, 52 and 53 to be
somewhat random, in fact it is something of a minor miracle that the classes of constraint
languages considered in those theorems have manageable algebraic descriptions. The proofs
of these theorems are highly nontrivial and use sophisticated tools from universal algebra.
What made their discovery possible is the serendipitous fact that universal algebraists have
been studying the connection between identities and “good algebraic structure” for almost
50 years.

In particular, the systems of identities appearing in Theorems 40, 41, 51, 52 and 53, as well
as some equivalent characterizations of the classes described in Theorems 47 and 48, when
strengthened by adding idempotency, have been known to be of fundamental importance
since the 1980s in the context of “tame congruence theory” [73]. Height-1 identities and
idempotency identities f(x, x, . . . , x) = x are both examples of linear identities; these are
identities in which each side has at most one occurrence of an operation symbol.

In addition to these well-studied systems of linear identities arising in tame congruence
theory, there is a robust taxonomy of “classical” systems of linear identities, all stronger than
the Taylor identities. This allows one to approach classification problems, and especially
their positive parts, for language-based CSP (such as Conjecture 43) as follows. First prove
the result for stronger systems of identities, and then move to weaker identities, gradually
approaching the identities which determine the (conjectured) boundary.

We now introduce some (more) of the more important linear identities that have played
a role in the algebraic theory of CSP. Most of these identities have been studied in universal
algebra before the link with the CSP was discovered.

L. Barto, A. Krokhin, and R. Willard 23

A near-unanimity (NU) operation is an n-ary (n ≥ 3) operation f which satisfies

f(y, x, x, . . . , x, x) = f(x, y, x, . . . , x, x) = . . . = f(x, x, x, . . . , x, y) = x; (19)

The last equality in (19) is the difference between NU and WNU operations. A ternary
NU operation is usually called a majority operation. The dual discriminator operation
from Example 30 is a majority operation which was often used as a starting point in
many CSP-related classifications.
For example, the operation f(x1, . . . , xn) =

∨
i<j (xi ∧ xj) on {0, 1} is an NU operation.

A symmetric operation is an n-ary operation satisfying all identities of the form

f(x1, x2, . . . , xn) = f(xπ(1), xπ(2), . . . xπ(n)), (20)

where π is a permutation of the set {1, 2, . . . , n}.
A totally symmetric (TS) operation is an n-ary operation satisfying all identities of the
form

f(x1, x2, . . . , xn) = f(y1, y2, . . . yn), (21)

where {y1, y2, . . . , yn} = {x1, x2, . . . , xn}. This includes all identities of the form (20) as
well as identities such as f(x, x, y) = f(x, y, y).
If f2(x1, x2) is a semilattice operation (Example 35) then, for all n ≥ 2, fn(x1, . . . , xn) =
f2(x1, f2(x2, (. . . f2(xn−1, xn)))) is a TS operation.
A Mal’tsev 10 operation is a ternary operation f satisfying the identities

f(x, x, y) = f(y, x, x) = y. (22)

If in addition it satisfies f(x, y, x) = y then it is called a minority operation.
A typical Mal’tsev operation is f(x, y, z) = x− y + z where (D,+) is an Abelian group
(see Example 29).
Ternary operations d0, d1, . . . , dn are Jónsson operations if they satisfy the identities of
Theorem 48, as well as the identities

di(x, y, x) = x for all i ≤ n. (23)

Ternary operations d0, d1, . . . , dn, p are Gumm operations if d0, . . . , dn satisfy all the
identities of Jónsson operations except equation (8) from Theorem 48, as well as the
identities

dn(x, y, y) = p(x, y, y) and p(x, x, y) = y. (24)

For k ≥ 2, an k-edge operation is a (k + 1)-ary operation f satisfying identities

f(x, x, y, y, y, . . . , y, y) = y

f(x, y, x, y, y, . . . , y, y) = y

f(y, y, y, x, y, . . . , y, y) = y (25)
f(y, y, y, y, x, . . . , y, y) = y

...
f(y, y, y, y, y, . . . , y, x) = y

10 Sometimes spelled as Maltsev/Mal’cev/Malcev – correctly pronounced with the soft ‘l’ followed by ‘ts’.

Chapte r 01

24 Polymorphisms, and How to Use Them

Taylor ≡ cyclic ≡ WNU ≡ Siggers
Conjecture 43

Thm.47
(Bounded Width)

f(x, y) = f(y, x) Thm.51

symmetric
of all arities

Thm.48
Conjecture 50

Thm.52
k-edge

for some k
TS of all arities

(Width 1)

NU of some arity Thm.53
Conjecture 54 Mal’tsev

majority

Gumm

Jónsson

Figure 1 Taxonomy of important systems of linear identities. Upward paths in the diagram
correspond to weakening conditions, i.e. increasing corresponding classes of constraint languages.

An easy way to parse these identities is this: these are Mal’tsev identities glued with
the NU identities as follows. If f depends on the first three variables only, then these
identities are the same as (22), but with the first two coordinates swapped (in particular,
2-edge is essentially permuted Mal’tsev). If f depends on all but the first two variables,
then these identities are the same as (19), but with x and y swapped.

Figure 1 shows the relative strength of the mentioned linear identities on finite domains.
The higher items correspond to weaker conditions, and hence to larger classes of constraint
languages. More precisely, if a constraint language has polymorphisms witnessing one set
of identities in the diagram, then these operations can be composed with themselves and
projections to obtain operations satisfying the identities “higher” in the diagram. Such a
composition is possible in any function clone on any (finite or infinite) domain. Each edge
shown in the diagram is strict in the foregoing sense; however, Barto has shown that two
of the edges collapse in the following weaker sense: if a constraint language (on a finite
domain, with finitely many relations) has Jónsson polymorphisms then it must also have an
NU polymorphism [8]. A similar statement holds for Gumm and edge polymorphisms [9].

By the convention we have followed in this paper, the systems of identities enclosed in
rectangles are idempotent by definition, while the systems of identities circled in ovals are
height-1 and hence are not assumed to be idempotent. The systems circled in thick ovals,
when restricted to the idempotent case, correspond to robust tame congruence theoretic
conditions.

We note that [76] contains a useful list (and a diagram) of many universal-algebraic
conditions relevant for the CSP, though their list is oriented more (than ours) towards
prominence of conditions in universal algebra.

L. Barto, A. Krokhin, and R. Willard 25

Not all natural-looking linear identities make a good choice for attacks on the open
conjectures. For example, commutativity (in the dashed oval in Figure 1) is one of the simplest
of the Taylor-type identities, but approaching Conjecture 43 by looking at commutative
(or commutative idempotent) polymorphisms is not (known to be) a great idea. On the
other hand, finding a CSP algorithm for constraint languages satisfying the identities of
Theorem 51 would likely be viewed as a more “natural” (and more feasible) step.

The problems of deciding whether a given constraint language has a given type of
polymorphism(s) are sometimes called “meta-problems.” See [50] for a survey and new results
on the complexity of meta-problems.

5 Polymorphisms in Algorithms I: Proving Correctness

The most natural idea to decide an instance of the CSP is to first derive some “obvious”
consequences of the constraints. If, for example, an instance of HORN-3-SAT (see Example 5)
contains the constraints C1(x), C1(y), and S110(x, y, z), then we can derive a new constraint
C1(z). This information can be then used to derive, e.g., C1(w) from S110(z, x, w), etc. In
fact, for HORN-3-SAT, if we cannot derive any new unary constraints in this way and we
do not get contradictory unary constraints like C0(x) and C1(x), then the instance has a
solution: simply obey the unary constraints and set the values of the remaining variables to 0.
This is essentially the standard unit propagation (polynomial) algorithm for HORN-3-SAT.

More generally, given an instance of CSP(D) we can try to derive the strongest “obvious”
unary constraints.11 For some constraint languages all unsatisfiable instances can be refuted
in this way. Such languages are said to have width 1 and they are discussed in Subsection 5.1.

We illustrate a stronger constraint propagation (or local consistency) procedure by
considering the following instance of CSP(D2COLOR) (see Example 6).

x1 6= x2, x2 6= x3, x3 6= x4, x4 6= x5, x5 6= x1 .

From x1 6= x2 and x2 6= x3 we can derive a new binary constraint x1 = x3. Using this
and x3 6= x4, we can derive x1 6= x4. Finally, from x1 6= x4, x4 6= x5, we conclude that
x1 = x5, which contradicts the constraint x1 6= x5, and we refute the instance. In this
particular example, it was enough to derive new binary constraints by considering at most
three variables at a time. In fact, every unsatisfiable instance of 2-COLORING can be
refuted in this way; we say that D2COLOR has width (2,3). In Subsection 5.3, we give a more
general result that will also apply to e.g. 2-SAT.

An even stronger consistency algorithm could derive all k-ary constraints that can be
derived from the instance by considering at most l variables at a time. As long as k and l
are fixed, we get a polynomial time algorithm that, for some constraint languages, correctly
decides every instance of the CSP. The limit of such approaches is now fully understood, see
Subsection 5.5.

We warn the reader that there are many related, but somewhat different notions capturing
the required level of local consistency. In order to add to the confusion, we use the term
“width (k, l)” for what is more often called “relational width (k, l)”. However, the notion of
“solvability by a local consistency algorithm” (meaning “having width (k, l) for some k, l”) is
the same for all common choices of definitions.

11The relations of the derived constraints do not need to belong to D.

Chapte r 01

26 Polymorphisms, and How to Use Them

5.1 1–Minimality and TS Polymorphisms
The idea of the strongest obvious unary constraints can be formalized as follows.

I Definition 55. An instance of the CSP is 1–minimal (or arc consistent) if it contains a
unique unary constraint Px(x) for each variable x and, for any constraint R(x1, . . . , xk) and
any i = 1, . . . k, the projection12 of R onto the i-th coordinate is equal to Pxi

.

Every instance of the CSP can be converted in polynomial time to a 1-minimal instance
with the same set of solutions. A straightforward (although not optimal) way to achieve this
is as follows.

for every variable x do Px := D; add the constraint D(x)
repeat

for every constraint R(x1, . . . , xk) do
let R′ := R ∩

∏
i Pxi

for i = 1 to k do Pxi
:= Pxi

∩ projiR′
replace R(x1, . . . , xk) with R′(x1, . . . , xk)

end for
until none of the Px’s changed

We allow ourselves to call this algorithm the 1-minimality algorithm, since different imple-
mentations will derive the same unary constraints.

If any of the Px’s are empty after running the algorithm, then the original instance has no
solution and we say that the 1-minimality algorithm refutes the instance. For some constraint
languages, every non-refuted instance has a solution and thus we obtain a polynomial time
algorithm for the corresponding CSP.

I Definition 56. We say that a constraint language D, or CSP(D), has width 1 if the
1-minimality algorithm refutes every unsatisfiable instance of CSP(D) (and thus CSP(D) is
solvable in polynomial time).

The following theorem [65, 60] characterizes width 1 languages in terms of polymorphisms.
The proof shows a simple application of polymorphisms, namely TS polymorphisms, to prove
correctness of an algorithm. Recall that the value of a TS operation t depends only on the
set of its arguments, and we will write t({d1, . . . , dn}) instead of t(d1, . . . , dn).

I Theorem 57. A constraint language D admits TS polymorphisms of all arities if and only
if D has width 1.

Sketch of Proof. Assume that D admits TS polymorphisms of all arities, take an instance
of CSP(D), run the 1-minimality algorithm, and assume that the instance is not refuted,
that is, Px is nonempty for every variable x. We need to show that the resulting instance
has a solution.

Note that the constraint relations of the resulting 1-minimal instance may not belong to D.
However, each new relation is defined in a primitive positive way from the original constraints;
therefore all polymorphisms of D are still compatible with the relations in the new instance.
Take a TS polymorphism t of a sufficiently large arity n and define f(x) := t(d1, . . . , dn)
where Px = {d1, . . . , dn}.

12Not to be confused with projection operations πn
i .

L. Barto, A. Krokhin, and R. Willard 27

We claim that f is a solution. So, let us consider a constraint R(x1, . . . , xk) and show
that (f(x1), . . . , f(xk)) ∈ R. Take an n× k matrix so that its rows are in R and the set of
elements in the i-th column is equal to Pxi

. This is easily achieved from 1-minimality as
soon as n ≥ |D| · k. Now the identities that define a TS operation guarantee that t applied
to the columns gives (f(x1), . . . , f(xk)) and this tuple is in R, as t is compatible with R.

For the other implication, it is possible to create an instance of CSP(D) which is not
refuted by 1-minimality and which essentially says that D has TS polymorphisms of all
arities. We refer the reader to [65, 60] for details. J

Note that we do not need to (explicitly) know any TS polymorphism to run the 1-
minimality algorithm, but these polymorphisms guarantee that the algorithm correctly
decides all instances.

5.2 Linear Programming and Symmetric Polymorphisms
Another line of research discovered a connection between consistency notions and certain
convex programming relaxations of the CSP, namely the canonical Linear Programming (LP)
relaxation and the canonical Semidefinite Programming (SDP) relaxation. We now outline
the LP relaxation here and describe the SDP relaxation in Section 5.6.

For simplicity, we will restrict to instances that contain variables x1, . . . , xn and exactly
one binary constraint Pi,j(xi, xj) for every 1 ≤ i < j ≤ n (and no other constraints). In
particular, there are m = n(n− 1)/2 constraints. The task to find an assignment satisfying
the maximum number of constraints can be phrased as a 0–1 integer program as follows.
The variables are λi,a ∈ {0, 1} for each 1 ≤ i ≤ n, a ∈ D (where D is the domain) and
σi,j,a,b ∈ {0, 1} for each 1 ≤ i < j ≤ n, a, b ∈ D. The intended meaning is that λi,a = 1 iff xi
is assigned the value a and σi,j,a,b = 1 iff xi is assigned a and xj is assigned b. The task is to
maximize

Opt = 1
m

∑
1≤i<j≤n

∑
(a,b)∈Pi,j

σi,j,a,b

subject to the constraints∑
a∈D

λi,a = 1 for each 1 ≤ i ≤ n∑
b∈D

σi,j,a,b = λi,a for each 1 ≤ i < j ≤ n, a ∈ D∑
a∈D

σi,j,a,b = λj,b for each 1 ≤ i < j ≤ n, b ∈ D

Since we are only concerned with deciding whether a solution exists, we only care whether
all the constraints are satisfied, that is, whether Opt = 1.

The canonical (or basic) LP relaxation relaxes the 0–1 constraints to λi,a ∈ [0, 1] and
σi,j,a,b ∈ [0, 1]. The optimization problem thus becomes solvable in polynomial time, but
the new optimum OptLP may be greater than Opt. We say that this relaxation decides
the CSP if an instance has a solution whenever OptLP = 1. The canonical LP relaxation
is at least as strong as 1-minimality. Indeed, it is not hard to see that if OptLP = 1, then
Px = {a ∈ D : λi,a > 0}, together with appropriately restricted binary constraints, is
1-minimal. In fact, the relaxation is somewhat stronger [93]:

I Theorem 58. CSP(D) is decided by the canonical LP relaxation if and only if D has
symmetric polymorphisms of all arities.

Chapte r 01

28 Polymorphisms, and How to Use Them

Sketch of Proof. Assume that D admits symmetric polymorphisms of all arities. Take an
instance of CSP(D) and solve its canonical LP relaxation. If OptLP < 1 then clearly the
instance is not satisfiable. Assume that OptLP = 1 and show that in this case the instance
is satisfiable. In fact, we show that a symmetric polymorphism of appropriate arity can be
used to round an optimal LP solution to a satisfying assignment.

Take an optimal LP solution and denote the values taken by variables by σ∗i,j,a,b and λ∗i,a.
We can assume that all these values are rational. Let N be an integer such that N · σ∗i,j,a,b is
integer for all i, j, a, b (and hence, from LP constraints, all numbers N ·λ∗i,a are also integers).
Let s be a symmetric polymorphism of arity N . For each variable xi in the original CSP
instance, let f(xi) = s(d1, . . . , dN) where each value a appears among the di’s exactly N ·λ∗i,a
times. This definition is correct because

∑
a∈D λ

∗
i,a = 1 (from LP constraints) and because s

is symmetric (so the order of the di’s is irrelevant). We will show that f is a solution.
Note that, since OptLP = 1, we have that, for each i, j,

∑
(a,b)∈Pi,j

σi,j,a,b = 1. In
particular, if σi,j,a,b > 0 for some a, b then (a, b) ∈ Pij . Fix indices i, j. Take any N × 2
matrix such that each pair (a, b) ∈ Pij appears as a row in the matrix exactly N ·σ∗i,j,a,b times.
The LP constraints and the fact that s is symmetric directly imply that, when applying s to
the columns of this matrix, one gets (f(xi), f(xj)).

For the other implication, if D has no symmetric polymorphism of some arity m, then it
is possible to construct an unsatisfiable instance of CSP(D) with OptLP = 1. We refer the
reader to [93] for details. J

It was claimed in [93] that any structure D has symmetric polymorphisms of all arities if
and only if it has TS polymorphisms of all arities, but this claim turned out to be false – see
Example 99 in [94] for a counter-example.

5.3 (2,3)-Minimality and Majority Polymorphisms
Next we introduce a stronger consistency notion than 1-minimality. For clarity, we define
this concept only for binary instances, that is, instances containing only unary and binary
constraints. A general definition will be given in Subsection 5.5.

I Definition 59. A binary instance of the CSP is (2, 3)–minimal if it contains a unique
unary constraint Px(x) for each variable x and a unique binary constraint Px,y(x, y) for any
pair of distinct variables x, y such that

for every pairwise distinct variables x, y, z and every (a, b) ∈ Px,y, there exists c ∈ Pz
such that (a, c) ∈ Px,z and (b, c) ∈ Py,z;
for any pairwise distinct variables x, y, Px,y = P−1

y,x and the projection of Px,y onto the
first (second, respectively) coordinate is equal to Px (Py, resp.).

It is helpful to visualize a binary (2, 3)-minimal instance as a multipartite graph: it has
one partite set for each variable x, whose set of vertices is equal to (a disjoint copy of) Px,
and vertices a ∈ Px, b ∈ Py are adjacent if (a, b) ∈ Px,y. The first condition in Definition 59
then means that by restricting to any three partite sets we obtain a graph in which every
edge belongs to a triangle. Note that a solution of the instance corresponds to a clique that
contains exactly one vertex from each partite set.

Similarly to 1-minimality, every (binary) instance of the CSP can be converted in
polynomial time to a (2, 3)-minimal instance with the same set of solutions. We say that the
original instance is refuted by this algorithm if some Px is empty.

I Definition 60. We say that a constraint language D has width (2, 3) if the (2, 3)-minimality
algorithm refutes every unsatisfiable instance of CSP(D).

L. Barto, A. Krokhin, and R. Willard 29

The following theorem [65, 79] says that each constraint language with a majority
polymorphism, such as any set of unary and binary relations on {0, 1} (see Example 26), has
width (2, 3). In particular, we get that 2-COLORING and 2-SAT are solvable in polynomial
time.

I Theorem 61. If a constraint language D has a majority polymorphism, then D has
width (2, 3).

Sketch of Proof. We will only consider binary instances.
Take a majority polymorphism m of D and consider the (2, 3)-minimal instance associated

to a given instance of CSP(D). As in the proof of Theorem 57, it can be argued that m is
compatible with Px and Px,y for any x, y. We show that the instance has a solution provided
every Px is nonempty.

Recall from the remarks after Definition 59 that “every edge extends to a triangle”. We
will show that “every triangle extends to a 4–clique”. Take any variables x, y, z, w and
any a ∈ Px, b ∈ Py, c ∈ Pz that form a triangle, that is, (a, b) ∈ Px,y, (a, c) ∈ Px,z, and
(b, c) ∈ Py,z. Using the edge–to–triangle property three times we get d1, d2, d3 ∈ Pw such
that bcd1, acd2, and abd3 are triangles. We claim that d = m(d1, d2, d3) together with a, b, c
form a 4–clique. By the second property from Definition 59, there exists a′ ∈ Px such
that (a′, d1) ∈ Px,w. Applying m to the columns of the 3 × 2 matrix with rows (a′, d1),
(a, d2), (a, d3) (all in Px,w) gives (m(a′, a, a),m(d1, d2, d3)) ∈ Px,w, which is equal to (a, d) –
here we use one of the identities defining a majority operation. Similarly, (b, d) ∈ Py,w and
(c, d) ∈ Pz,w, which proves the claim.

In a similar way, we can show that every 4–clique extends to a 5–clique, and so on.
Summarizing, every edge extends to a |V |–clique – a solution to the instance. J

The proof shows that for a constraint language D with a majority polymorphism, a
greedy algorithm can be used to find a solution to any instance of CSP(D): after running
the (2, 3)–minimality algorithm, we pick, one by one, assignments to variables so that they
stay consistent with the constraints. Such languages are said to have strict width (2, 3) and
they are in fact characterized by the existence of a majority polymorphism [65].

The arguments can be easily generalized to NU polymorphisms if an appropriate consist-
ency level is enforced. Namely, a constraint language has an NU polymorphism of arity n if
and only if it has strict width (n− 1, n) [65].

5.4 Interlude: Boolean CSPs
Before we move on to discuss the general concept of bounded width, we show how to use
polymorphisms to prove Schaefer’s dichotomy theorem [112] for CSPs over a two–element
domain. The only additional fact we need is the following lemma.

I Lemma 62. Every idempotent (recall Example 27) clone on D = {0, 1} that contains a
non–projection contains one of the following operations: the binary max, the binary min, the
ternary majority, or the ternary minority.

Sketch of Proof. An old result by Post [108] completely describes all clones on {0, 1} and
we can thus simply use his classification. However, proving this lemma is significantly easier
than the full classification and we sketch one possible approach.

The only binary idempotent operations are the two projections, max, and min. Therefore,
let us assume that the only binary operations in our idempotent clone are projections. Then,
for each ternary operation f , the operations h(x, y) = f(x, x, y), h′(x, y) = f(x, y, x), and

Chapte r 01

30 Polymorphisms, and How to Use Them

h′′(x, y) = f(y, x, x) must all be projections. This reduces the number of idempotent ternary
operations to be considered to 8. Now 3 of them are projections, then there are the majority
and the minority. The remaining 3 operations differ only in the order of arguments, so we
are left with 1. This is the so called Pixley operation and both majority and minority can
be composed from it. It remains to show that each idempotent operation f is a projection
provided the clone does not contain any non–projection binary or ternary operation. This
can be done e.g. by case analysis using only that each g(x, y, z) = f(x/y/z, . . . , x/y/z) is a
projection. J

We are ready to show a simple proof of the dichotomy theorem for Boolean CSPs.

I Theorem 63. Let D be a constraint language with domain D = {0, 1}. Then
either its polymorphism clone contains a constant unary operation or one of the four
operations in Lemma 62 and then CSP(D) is solvable in polynomial time, or
CSP(D) is NP–complete.

Proof. If the polymorphism clone D of D contains a constant unary operation with value
a, then all relations contain a constant tuple (a, a, . . . , a) and then all instances of CSP(D)
have a solution. Otherwise, D is a core. Then either D contains only essentially unary
operations, or not. In the first case, the singleton expansion E has only trivial polymorphisms
(=projections), E pp-defines (by Theorem 32) all structures on {0, 1} including D3SAT , and
then CSP(E) as well as CSP(D) are NP–complete by Theorem 13 and Theorem 17. In
the second case, the polymorphism clone also contains an idempotent non–projection. By
the previous lemma, D contains one of the four operations and then CSP(D) is solvable in
polynomial time by Theorem 57, Theorem 61, or Example 29. J

As a non–trivial exercise, the reader may verify a finer description of the polynomial
cases: if D has min as a polymorphism then D is pp-definable from DHornSAT (and dually
for max), if D has the majority polymorphism then D is pp-definable from D2SAT, and if D
has the minority polymorphism then D is pp-definable from D3LIN2.

We remark that classifications of Boolean CSPs with respect to other complexity classes
and with respect to width notions mentioned in previous section can be found in [1, 97].

5.5 Characterization of Bounded Width
An elegant way to formalize “polynomial solvability by constraint propagation” in general is
by means of (k, l)-minimality.

I Definition 64. Let 1 ≤ k ≤ l be integers. An instance of the CSP is (k, l)-minimal if
no scope of a constraint contains repeated variables,
every l-element set of variables is within the scope of some constraint, and
for any at most k-element set of variablesW and any two constraints whose scope contains
W , the projections of these constraints onto W coincide.

The reader may notice a formal difference between this definition and its special case
in Definition 59. Indeed, a (2, 3)-minimal instance in the latter does not contain any
ternary constraints, while the former one requires that any triple of variables is covered
by a constraint. However, the difference is only cosmetic. The sole purpose of the second
condition in Definition 64 is to ensure an analogue of the first condition in Definition 59.

For fixed k, l, there is a straightforward polynomial algorithm, the (k, l)–minimality
algorithm, to transform any CSP instance into a (k, l)-minimal instance with the same set of
solutions. As before, instances with an empty constraint relation are refuted.

L. Barto, A. Krokhin, and R. Willard 31

I Definition 65. We say that a constraint language D has width (k, l) if the (k, l)–minimality
algorithm refutes every unsatisfiable instance of CSP(D).

We say that D has width k if it has width (k, l) for some l and it has bounded width if it
has width k for some k. (Recall again that bounded width CSPs are solvable in polynomial
time.)

The notion of bounded width comes in various versions and equivalent forms. Bounded
width is equivalent to solvability by a Datalog program [65], to the existence of a winning
strategy in a certain pebble game [65], to having bounded treewidth duality [44], and to
definability in an infinitary finite-variable logic [4, 87].

As mentioned in Subsection 4.4, a typical problem which cannot be efficiently solved by
local propagation algorithms is solving systems of linear equations [65].

I Theorem 66. For any prime p, the constraint language D3LINp does not have bounded
width.

There is an analogue of Corollary 20 for bounded width [100]: If D pp-constructs E and
D has bounded width, then so does E . Therefore, pp-constructing D3LINp is the “obvious”
obstruction to having bounded width. Is it the only obstruction? A positive answer was
conjectured in several equivalent forms in [65, 100, 36] (see also [98]).

The process of resolving this, so called bounded width conjecture, nicely illustrates the
role of universal algebra in identifying meaningful intermediate classes.

Extending the positive result for semilattice polymorphisms, Bulatov [37] confirmed the
conjecture for constraint languages with so called 2–semilattice polymorphisms.
Very natural candidates for extending the positive result for near unanimity polymorph-
isms are constraint languages with Jónsson polymorphisms (see Subsection 4.5). Indeed,
clones with Jónsson operations are among the most studied objects in universal algebra.
Partial results were obtained in [86, 48] and a full solution for Jónsson polymorphisms
given in [11].

Helped greatly by these partial results, the bounded width conjecture was confirmed in [14]
and independently in an unpublished manuscript by Bulatov [31] (see also [42]).

I Theorem 67. A constraint language D has bounded width if and only if D does not
pp-construct D3LINp for any prime p.

The proof from [14] is, to some extent, explained in another survey [16] in this volume.
Here we only mention two differences from the arguments in Theorems 57 and 61. First,
polymorphisms characterizing the necessary condition for bounded width, such as those in
Theorem 47, are not used directly. They are first iteratively composed to get polymorphisms
of large arities with properties helpful for the proof. Second, the solution is not directly
obtained from a sufficiently consistent instance. Instead, polymorphisms serve to “condense”
the constraints to smaller and smaller subsets of the domain, while preserving a sufficient
degree of consistency.

5.6 Sufficient Levels of Consistency
Bounded width CSPs are those for which enforcing a certain level of local consistency
guarantees a solution. What degree of consistency is actually needed?

The proof of Theorem 66 from [14] uses a consistency notion which is, for binary instances,
stronger than 1-minimality and weaker than (2, 3)–minimality. A small refinement from [10]

Chapte r 01

32 Polymorphisms, and How to Use Them

shows that an appropriate notion of consistency, still weaker than (2, 3)–minimality, is enough
in general. In particular, any bounded width CSP has width (2, 3).

A substantial strengthening of Theorem 66 by Kozik [90] weakens the consistency require-
ment even further. In particular, his result implies that the following consistency procedure,
so called Singleton Arc Consistency, or SAC, is sufficient: ensure that, for each variable x
and any a ∈ Px, the 1-minimality algorithm does not refute the instance even with the added
unary constraint Ca(x).

As we mentioned before, there is a connection between consistency notions and certain
convex programming relaxations of the CSP, namely the canonical Linear Programming (LP)
relaxation (see Section 5.2) and the canonical Semidefinite Programming (SDP) relaxation.

Again for simplicity, we will restrict to instances that contain variables x1, . . . , xn and
exactly one binary constraint Pi,j(xi, xj) for every 1 ≤ i < j ≤ n (and no other constraints).
In particular, there are m = n(n−1)/2 constraints. To describe the canonical SDP relaxation,
we will re-use notation from the Section 5.2, but the variables λi,a now become vectors
in Euclidean space (of dimension O(n)), σi,j,a,b is required to be equal to the dot product
λi,a · λj,b (which is required to be non-negative) and the first constraint is replaced by the
requirement that λi,a, a ∈ D are pairwise orthogonal and sum up to a fixed unit vector
(the remaining two constraints are then redundant). As before, we say that this relaxation
decides a CSP if OptSDP = 1 only if the instance has a solution. It was proved in [15] that
the canonical SDP relaxation not only decides every bounded width CSP, but it can also
be used to give a polynomial time robust algorithm for such CSPs, that is, provide “almost
solutions” even to “almost satisfiable” instances. More formally, a robust algorithm is an
approximation algorithm which, on every instance where (1− ε)-fraction of constraints can
be satisfied, returns an assignment that satisfies at least (1− g(ε))-fraction of constraints,
where g is such that g(ε)→ 0 as ε→ 0. By combining this result from [15] with [69, 57], we
get that efficient robust solvability is equivalent to bounded width.

I Theorem 68. The following are equivalent for any constraint language D.
D has bounded width.
D has width (2, 3).
CSP(D) is solvable by SAC.
CSP(D) is decided by the canonical SDP relaxation.
CSP(D) has a robust polynomial algorithm (this item is only equivalent to the rest if P 6=
NP).

5.7 Results About Linear and Symmetric Width
We briefly discussed the notions of linear width and symmetric width in Section 4.4. These
notions, introduced in [52] and [62], respectively, attract attention for several reasons. They
have many natural equivalent descriptions in terms of logic and in combinatorial terms
(see, e.g. [44]). They have natural necessary conditions in terms of very simple forbidden
constraint languages and well-known algebraic conditions (see Theorems 48 and 53). These
necessary conditions are conjectured to be sufficient, see Conjectures 50 and 54. Moreover,
having bounded linear (resp. symmetric) width is conjectured to be the single reason for
CSP(D) to be in NL and L, respectively.

Progress towards Conjecture 50 has been made by using the taxonomy from Section 4.5.
The conjecture has been confirmed for increasingly weaker assumptions: that D has the dual
discriminator polymorphism [52], a majority polymorphism [56], an NU polymorphism [19]
(and hence Jónsson polymorphisms [8]). In [47], the conjecture was also confirmed for a

L. Barto, A. Krokhin, and R. Willard 33

class of constraint languages consisting of (possibly all) languages of width 1 that satisfy
the conditions of Theorem 48; this class contains languages without NU polymorphisms. It
seems that that the current results approach the full conjecture very closely, and the next
step will probably be the full resolution of the conjecture.

To have bounded symmetric width for a language D, it is necessary that D has bounded
linear width and satisfies the conditions of Theorem 52 (see Fig. 1). It was shown in [59]
that any constraint language of bounded linear width that has a Mal’tsev polymorphism
has bounded symmetric width. Other partial results towards Conjecture 54 (specifically
related to H-COLORING) can be found in [54]. Recently Kazda proved [84] that every
structure D having bounded linear width and satisfying the conditions of Theorem 52 in
fact has bounded symmetric width. Thus, a characterization of CSPs of bounded linear
width would also give a characterization of CSPs of bounded symmetric width. In particular,
Conjecture 54 reduces to Conjecture 50.

6 Polymorphisms in Algorithms II: Cogs in the Works

Gaussian elimination not only solves 3-LIN(p), it also describes all the solutions in the sense
that the algorithm can output a small (polynomial in n, the number of variables) set of
points in GF(p)n so that the affine hull of these points is equal to the solution set of the
original instance. A sequence of papers [65, 35, 32, 53] culminating in [74, 23] pushed this
idea, in a way, to its limit.

6.1 Few Subpowers
We need some terminology to state the result. Let D be a constraint language and D its
clone of polymorphisms. Let us call a relation on D a subpower of D if it is pp-definable
from D, or equivalently by Theorem 32, if it is invariant under all the polymorphisms of D.
Note that the set of solutions of any instance of CSP(D) can be viewed as a subpower of D.
If R is a subpower of D and X ⊆ R, then we say that X is an algebraic generating set of R
if R is the smallest subpower of D containing X. In this case R is precisely the set of values
of polymorphisms of D applied coordinate-wise to tuples from X. Now D has few subpowers
if it satisfies any of the equivalent conditions in the following theorem.

I Theorem 69 ([23]). For any clone D, the following are equivalent.
1. There is a polynomial p such that |{R ⊆ Dn | R is a subpower of D}| ≤ 2p(n)

2. There is a polynomial q such that each subpower R ⊆ Dn of D has an algebraic generating
set with at most q(n) elements.

3. For some k ≥ 2, D contains a k-edge operation.

The name “few subpowers” comes from condition (1) of the above theorem, but we will
use conditions (2) and (3). See Section 4.5 for the definition of a k-edge operation.

To describe the examples to follow, we need a few more definitions.

I Definition 70. Let X ⊆ Dn.
1. If i1, i2, . . . , ik is a sequence of indices from {1, . . . , n}, then the projection of X onto

coordinates i1, . . . , ik, denoted proji1,...,ikX, is the set {(ai1 , . . . , aik) : (a1, . . . , an) ∈ R}.
2. A fork (of arity n) is a triple (i, a, b) with 1 ≤ i ≤ n, a, b ∈ D, and a 6= b.
3. A realization of a fork (i, a, b) is a pair a,b ∈ Dn satisfying aj = bj for all j < i and

(ai, bi) = (a, b). If a,b ∈ X then we say that (i, a, b) is realized in X.

Chapte r 01

34 Polymorphisms, and How to Use Them

I Example 71. Suppose D has a Mal’tsev polymorphism (see Subsection 4.5) and D is its
clone of polymorphisms. Then D has few subpowers [32]. To prove this, let R ⊆ Dn be a
subpower of D. We will show that R has a generating set of size at most q(n) := cn where
c = |D|2.

We say that a subset X ⊆ R witnesses single projections and forks if (i) projiR = projiX
for all i = 1, . . . , n, and (ii), R and X realize the same forks. It is easy to see that if X is a
minimal subset of R which witnesses single projections and forks, then |X| ≤ q(n).

It turns out that if X ⊆ R and X witnesses single projections and forks, then X generates
R. To see this, let R′ be the set of tuples obtained by applying polymorphisms of D
coordinate-wise to tuples from X. Clearly, R′ is a subpower of D and X ⊆ R′ ⊆ R. To prove
that R′ = R, let i be maximum index so that proj1,2,...,iR = proj1,2,...,iR′, and suppose for the
sake of contradiction that i < n. Choose a ∈ R satisfying proj1,2,...,i+1(a) 6∈ proj1,2,...,i+1R

′

(such a must exist by our choice of i and assumption that i 6= n). Also by our choice of i,
there is a tuple b ∈ R′ satisfying proj1,2,...,i(b) = proj1,2,...,i(a). Since a,b ∈ R, they witness
that R realizes the fork (i + 1, ai+1, bi+1). X must also realize this fork, say by c,d. Let
e = f(b,d, c) where f is the Mal’tsev polymorphism of D and the application of f to b,d, c
is done coordinate-wise. The first i+ 1 coordinates of b,d, c have the form

b = (a1, . . . , ai, bi+1,)
d = (c1, . . . , ci, bi+1,)
c = (c1, . . . , ci, ai+1,).

Because f is a Mal’tsev polymorphism, it satisfies f(y, x, x) = f(x, x, y) = y for all x, y ∈ D.
In particular, ej = f(aj , cj , cj) = aj for j = 1, . . . , i, and ei+1 = f(bi+1, bi+1, ai+1) = ai+1.
That is, a and e agree on the first i+ 1 coordinates. Also note that e ∈ R′ since b, c,d ∈ R′
and R′ is invariant under f . But this is contrary to the choice of a.

The above proof that R′ = R used only the following properties of R′: (i) X ⊆ R′ ⊆ R,
and (ii) R′ is invariant under the Mal’tsev polymorphism f . This proves that R is the closure
of X under f , meaning that R is the output Y of the following “closure” algorithm.

input X, f
let Y := X

repeat
for every a,b, c ∈ Y do

let Y := Y ∪ {f(a,b, c)}
end for

until Y doesn’t change

This observation is used crucially in the few subpowers algorithm.

I Example 72. Suppose D has a majority polymorphism (see Subsection 4.5). Then its
clone of polymorphisms D has few subpowers [6]. Indeed, if R ⊆ Dn is a subpower of D,
X ⊆ R, and X and R have the same “double projections,” that is, proji,jX = proji,jR for
all 1 ≤ i, j ≤ n, then X generates R. Indeed, let R′ be the subpower generated by X, so
X ⊆ R′ ⊆ R. The idea of the proof that R′ = R is very similar to the proof of Theorem 61;
show that R′ and R have the same projection onto any triple of coordinates, then any 4-tuple
of coordinates, etc. Since a suitable set X ⊆ R having the same double projections as R can
be found satisfying |X| ≤ cn2, R has a small generating set. As in the previous example, the
proof actually shows that R is the closure of X under the majority polymorphism.

More generally, if D has a k-ary NU polymorphism, then a subpower R ⊆ Dn is generated
by any set X ⊆ R which has the same projection as R onto each set of coordinates of size

L. Barto, A. Krokhin, and R. Willard 35

k − 1. Such an X can always be found satisfying |X| ≤ dnk−1 (for a suitable constant d).
Again R is the closure of X under the NU polymorphism.

Note that if D, R, and X are as in either Example 71 or 72, then one cannot expect to
efficiently run the closure algorithm to construct R from X, since the size of R could be
exponential in the size of X. However, one can efficiently calculate the projection of R onto
any small set s of coordinates (say of size at most 5), and even find a (small) subset of R
containing X whose projection onto s agrees with R. This is because R is the closure of X
under a single fixed operation f , so we can simply run the closure algorithm for X and f , but
adding new elements to Y only when their projection onto s is new. With this restriction,
there is a constant upper bound (|D||s|) to the number of times the main loop of the closure
algorithm will be repeated; hence this restricted algorithm runs in polynomial time. This
observation is one of the fundamental tools of the few subpowers algorithm.

6.2 The Few Subpowers Algorithm
I Theorem 73 ([74]). Let D be an idempotent constraint language. If the clone of poly-
morphisms D has few subpowers, then CSP(D) can be solved in polynomial time (moreover,
the algorithm can output a generating set for the set of all solutions).

Suppose D has few subpowers. The main idea of the few subpowers algorithm, which can
be traced back to [65], is the following. Given a CSP(D) instance P = (V,D, C) with, say, all
constraint relations at most binary, we can enumerate V = {x1, . . . , xn} and C = (C1, . . . , Cm)
and consider the decreasing sequence

Dn = R0 ⊇ R1 ⊇ · · · ⊇ Ri ⊇ · · · ⊇ Rm (26)

of subpowers of D, where Ri is the set of solutions to the first i constraints. The aim of the
algorithm is to construct a small generating set Xi for each Ri. Then Xm will be a small
generating set for the set of solutions to P , so P has a solution if and only if Xm is not
empty. It should be easy to construct the generating set X0 for Dn. Thus the chief task of
the algorithm is that of finding the “next” Xi+1 given Xi and Ci+1. We sketch how this is
done in the two easiest cases: D has a majority or Mal’tsev polymorphism.

Case 1. D has a majority polymorphism f . We assume that X is a small subset of
the subpower R which has the same double projections as R, and C is a (say) binary
constraint ((xk, x`), S). Let R′ be the “next” subpower determined by X and C; that is,
R′ = {a ∈ R : S(ak, a`)}. The goal is to find a small subset X ′ of R′ which has the same
double projections as R′. This is easy. As shown in Example 72, R is the closure under f of X.
Thus for each pair (i, j) of coordinates, we can (using the restricted closure algorithm for f)
find a small subset Xi,j of R satisfying proji,j,k,`Xi,j = proji,j,k,`R. If we let X1 =

⋃
i<j Xi,j ,

then the set X ′ = {a ∈ X1 : S(ak, a`)} is a small subset of R′ and has the same double
projections as R′, as required. Note that the few subpowers algorithm in this case consists of
repeated applications of the restricted closure algorithm using the majority polymorphism.

The case when D has an NU polymorphism is handled similarly.

Case 2. D has a Mal’tsev polymorphism f . We assume that X is a small subset of
the subpower R which witnesses single projections and forks, and C is an at-most binary
constraint. Again let R′ be the “next” subpower determined by X and C. The goal this time
is to find a small subset X ′ of R′ witnessing single projections and forks (of R′). Witnessing

Chapte r 01

36 Polymorphisms, and How to Use Them

single projections is done analogously to the argument in the majority case. Witnessing
forks requires some ingenuity.13 We first show how to do this in a very special case: C is
a singleton unary constraint (xk, {c}) (recall that D is idempotent) and the projections of
R onto each coordinate j < k have size 1. In this situation, necessary conditions for a fork
(i, a, b) to be realized in R′ are
1. i > k

2. (i, a, b) is realized in X, say by a,b.
3. R has a tuple c whose projection on coordinates k, i satisfies (ck, ci) = (c, a).
(Note that we can efficiently find a,b, c when they exist, or determine that they do not exist.)
In fact, these conditions are also sufficient, because the tuples c and d := f(c,a,b) belong to
R′ and can be shown to realize the fork (i, a, b) by reasoning similar to that in Example 71,
using the Mal’tsev operation identities.

Now we consider the general case where C is a (say) binary constraint ((xk, x`), S). Let
(i, a, b) be a fork. A necessary condition for (i, a, b) to be realized in R′ is that R contain
a tuple c whose projection onto coordinates i, k, ` is in {a} × S. Because R is the closure
under f of X, we can find such c when it exists, by the restricted closure algorithm. Suppose
such c is found. Note that c ∈ R′ and ci = a. Now a key property of R′ is that if the fork
(i, a, b) is realized in R′, then c is one half of such a realization. For suppose u,v ∈ R′ realize
(i, a, b). Then d := f(c,u,v) is in R′ and, arguing as above, c,d realize (i, a, b).

So we just need to search for a tuple d in R which agrees with c on its first i−1 coordinates,
equals b at coordinate i, and which satisfies (dk, d`) ∈ S. This search is accomplished by
cutting down R to the subrelation R1 = {x ∈ R : x1 = c1 & x2 = c2 & · · · & xi−1 = ci−1}.
Using the previous “special case” argument i − 1 times, we can find a small subset X1 of
R1 which witnesses projections and forks for R1, and then use X1 and the restricted closure
algorithm to search for an element d ∈ R1 (if it exists) whose projection onto coordinates
i, k, ` is in {b} × S. These searches can be done in polynomial time, using the restricted
closure algorithm.

In summary, the implementation of the few subpowers algorithm in the Mal’tsev case is
a carefully orchestrated sequence of applications of the restricted closure algorithm for the
Mal’tsev polymorphism, with some additional computations using this polymorphism.

In general, the few subpowers algorithm [74] works more or less as the union of the NU
and Mal’tsev cases, following Dalmau [53] who was the first to combine these two cases.
By Theorem 69, if the polymorphism clone of D has few subpowers, then D has a k-edge
polymorphism for some k ≥ 2. A notion of “nice” small generating sets (analogous to
witnessing all (k − 1)-ary projections and forks) for subpowers is worked out in [23], and
the above argument in the Mal’tsev case is more or less repeated verbatim. The point we
wish to make here is that the edge polymorphism is used essentially and repeatedly by the
algorithm. Without an edge polymorphism, the above implementation of the few subpowers
algorithm cannot be executed.

6.3 Limits of the Few Subpowers Algorithm
Given an operation f on a finite set D, let Df be the (infinite) set of all relations invariant
under f . CSP(Df) is called a “global” problem encompassing all of the “local” problems
CSP(D) where D ranges over finite subsets of Df .

13This argument is due to Dalmau [32, 53].

L. Barto, A. Krokhin, and R. Willard 37

If the polymorphism clone D of Df contains a k-edge operation, then the few subpowers
algorithm as formulated in [74] actually solves the global problem CSP(Df) in polynomial
time.14 Conversely, suppose there exists a polynomial-time algorithm which solves the global
problem CSP(Df) and broadly follows the “small generating sets” algorithm-idea outlined
at the beginning of Subsection 6.2. An essential requirement of this algorithm-idea is that

There is a polynomial p(n) such that if R ⊆ Dn is a subpower of D and R occurs as
Ri in equation (26), for some instance of CSP(Df), then R has a generating set of
size at most p(n).

Because of how Df is defined, every subpower R ⊆ Dn of D can arise as Ri in equation (26)
for some instance of CSP(Df) (for the simple reason that every subpower R belongs to Df).
Hence the displayed requirement and Theorem 69 imply D must contain a k-edge operation.
It is in this sense that polymorphism clones having a k-edge operation form the natural “limit”
of the “small generating sets” algorithm-idea outlined at the beginning of Subsection 6.2.

However if one is primarily interested (as we are) in CSP over finite constraint languages,
rather than in global problems, then the limit of the “small generating sets” algorithm-idea
is not settled. If D is finite, then the subpowers of the polymorphism clone which arise as Ri
in equation (26) are precisely the relations which are pp-definable from D without using ∃.
It is not known if there exists a finite constraint language D which does not have a k-edge
polymorphism for any k, and yet which has the property that every ∃-free pp-defined relation
R has a small generating set. If such a constraint language D exists, it might be a candidate
for a “small generating sets” algorithm more general than the few subpowers algorithm.

6.4 Combining Algorithms

Suppose D is idempotent, has a Taylor polymorphism, but does not have polymorphisms as
described in Theorem 47 implying bounded width (see Theorem 67), nor does D have an
edge polymorphism implying few subpowers. What tools are available to solve CSP(D)?

Starting from an instance P = (V,D, C) of CSP(D), one strategy is to “shrink” P to a
1-minimal CSP instance Q satisfying the following properties:
1. You can prove that Q has a solution if and only if P does.
2. The constraint relations of Q are pp-definable from D.
3. For each x ∈ V , if Qx(x) is the unique unary constraint of Q on x, then Qx is a proper

subset of D.

Suppose now that there exists a polymorphism f of D such that for each x ∈ V , the
restriction of f to Qx is an edge operation. Then the few subpowers algorithm, suitably
adapted, can determine whether Q (and hence P) has a solution. Similarly, if D has
polymorphisms which, when restricted to each Qx, satisfy identities implying bounded width,
then the (2,3)-minimality algorithm will correctly tell whether Q (and hence P) has a solution.

Thus a possible strategy is to shrink P to the point where some polymorphism(s) of
D become “nice” when restricted to the new domain of each variable. This is essentially
the strategy followed (along with much deeper tricks) to prove the results described in this
subsection. The first result of this kind is the following result of Bulatov [38].

14For this result it is important to maintain the convention that each constraint relation is given by a list
of its members – not, for example, by a small generating set.

Chapte r 01

38 Polymorphisms, and How to Use Them

I Theorem 74. Suppose D has a Taylor polymorphism and |D| = 3. Then CSP(D) is
solvable in polynomial time. Hence the Dichotomy Conjecture holds for constraint languages
with domains of size 3.

Reading [38] is not for the faint at heart – the core argument is over 40 pages of dense
mathematical argument involving consideration of many cases.

The second result that we want to mention is the solution [39, 7, 41], due originally to
Bulatov, of the Dichotomy Conjecture in the “conservative” case.

I Theorem 75. Suppose D includes every nonempty subset of D as a unary relation. If D
has a Taylor polymorphism, then CSP(D) is solvable in polynomial time.

An operation f is called conservative if f(a1, . . . , an) ∈ {a1, . . . , an} for all ai ∈ D. The
above theorem can be equivalently re-stated as “if a constraint language D has a conservative
Taylor polymorphism then CSP(D) is tractable.” The first proof from [39] was quite long
and involved, but the more recent papers [7, 41] give two different much shorter proofs.

Technically, Bulatov’s approach in [39, 41] is via a careful analysis of a colored graph
associated with a constraint language (see [36, 42]). The domain of this graph is the
same as the domain of the languages, and the colored edges reflect the local structure of
polymorphisms. The approach in [7] is based on absorption theory, see survey [16].

See also [43] for a brief overview of other attempts, as well as a new approach, to combine
known algorithms for solving CSP(D).

7 Conclusion

We have seen that the complexity of the decision problem for CSP over a fixed constraint
language on a finite domain depends on “higher arity symmetries” – polymorphisms of the
language, and more specifically, on the identities satisfied by these polymorphisms. Significant
progress has been achieved using this insight, but the main problem, the dichotomy conjecture,
is still open. The view shared by many experts at the Dagstuhl seminar (to which this
volume is a follow-up) is that the main obstacle towards further progress is the insufficient
understanding of the convoluted ways in which system of linear equations can appear in CSP
instances.

The authors are often being asked to give a specific example of a (preferably small) con-
straint language D that has a Taylor polymorphism, but such that CSP(D) is not yet known
to be tractable. A computer-assisted analysis of small digraphs and their polymorphisms
(with respect to the taxonomy from Fig.1) can be found in [22]. There is an example of a
6-element digraph D there, whose singleton expansion has a Taylor polymorphism, but such
that neither the bounded width algorithm nor the few subpowers algorithm alone can solve
CSP(D). However, it was shown [103] that an ad hoc combination of the two algorithms
solves it. It is the authors’ belief that such explicit examples are not easy to find, but they
tend not to provide useful insights into how to overcome the difficulties in resolving the
dichotomy conjecture.

Polymorphisms have been successfully applied to other variants of CSP over a fixed
constraint language. For the (exact) counting problem, the dichotomy has been proved
in [40] and then substantially simplified in [61], with polymorphisms (and universal algebra
in general) playing a considerable role. This is discussed in survey [81] in this volume, along
with many developments in complexity classification of approximate counting problems and
for computing partition functions, where there are still many open problems.

L. Barto, A. Krokhin, and R. Willard 39

A generalization of the algebraic theory for the exact optimization problem (where
the goal is find an optimal solution), and for the more general valued CSPs, was given
in [51]. The so-called fractional polymorphisms, which are special probability distributions
on polymorphisms, play a key role there. Very strong classification results are known in this
direction [88, 89, 117], see survey [92] in this volume. In essence, complexity classifications
here are complete, but there are many open questions regarding approximate optimization.

The two different views on optimization – maximize satisfaction or minimize dissatisfac-
tion – are obviously equivalent when the goal is to find an optimal solution. However, they
exhibit very different behavior with respect to approximation. For the emerging applicability
of polymorphisms for the analysis of approximability of the maximization version, see [29, 30].
For the minimization version, there is a series of results about the so-called robust approxim-
ation algorithms for CSPs where polymorphisms (and their taxonomy) play a significant role.
The full characterization of constraint languages admitting a robust algorithm is known [15]
(see Theorem 47), but the refined classification (taking the quality of approximation into
account) is far from complete, see [57, 58, 55].

The so-called weak polymorphisms have recently been applied to the so-called promise
CSPs [5, 27, 28], with motivation coming from the study of inapproximability. An interesting
feature of weak polymorphisms is that they cannot be composed, and yet they can be useful
for complexity analysis.

We have only discussed languages with finite domains. The algebraic theory extends
to interesting subclasses of the infinite domain CSP; see surveys [24, 25, 107] and recent
results [20, 21]. This area contains very many open problems.

Is the polymorphism approach only applicable to CSPs over fixed languages? Or are we
merely seeing a piece of a bigger theory?

Polymorphisms have recently been applied, for example, in a non-CSP context of social
choice theory [114]. Are there other applications of polymorphisms beyond algebra and CSP?

Acknowledgment. The authors thank Eric Allender for explaining state-of-the-art know-
ledge about relationships between complexity classes NL and ModpL. The authors also thank
anonymous referees for providing many useful comments.

References

1 Eric Allender, Michael Bauland, Neil Immerman, Henning Schnoor, and Heribert Vollmer.
The complexity of satisfiability problems: Refining Schaefer’s theorem. Journal of Com-
puter and System Sciences, 75(4):245–254, 2009.

2 Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and counting uniform
and nonuniform upper bounds. J. Comput. Syst. Sci., 59(2):164–181, 1999.

3 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, New York, NY, USA, 1st edition, 2009.

4 Albert Atserias, Andrei A. Bulatov, and Anuj Dawar. Affine systems of equations and
counting infinitary logic. Theor. Comput. Sci., 410(18):1666–1683, 2009.

5 Per Austrin, Johan Håstad, and Venkatesan Guruswami. (2 + ε)-Sat is NP-hard. In
Proceedings, Foundations of Computer Science (FOCS), pages 1–10, 2014.

6 Kirby A. Baker and Alden F. Pixley. Polynomial interpolation and the Chinese remainder
theorem for algebraic systems. Mathematische Zeitschrift, 143:165–174, 1975.

7 Libor Barto. The dichotomy for conservative constraint satisfaction problems revisited. In
Proceedings, Logic in Computer Science (LICS), pages 301–310, 2011.

Chapte r 01

40 Polymorphisms, and How to Use Them

8 Libor Barto. Finitely related algebras in congruence distributive varieties have near unan-
imity terms. Canad. J. Math., 65(1):3–21, 2013.

9 Libor Barto. Finitely related algebras in congruence modular varieties have few subpowers.
to appear in J. European Math. Soc., 2015.

10 Libor Barto. The collapse of the bounded width hierarchy. J. Log. Comput., 26(3):923–943,
2016.

11 Libor Barto and Marcin Kozik. Congruence distributivity implies bounded width. SIAM
Journal on Computing, 39(4):1531–1542, 2009.

12 Libor Barto and Marcin Kozik. Constraint satisfaction problems of bounded width. In
Proceedings, Foundations of Computer Science (FOCS), pages 595–603, 2009.

13 Libor Barto and Marcin Kozik. Absorbing subalgebras, cyclic terms, and the constraint
satisfaction problem. Logical Methods in Computer Science, 8(1), 2012.

14 Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consist-
ency methods. J. ACM, 61(1):3:1–3:19, January 2014.

15 Libor Barto and Marcin Kozik. Robustly solvable constraint satisfaction problems. SIAM
Journal on Computing, 45(4):1646–1669, 2016.

16 Libor Barto and Marcin Kozik. Absorption in universal algebra and CSP. In The Constraint
Satisfaction Problem: Complexity and Approximability, pages 45–78. 2017.

17 Libor Barto, Marcin Kozik, and Todd Niven. The CSP dichotomy holds for digraphs with
no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell). SIAM
J. Comput., 38(5):1782–1802, 2008/09.

18 Libor Barto, Marcin Kozik, and David Stanovský. Mal’tsev conditions, lack of absorption,
and solvability. Algebra universalis, 74(1):185–206, 2015.

19 Libor Barto, Marcin Kozik, and Ross Willard. Near unanimity constraints have bounded
pathwidth duality. In Proceedings, Logic in Computer Science (LICS), pages 125–134, 2012.

20 Libor Barto, Jakub Opršal, and Michael Pinsker. The wonderland of reflections. to appear
in Israel J. Math., 2016.

21 Libor Barto and Michael Pinsker. The algebraic dichotomy conjecture for infinite domain
constraint satisfaction problems. In Proceedings, Logic in Computer Science (LICS), pages
615–622, 2016.

22 Libor Barto and David Stanovský. Polymorphisms of small digraphs. Novi Sad J. Math.,
40(2):95–109, 2010.

23 Joel Berman, Pawel Idziak, Petar Marković, Ralph McKenzie, Matthew Valeriote, and
Ross Willard. Varieties with few subalgebras of powers. Transactions of The American
Mathematical Society, 362:1445–1473, 2010.

24 Manuel Bodirsky. Constraint satisfaction problems with infinite templates. In Nadia
Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors, Complexity of Constraints,
volume 5250 of Lecture Notes in Computer Science, pages 196–228. Springer, 2008.

25 Manuel Bodirsky and Marcello Mamino. Constraint satisfaction problems over numeric
domains. In The Constraint Satisfaction Problem: Complexity and Approximability, pages
79–111. 2017.

26 V.G. Bodnarčuk, L.A. Kalužnin, V.N. Kotov, and B.A. Romov. Galois theory for Post
algebras. I, II. Kibernetika (Kiev), (3):1–10; ibid. 1969, no. 5, 1–9, 1969.

27 Joshua Brakensiek and Venkatesan Guruswami. New hardness results for graph and hy-
pergraph colorings. Electronic Colloquium on Computational Complexity (ECCC), 23:29,
2016.

28 Joshua Brakensiek and Venkatesan Guruswami. Promise constraint satisfaction: Algebraic
structure and a symmetric boolean dichotomy. Electronic Colloquium on Computational
Complexity (ECCC), 23:183, 2016.

L. Barto, A. Krokhin, and R. Willard 41

29 Jonah Brown-Cohen and Prasad Raghavendra. Combinatorial optimization algorithms via
polymorphisms. CoRR, abs/1501.01598, 2015.

30 Jonah Brown-Cohen and Prasad Raghavendra. Correlation decay and tractability of CSPs.
In Proceedings, Automata, Languages, and Programming (ICALP), pages 79:1–79:13, 2016.

31 Andrei Bulatov. Bounded relational width. manuscript, 2009.
32 Andrei Bulatov and Víctor Dalmau. A simple algorithm for Mal’tsev constraints. SIAM J.

Comput., 36(1):16–27 (electronic), 2006.
33 Andrei Bulatov and Peter Jeavons. Algebraic structures in combinatorial problems. Tech-

nical Report MATH-AL-4-2001, Technische Universität Dresden, 2001.
34 Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of con-

straints using finite algebras. SIAM J. Comput., 34:720–742, March 2005.
35 Andrei A. Bulatov. Mal’tsev constraints are tractable. Electronic Colloquium on Compu-

tational Complexity (ECCC), (034), 2002.
36 Andrei A. Bulatov. A graph of a relational structure and constraint satisfaction problems.

In Proceedings, Logic in Computer Science (LICS), pages 448–457, 2004.
37 Andrei A. Bulatov. Combinatorial problems raised from 2-semilattices. J. Algebra,

298(2):321–339, 2006.
38 Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-

element set. J. ACM, 53(1):66–120 (electronic), 2006.
39 Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM

Trans. Comput. Logic, 12(4):24:1–24:66, July 2011.
40 Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. J.

ACM, 60(5):34:1–34:41, October 2013.
41 Andrei A. Bulatov. Conservative constraint satisfaction re-revisited. J. Comput. System

Sci., 82(2):347–356, 2016.
42 Andrei A. Bulatov. Graphs of relational structures: restricted types. In Proceedings, Logic

in Computer Science (LICS), pages 642–651, 2016.
43 Andrei A. Bulatov. Constraint Satisfaction Problems over semilattice block Mal’tsev algeb-

ras. CoRR, arXiv:1701.02623, 2017.
44 Andrei A. Bulatov, Andrei Krokhin, and Benoit Larose. Complexity of constraints. chapter

Dualities for Constraint Satisfaction Problems, pages 93–124. Springer-Verlag, Berlin,
Heidelberg, 2008.

45 Jakub Bulin, Dejan Delic, Marcel Jackson, and Todd Niven. A finer reduction of constraint
problems to digraphs. Logical Methods in Computer Science, 11(4), 2015.

46 Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf, and Christoph Meinel. Structure
and importance of logspace-mod class. Mathematical systems theory, 25(3):223–237, 1992.

47 Catarina Carvalho, Víctor Dalmau, and Andrei Krokhin. CSP duality and trees of bounded
pathwidth. Theoretical Computer Science, 411(34-36):3188–3208, 2010.

48 Catarina Carvalho, Víctor Dalmau, Petar Marković, and Miklós Maróti. CD(4) has
bounded width. Algebra Universalis, 60(3):293–307, 2009.

49 Hubie Chen. Meditations on quantified constraint satisfaction. In Logic and Program
Semantics, pages 35–49, 2012.

50 Hubie Chen and Benoit Larose. Asking the metaquestions in constraint tractability.
arXiv:1604.00932, April 2016.

51 David A. Cohen, Martin C. Cooper, Páidí Creed, Peter Jeavons, and Stanislav Živný. An
algebraic theory of complexity for discrete optimisation. SIAM Journal on Computing,
42(5):1915–1939, 2013.

52 Víctor Dalmau. Linear Datalog and bounded path duality for relational structures. Logical
Methods in Computer Science, 1(1), 2005.

Chapte r 01

42 Polymorphisms, and How to Use Them

53 Víctor Dalmau. Generalized majority-minority operations are tractable. Log. Methods
Comput. Sci., 2(4):4:1, 14, 2006.

54 Víctor Dalmau, László Egri, Pavol Hell, Benoit Larose, and Arash Rafiey. Descriptive
complexity of list h-coloring problems in logspace: A refined dichotomy. In Proceedings,
Logic in Computer Science (LICS), pages 487–498, 2015.

55 Víctor Dalmau, Marcin Kozik, Andrei Krokhin, Konstantin Makarychev, Yury Makarychev,
and Jakub Opršal. Robust algorithms with polynomial loss for near-unanimity CSPs. In
Proceedings, Discrete Algorithms (SODA), pages 340–357, 2017.

56 Víctor Dalmau and Andrei Krokhin. Majority constraints have bounded pathwidth duality.
European Journal of Combinatorics, 29(4):821–837, 2008.

57 Víctor Dalmau and Andrei Krokhin. Robust satisfiability for CSPs: Hardness and al-
gorithmic results. ACM Trans. Comput. Theory, 5(4):15:1–15:25, November 2013.

58 Víctor Dalmau, Andrei Krokhin, and Rajsekar Manokaran. Towards a characterization
of constant-factor approximable Min CSPs. In Proceedings, Discrete Algorithms (SODA),
pages 847–857, 2015.

59 Víctor Dalmau and Benoit Larose. Maltsev + datalog –> symmetric datalog. In Proceedings,
Logic in Computer Science (LICS), pages 297–306, 2008.

60 Víctor Dalmau and Justin Pearson. Closure functions and width 1 problems. In Proceedings,
Principles and Practice of Constraint Programming (CP), pages 159–173, 1999.

61 Martin E. Dyer and David Richerby. An effective dichotomy for the counting constraint
satisfaction problem. SIAM J. Comput., 42(3):1245–1274, 2013.

62 László Egri, Benoit Larose, and Pascal Tesson. Symmetric datalog and constraint satis-
faction problems in logspace. In Proceedings, Logic in Computer Science (LICS), pages
193–202, 2007.

63 Tomas Feder and Pavol Hell. List homomorphisms to reflexive graphs. J. Combin. Theory
Ser. B, 72(2):236–250, 1998.

64 Tomas Feder, Pavol Hell, and Jing Huang. List homomorphisms and circular arc graphs.
Combinatorica, 19(4):487–505, 1999.

65 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM Journal on
Computing, 28(1):57–104, 1998.

66 Ralph Freese and Ralph McKenzie. Maltsev families of varieties closed under join or Maltsev
product. Algebra Universalis, in press.

67 David Geiger. Closed systems of functions and predicates. Pacific J. Math., 27:95–100,
1968.

68 J. Hagemann and A. Mitschke. On n-permutable congruences. Algebra Universalis, 3(1):8–
12, 1973.

69 Johan Håstad. Some optimal inapproximability results. J. ACM, 48:798–859, July 2001.
70 Johan Håstad. On the efficient approximability of constraint satisfaction problems. In

Surveys in combinatorics 2007, volume 346 of London Math. Soc. Lecture Note Ser., pages
201–221. Cambridge Univ. Press, Cambridge, 2007.

71 Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Combin. Theory Ser.
B, 48(1):92–110, 1990.

72 Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms, volume 28 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2004.

73 David Hobby and Ralph McKenzie. The structure of finite algebras, volume 76 of Contem-
porary Mathematics. American Mathematical Society, Providence, RI, 1988.

74 Pawel M. Idziak, Petar Markovic, Ralph McKenzie, Matthew Valeriote, and Ross Willard.
Tractability and learnability arising from algebras with few subpowers. SIAM J. Comput.,
39(7):3023–3037, 2010.

L. Barto, A. Krokhin, and R. Willard 43

75 Neil Immerman. Nondeterministic space is closed under complementation. SIAM J. Com-
put., 17(5):935–938, October 1988.

76 Marcel Jackson, Tomasz Kowalski, and Todd Niven. Complexity and polymorphisms for
digraph constraint problems under some basic constructions. International Journal of
Algebra and Computation, 26(07):1395–1433, 2016.

77 Peter Jeavons. Constructing constraints. In Proceedings, Principles and Practice of Con-
straint Programming (CP), pages 2–16, 1998.

78 Peter Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer
Science, 200(1–2):185–204, 1998.

79 Peter Jeavons, David Cohen, and Martin Cooper. Constraints, consistency and closure.
Artificial Intelligence, 101(1-2):251–265, 1998.

80 Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. J. ACM,
44(4):527–548, 1997.

81 Mark Jerrum. Counting constraint satisfaction problems. In The Constraint Satisfaction
Problem: Complexity and Approximability, pages 201–228. 2017.

82 Jelena Jovanović, Petar Marković, Ralph McKenzie, and Matthew Moore. Optimal strong
Mal’cev conditions for congruence meet-semidistributivity in locally finite varieties. Algebra
universalis, 76(3):305–325, 2016.

83 Alexandr Kazda. Maltsev digraphs have a majority polymorphism. European J. Combin.,
32(3):390–397, 2011.

84 Alexandr Kazda. n-permutability and linear datalog implies symmetric datalog. CoRR,
abs/1508.05766, 2015.

85 Keith Kearnes, Petar Marković, and Ralph McKenzie. Optimal strong Mal’cev conditions
for omitting type 1 in locally finite varieties. Algebra Universalis, 72(1):91–100, 2014.

86 Emil Kiss and Matthew Valeriote. On tractability and congruence distributivity. Log.
Methods Comput. Sci., 3(2):2:6, 20 pp. (electronic), 2007.

87 Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and constraint
satisfaction. J. Comput. Syst. Sci., 61(2):302–332, 2000.

88 Vladimir Kolmogorov, Andrei Krokhin, and Michal Rolinek. The complexity of general-
valued CSPs. In Proceedings, Foundations of Computer Science (FOCS), pages 1246–1258,
2015.

89 Vladimir Kolmogorov, Johan Thapper, and Stanislav Živný. The power of linear program-
ming for general-valued CSPs. SIAM J. Comput., 44(1):1–36, 2015.

90 Marcin Kozik. Weak consistency notions for all the CSPs of bounded width. In Proceedings,
Logic in Computer Science (LICS), pages 633–641, 2016.

91 Marcin Kozik, Andrei Krokhin, Matt Valeriote, and Ross Willard. Characterizations of
several Maltsev conditions. Algebra universalis, 73(3):205–224, 2015.

92 Andrei Krokhin and Stanislav Živný. The complexity of valued CSPs. In The Constraint
Satisfaction Problem: Complexity and Approximability, pages 229–261, 2017.

93 Gabor Kun, Ryan O’Donnell, Suguru Tamaki, Yuichi Yoshida, and Yuan Zhou. Linear
programming, width-1 CSPs, and robust satisfaction. In Proceedings, Innovations in The-
oretical Computer Science (ITCS), pages 484–495, 2012.

94 Gábor Kun and Mario Szegedy. A new line of attack on the dichotomy conjecture. European
Journal of Combinatorics, 52, Part B:338–367, 2016. Special Issue: Recent Advances in
Graphs and Analysis.

95 Richard E. Ladner. On the structure of polynomial time reducibility. J. ACM, 22:155–171,
1975.

96 Benoît Larose. Algebra and the complexity of digraph CSPs: a survey. In The Constraint
Satisfaction Problem: Complexity and Approximability, pages 263–282. 2016.

Chapte r 01

44 Polymorphisms, and How to Use Them

97 Benoît Larose and Pascal Tesson. Universal algebra and hardness results for constraint
satisfaction problems. Theor. Comput. Sci., 410:1629–1647, April 2009.

98 Benoit Larose, Matt Valeriote, and László Zádori. Omitting types, bounded width and the
ability to count. Internat. J. Algebra Comput., 19(5):647–668, 2009.

99 Benoit Larose and László Zádori. Taylor terms, constraint satisfaction and the complexity
of polynomial equations over finite algebras. Internat. J. Algebra Comput., 16(3):563–581,
2006.

100 Benoit Larose and László Zádori. Bounded width problems and algebras. Algebra Univer-
salis, 56(3-4):439–466, 2007.

101 Florent Madelaine and Barnaby Martin. A tetrachotomy for positive first-order logic
without equality. In Proceedings, Logic in Computer Science (LICS), pages 311–320, 2011.

102 Konstantin Makarychev and Yuri Makarychev. Approximation algorithms for CSPs. In The
Constraint Satisfaction Problem: Complexity and Approximability, pages 283–320. 2017.

103 Petar Marković. Private communication, 2011.
104 Miklós Maróti and Ralph McKenzie. Existence theorems for weakly symmetric operations.

Algebra Universalis, 59(3-4):463–489, 2008.
105 Dániel Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive

queries. J. ACM, 60(6):42:1–42:51, November 2013.
106 Christos H. Papadimitriou. Computational complexity. Addison-Wesley Publishing Com-

pany, Reading, MA, 1994.
107 Michael Pinsker. Algebraic and model theoretic methods in constraint satisfaction. CoRR,

abs/1507.00931, 2015.
108 Emil L. Post. The Two-Valued Iterative Systems of Mathematical Logic. (AM-5). Annals

of Mathematics Studies. Princeton University Press, 1941.
109 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, September

2008.
110 Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM J. Com-

put., 29(4):1118–1131, 2000.
111 Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming

(Foundations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.
112 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings, Theory of

Computation (STOC), pages 216–226, 1978.
113 Mark H. Siggers. A strong Mal’cev condition for locally finite varieties omitting the unary

type. Algebra universalis, 64(1-2):15–20, 2010.
114 Mario Szegedy and Yixin Xu. Impossibility theorems and the universal algebraic toolkit.

CoRR, abs/1506.01315, 2015.
115 Róbert Szelepcsényi. The method of forced enumeration for nondeterministic automata.

Acta Inf., 26(3):279–284, November 1988.
116 Walter Taylor. Varieties obeying homotopy laws. Canad. J. Math., 29(3):498–527, 1977.
117 Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. J. ACM,

63(4):37:1–37:33, 2016.
118 Ross Willard. Testing expressibility is hard. In Proceedings, Principles and Practice of

Constraint Programming (CP), pages 9–23, 2010.

	Introduction
	CSP over a Fixed Constraint Language
	Constraint Languages
	Examples
	The Dichotomy Conjecture
	Alternative Views

	Reductions Between Constraint Languages
	Primitive Positive Interpretations (= Gadgets)
	Homomorphic Equivalence, Cores and Singleton Expansions
	Example
	Pp-Constructibility
	Tractability Conjecture
	Other Reductions

	Polymorphisms as Classifiers of Constraint Languages
	Definitions and Examples
	Polymorphisms as an Algebraic Counterpart of pp-Definability
	Height-1 Identities and pp-Constructibility
	Classifications and Conjectures
	Taxonomy of Systems of Linear Identities

	Polymorphisms in Algorithms I: Proving Correctness
	1–Minimality and TS Polymorphisms
	Linear Programming and Symmetric Polymorphisms
	(2,3)-Minimality and Majority Polymorphisms
	Interlude: Boolean CSPs
	Characterization of Bounded Width
	Sufficient Levels of Consistency
	Results About Linear and Symmetric Width

	Polymorphisms in Algorithms II: Cogs in the Works
	Few Subpowers
	The Few Subpowers Algorithm
	Limits of the Few Subpowers Algorithm
	Combining Algorithms

	Conclusion

