
Report no. 05/21

MMPDE vs. SGWMFE

Experiments in one dimension

Abigail Wacher

Faculty of Aerospace Engineering, Technion, Haifa, Israel

We compare experimentally Moving Mesh Partial Dif-

ferential Equations (Huang et al. (1994)) to the String Gra-

dient Weighted Moving Finite Element Method (Wacher

et al. (2003)) applied to the viscous Burgers equation and to

the porous medium equation in one dimension. The meth-

ods are tested on a travelling wave solution, the Barenblatt

solution of the porous medium equation and on one of the

waiting time solution discovered by Lacey (1983).

Oxford University Computing Laboratory

Numerical Analysis Group

Wolfson Building

Parks Road

Oxford, England OX1 3QD October, 2005

2

1 String Gradient Weighted Moving Fi-

nite Elements

The moving mesh method we will be describing shortly is the String

Gradient Weighted Moving Finite Element method (SGWMFE) de-

veloped in Wacher et al. (2003). The SGWMFE formulation for sys-

tems of partial differential equations was originally proposed by Miller

(1997) as an alternative formulation of the Gradient Weighted Moving

Finite Element (GWMFE) method, which was developed in detail in

Carlson and Miller (1998a) and Carlson and Miller (1998b) by Carlson

and Miller for one and two-dimensional problems. Carlson and Miller

(1998a) report on the design and implementation of a robust and versa-

tile GWMFE code in one dimension applied to various PDEs and PDE

systems. Sample problems for which the code was tested in that pa-

per are: 1) a convection-diffusion boundary layer problem, 2) Burgers

equation with diffusion term, plus a strong nonlinear source term and

also with no diffusion, 3) drift-diffusion equations for semiconductors,

4) Sod’s shock tube problem, and 5) a steady-state convection problem.

There they found that GWMFE efficiently produces accurate results

for problems which form steep moving fronts. The corresponding two-

dimensional paper Carlson and Miller (1998b) does the same as the

one-dimensional paper including the additional application problems:

1) Non-linear arsenic diffusion, 2) The Buckley-Levett “black oil” equa-

tions, and 3) motion by mean curvature which was implemented in the

one-dimensional case in the paper Miller (1997) by Miller. The results

therein show that the method is intended for “problems with sharp

moving fronts where one needs to resolve the fine-scale structure of

the front to compute the correct answer” greatly improving on the

first Moving Finite Element (MFE) method developed originally by K.

3

Miller and R.N. Miller in Miller and Miller (1981) in one dimension,

and by K. Miller in Miller (1981) for two dimensions.

What follows is the SGWMFE formulation for a scalar equation in

one dimension, previously investigated for systems of partial differen-

tial equations in Wacher et al. (2003) and Wacher (2004). We note

that in the case of a single PDE the SGWMFE and GWMFE reduce

to the same set of equations, however here we use the SGWMFE ap-

proach to developing the system of equations following Wacher (2004).

The theory is presented in such a way that it should be clear how

SGWMFE is generalised to systems of equations with any number of

components, in multiple dimensions, however see Wacher (2004) for

the detailed extensions.

1.1 Formulation of the SGWMFE method

Given a partial differential equation as in (1.1), SGWMFE treats the

solution graph for the equation as an evolving one-dimensional mani-

fold (x, u(x, t)). To begin, consider the example of a PDE,

ut = L(u) (1.1)

for the unknown function u(x, t) on a one-dimensional spatial interval

Ω. L is a general first or second order nonlinear differential operator

in space.

Consider a re-parameterisation with a moving coordinate x(τ, t),

where τ is a one-dimensional parameter whose domain is arbitrary

but bounded. Under the re-parameterisation the solution manifold be-

comes an evolving parameterised one-dimensional manifold immersed

in two dimensions with the position vector

u(τ, t) = (x(τ, t), u(τ, t)), (1.2)

for the evolving re-parameterised points of the solution graph.

4

At each parameterised point on the evolving manifold split the

velocity vector u̇ = (ẋ, u̇) into its tangential, [u̇]T , and its normal,

[u̇]N , parts. Noting that solving for the tangential part [u̇]T makes

no changes to the solution manifold since any points along the mani-

fold moving tangentially stay on the manifold, thus maintaining it the

same solution manifold (not necessarily the graph of a function). The

original PDE (1.1), is written in the following vector form:

⎛
⎝ 0

ut

⎞
⎠ =

⎛
⎝ 0

L(u)

⎞
⎠ . (1.3)

Taking the normal component of equation (1.3) results in the same

vector regardless of the parameters used to describe the velocity of the

solution manifold, that is

⎛
⎝ ẋ

u̇

⎞
⎠

N

=

⎛
⎝ 0

ut

⎞
⎠

N

. (1.4)

For a proof of equation (1.4) see Wacher (2004). The equation for the

normal velocity is then written

⎛
⎝ ẋ

u̇

⎞
⎠

N

=

⎛
⎝ 0

L

⎞
⎠

N

, (1.5)

which is a system of two PDEs for the two unknown variables x(τ, t), u(τ, t).

Equation (1.5) is only a parameterisation of equation (1.1) as long as

the solution manifold is the graph of a function.

It is convenient to use here the projection matrix P which projects

any given vector, F, into its normal part, [F]N , at a given point on

the solution manifold, (x, u(x)). [F]N is obtained by subtracting, from

F, the tangential component [F]T , where the tangential component is

given by

[F]T = ttTF, (1.6)

5

where t = (1, ux)/
√

1 + u2
x is the unit tangent vector to the manifold

at this point. Hence

[F]N = F− [F]T = (I− ttT)F = PF, (1.7)

where

P =
1

1 + u2
x

⎛
⎝ u2

x −ux

−ux 1

⎞
⎠ . (1.8)

Equation (1.5) is then discretized by letting the SGWMFE approxima-

tion be an evolving, piecewise linear manifold with its two-dimensional

nodal positions uj = (xj(t), uj(t)) as unknowns. Multiplying equation

(1.7) by the well known nodal “hat” basis function αj, and integrating

over the spatial domain gives:

∫ ⎛
⎝ ẋ

u̇

⎞
⎠

N

αjds =

∫ ⎛
⎝ 0

L

⎞
⎠

N

αjds, (1.9)

at each node j.

1.2 Time derivative terms

Using equation (1.9) the integrals of the time derivatives (the left hand

side of the PDE system) in celli contribute to the ith node by:

∫
celli

⎛
⎝ 0

ut

⎞
⎠

N

αids =

∫
celli

P

⎛
⎝ẋ

u̇

⎞
⎠αids. (1.10)

The integral is then obtained by using Simpson’s quadrature rule found

in many introductory mathematical and physical books such as Jeffreys

and Jeffreys (1946),

∫
celli

P u̇αids = P (
1

3
u̇i +

1

6
u̇i−1)Δsi, (1.11)

where

Δsi =‖ ui − ui−1 ‖2=
√

(xi − xi−1)2 + (ui − ui−1)2, (1.12)

6

and noting that the term ux is constant on each ith cell. This implies

that ds =
√

1 + u2
xdx and the elements of the matrix P are also con-

stant on the ith cell. Further, since αi and u̇ are both linear functions

on the cell, then the integrand above is at most a quadratic polyno-

mial on the ith cell, which is the interval of integration. Since Simpson’s

rule is exact for polynomials of up to third order the expression for the

integral in equation (1.11) is exact.

Once the ODE system has been constructed we use the numerical

integration code developed in Carlson and Miller (1998a). The integra-

tion method used is the Backward Differentiation Formula 2 (BDF2),

an implicit ODE solver with adaptive time stepping. For details of the

implementation of this code see Carlson and Miller (1998a).

1.3 Flux terms

Consider restricting the non-linear operator L to have the particular

form of a flux function:

ut = −fx(u, v). (1.13)

For a scalar function f(x, u(x)) it will be useful to denote by fi its

value at the ith node and by [f]i, the average over the cell. Thus

fi = f(xi, ui) and [f]i = 1
Δxi

∫
celli

fdx. Using this notation and noting

that ds =
√

1 + u2
xdx, the integral contributions from the flux term in

celli onto the ith node can be written

∫
celli

P

⎛
⎝ 0

−fx

⎞
⎠ αids = P

⎛
⎝ 0

1

⎞
⎠ ∫

celli

(−fxα
i)ds (1.14)

=

⎛
⎝ −ux

1

⎞
⎠

∫
celli

(−fxα
i)dx√

1 + u2
x

(1.15)

=

⎛
⎝ −ux

1

⎞
⎠ [f]i − fi√

1 + u2
x

. (1.16)

7

1.4 Constant coefficient diffusion terms

Now consider a term with a non-linear operator L to have an artificial

diffusivity term:

ut = εuxx, (1.17)

where ε determines the magnitude of the artificial diffusion (here it is a

constant). Using piecewise linear basis functions means that diffusive

terms vanish in the interior of any cell but are undefined at nodes. One

way of dealing with this problem is to use the mathematical technique

of mollification as in Carlson and Miller (1998a). The first derivative,

while being constant over the main body of the cell, is assumed to

vary smoothly between cell values in a small neighbourhood of width

2δ at each node, see Figure 1. Then take the limit δ → 0. Thus

in any integral involving diffusion terms it is only necessary to take

into account the small neighbourhoods near each node since uxx is still

identically zero for most part of each cell. The use of the mollification

technique is presented below using the same principles as in Carlson

and Miller (1998a) and Miller (1997). For further reading on the use

of mollification for MFE and GWMFE see Baines (1994).

Denote the value of ux on celli as mi, then mollify by defining a

variable σ(x) and then, for instance at the right end of the cell, map

a neighbourhood of width 2δ of xi to −1 ≤ σ(x) ≤ 1, map ux to

mi ≤ ux ≤ mi+1. Then the integral contribution on the ith node due

to diffusive terms is:

ε

∫ δ

−δ

P

⎛
⎝ 0

uxx

⎞
⎠ αids = ε

∫ δ

−δ

1√
1 + u2

x

⎛
⎝ −uxuxx

uxx

⎞
⎠dx, (1.18)

where αi has been replaced by 1 since the integral is taken over the

infinitesimal neighbourhood of xi which is the point where αi = 1. The

8

u
x

x

m
i

m
i+1

m
i−1

δδ δ δ

σ=−1 σ=1 σ=−1 σ=1

x x
cell i

i−1 i

Figure 1: Mollification: the value of ux on celli is mi, the value of ux

on celli−1 is mi−1 and the value of ux on celli+1 is mi+1. The value of

ux is assumed to vary smoothly in a small neighbourhood of each end

of the cell of width 2δ and then δ → 0.

integral is now rewritten using the mapping

ux = mc + Δmcσ(x), (1.19)

where mc =
mi + mi+1

2
, and Δmc =

mi+1 −mi

2
. With the first com-

ponent of (1.18) in mind, let

IA =

∫ δ

−δ

uxuxx√
1 + u2

x

dx. (1.20)

Noting that when describing the mollification of ux it is important to

understand that the function ux that is being mollified is the approxi-

mation of the actual unknown variable. Substituting equations (1.19)

into (1.20), so that

dux = uxxdx =
d

dσ
ux dσ,

then under change of variable for the integral, the neighbourhood size

9

falls out, and by letting

a = 1 + m2
c , (1.21)

b = 2miΔmc, (1.22)

c = Δmc
2, (1.23)

results in the following simplified expression for IA in terms of σ:

IA =
b

2

∫ 1

−1

dσ√
a + bσ + cσ2

+ c

∫ 1

−1

σdσ√
a + bσ + cσ2

. (1.24)

Similarly, applying the same technique to the second component leads

to a similar integral expression, see Wacher (2004).

Despite knowing analytic expressions for these integrals, the ex-

pressions for the integrals can be subject to severe roundoff errors and

great care has to be taken in their evaluation, as in Carlson and Miller

(1998a) and Carlson and Miller (1998b) where they develop formulas

for these integrals to avoid roundoff error. For the results shown in this

report, sixteen point gaussian quadrature formula for these integrals

was used.

1.5 Non-uniform diffusion terms in conservative

form

Now consider the semi-linear diffusion terms from a non-linear operator

L of the form (aux)x, where a = a(x, u). The contribution from this

term in the ith cell onto its ith node can be written

10

∫
P

⎛
⎝ 0

a(x, u)ux

⎞
⎠

x

αids = Pi

⎛
⎝ 0

mi

⎞
⎠ ∫

celli\nbdi

axα
ids

+

∫
nbdi

P

⎛
⎝ 0

axux

⎞
⎠αids

+ ai

∫
nbdi

P

⎛
⎝ 0

uxx

⎞
⎠ αids

+ Pi+1

⎛
⎝ 0

mi+1

⎞
⎠ ∫

celli+1\nbdi

axα
ids.

(1.25)

where mi and mi+1 are the values of ux on celli and celli+1 respectively.

The second term on the right hand side of equation (1.25) is iden-

tically zero since the integrand is bounded in the infinitesimal neigh-

bourhood of the ith node. Note that in the third term on the right

hand side of equation (1.25), the value ai has been factored out. This

is because a(x, u) is replaced by ai, its value near the ith node, where

uxx has its infinitesimal support. See Section 4.5 of Carlson and Miller

(1998a) for a similar procedure. The integrand in this same term is

obtained from the theory for the constant coefficient Laplacian terms.

The integrands in the other two terms on the right hand side of equa-

tion (1.25), the first and fourth terms, can be derived using integration

by parts as was done for the flux terms, leading to the first and third

terms in equation (1.26). As before let mi be the value of ux on celli,

11

and let mi+1 be the value of ux on celli+1.

∫
P

⎛
⎝ 0

a(x, u)ux

⎞
⎠

x

αids = mi

⎛
⎝ −mi

1

⎞
⎠

∫
celli\nbdi

axα
idx

√
1 + m2

i

+ ai

∫
nbdi

P

⎛
⎝ 0

uxx

⎞
⎠ αids

+ mi+1

⎛
⎝ −mi+1

1

⎞
⎠

∫
celli+1\nbdi

axα
idx

√
1 + m2

i+1

.

(1.26)

where
∫

celli\nbdi

axα
idx = ai − [a]i and

∫
celli+1\nbdi

axα
idx = [a]i+1 − ai,

using integration by parts as in the flux terms in equations (1.14) to

(1.16). The second term in equation (1.26) is the Laplacian term with

constant coefficient ai, identical to what has been derived in the theory

previously.

1.6 Regularization

Regularization of the mass matrix (resulting from the MFE, GWMFE

or SGWMFE discretizations) is used to avoid the mass matrix from

becoming ill-conditioned from possible degenerate nodes or cells. The

first type of possible degeneracy is that discussed in Wathen and Baines

(1985), for the MFE method where the same phenomena occurs, whereby

the ith block of the mass matrix is analyzed, and it is found that when

the slopes of two adjacent cells are equal, then the first row of the mass

matrix contains only zero elements. This type of degeneracy is called

parallelism, that is when two cells are collinear, the central node join-

ing the two cells is unnecessary and as a result the matrix is singular

when this happens.

The other type of degeneracy, also discussed in Wathen and Baines

12

(1985), is the “shock” type degeneracy which happens when the cell

locations in the MFE method become identical. It can be seen by

looking at the mass matrix, if two nodes are in the same place then

the elements of the mass matrix corresponding to those nodes will be

identical. The result then is that two blocks in the mass matrix become

identical thus making the matrix rank deficient.

The common approach to avoid the mass matrix becoming ill-

conditioned is to add regularization terms. See Carlson and Miller

(1998a) and Miller (1997) for regularization of GWMFE in one dimen-

sion, and Wacher (2004) for SGWMFE. The terms added are much

smaller than the error tolerance used to solve the discretized ODE

system, however the terms are of the same form as the terms in the

mass matrix so that when there is a degenerate node the regularization

terms in that row dominate so as to make the system nonsingular.

The regularization coefficients we use, added to the diagonal terms

of the mass matrix, are of the form C/xi or C/
√

1 + x2
i , where C is

chosen so that it is well below the truncation error, thus not affecting

the accuracy of the solutions beyond the tolerance required. For all

experiments in this report a local truncation error tolerance on the

residuals was set to 10−8, but not all the regularization parameters used

are the same. For the Porous Medium Equation with the Barenblatt

solutions no regularization was needed and thus none was used. For

the Waiting Time solutions the regularization terms used were of the

form 5(10)−10/xi, and for the viscous Burgers equation a regularization

term of the form 10−13/
√

1 + x2
i was used.

1.7 Summary

The equations for SGWMFE/GWMFE were presented in this section

with a projection matrix. An advantage that has been identified pre-

13

viously is that the equations resulting from the formulation using this

projection matrix make a more elegant extension to larger numbers of

equations than is the case for the original formulation of the GWMFE

method, though both approaches naturally reduce to the same set of

equations for scalar PDEs.

2 Moving Mesh Partial Differential Equa-

tions

2.1 The Equidistribution Principle and MMPDEs

in One Dimension

In one space dimension, good grids can be constructed using the equidis-

tribution principle. Let x = x(ξ) be a strictly increasing map from the

computational domain [0, 1] onto the physical domain [a, b]. It equidis-

tributes the monitor function g = g(x) > 0 if for every ξ ∈ [0, 1]

∫ x(ξ)

a

g(s) ds = ξ

∫ b

a

g(s) ds. (2.1)

Differentiation of (2.1) twice with respect to ξ gives the equivalent

formulation,

(g xξ)ξ = 0, x(0) = a, x(1) = b. (2.2)

If the monitor function g is some measure of the local computational

effort required and x equidistributes g, then more grid points are con-

centrated where needed. As a standing assumption, we let g = g(x, t)

be continuous on the space-time domain [a, b]× [0, T], strictly positive

with g0 = minx,t g(x, t), and
∫

g dx = 1.

By solving the physical PDE and (2.2) simultaneously at every time

step, the equidistribution principle can be used to generate a moving

mesh. This solution process would be relatively expensive and the mesh

14

obtained unsmooth which, apart from requiring small time steps, can

lead to a deterioration in the convergence rate. Several authors (see

Huang et al. (1994); Huang and Russell (1997) and references therein)

introduced relaxations of this process by introducing mesh speed in

different ways. A very general approach which is also easily general-

ized to higher dimensions was introduced in Huang and Russell (1999).

By moving the mesh in the steepest descent direction of a mesh func-

tional, parabolic moving mesh partial differential equations(MMPDEs)

are obtained which can provide an efficient and stable moving mesh

and a reliable moving mesh method.

With the right choice of parameters, one obtains the MMPDE

xt =
1

τ
(gxξ)ξ, x(0) = a, x(1) = b, (2.3)

where τ > 0 can be seen as a time scale or a relaxation parameter. In

Huang et al. (1994), this MMPDE is labeled MMPDE5. It is shown

in Ortner (2003) that its solution approximately equidistributes the

monitor function in a sense that is made precise.

2.2 Monitor Functions Based on Geometric Prop-

erties

So far we have only assumed that we have a monitor function which

somehow measures the local computational effort required. We now

introduce several choices, which have been successfully used in the

past and also a few new ideas. Two general classes are considered.

In this section, we introduce monitor functions based on geometric

properties of the solution like the arclength or the curvature. We call

these geometric monitor functions.

For better readability, in the following presentation the scaling∫ 1

0
g dx = 1 is not included. Furthermore, if a monitor function con-

15

sists of a convex combination of two other monitors g1 and g2, i.e.,

g = αg1 + (1 − α)g2, then we implicitly assume that they are scaled

to satisfy
∫

gi dx = 1. For example, we write g = αe(u) + (1− α)f(u)

instead of g = αe(u)/
∫

e(u) dx + (1− α)f(u)/
∫

f(u) dx.

One of the most popular monitor functions is the arclength,

gAL =
√

1 + u2
x. (2.4)

Its main characteristic is its robustness, its wide applicability and inter-

polation error constants which are likely to be independent of pertur-

bation parameters or similar. These constants usually hold, however,

only for first order convergence.

Intuitively, when using piecewise linear splines for the approxima-

tion space, the first choice would be a monitor function based on the

second derivative. Although great accuracy can be achieved, equally

great care has to be taken as Blom and Verwer Blom and Verwer (1989)

show in numerous experiments. In Ortner (2003), a monitor function

is introduced, which is constructed as a combination of the arclength

and jumps in the gradient, which are closely related to the second

derivative. Let the linear spline u have values ui at gridpoints xi then

the jump monitor function is defined as the linear spline of

gJMP,i = α gAL(xi) + (1− α)
∣∣[ux]x=xi

∣∣ (2.5)

where [ux] denotes the jump in the gradient. Small choices of α turned

out to produce similar problems as those observed in Blom and Verwer

(1989). A good value for most problems is α = 0.7.

Finally, let us also note that for equations like the porous medium

equation, monitor functions can be constructed which take into account

specific features of the equation, say, the conservation of mass. For an

example see Baines et al. (2003).

16

2.3 Basic Implementation of the MMPDE method

The implementation of a moving mesh method based on the MMPDEs

described in Section 2.1, and in Ortner (2003), involves solving a cou-

pled system of partial differential equations of which at least one is

nonlinear, as is the coupling between the two.

In this section, an implementation of a finite element moving mesh

method based on a decoupling of the physical and the moving mesh

PDEs is described. For the physical PDE, only second order parabolic

problems with Dirichlet boundary conditions are considered.

The physical model problem which encompasses all examples con-

sidered in this report is

ut −∇ · F(u)−∇ · (A(u, x, t)∇u) = f in ΩT ,

u = u0 at t = 0,

u = u1 on ∂Ω.

2.3.1 The Lagrangian Formulation

Following the notation in Ortner (2003), we define the functional

B(u, t; v, w) =

∫
Ω

F′(u) · ∇v + (∇v)�A(u, x, t)∇w dx

which is bilinear in (v, w). Assume that for every t ∈ [0, T] we are

given a triangulation with grid points (xi(t); i = 0, . . . , M) and let

(Φi(t); i = 0, . . . , M) be the associated nodal basis of piecewise linear

functions. Suppose that the first M̃ nodes are the interior nodes. Then

the finite element test and solution spaces are respectively defined as

Vh(t) = span {Φi(t) : i = 0, . . . , M̃}

Sh(t) =
M∑

j=M̃+1

u1(xj , t)Φj(t) + Vh(t)

17

and the semidiscrete finite element method reads For all 0 < t ≤ T

find uh(t) ∈ Sh(t) such that for all ϕ ∈ Vh(t),

(uh,t, ϕ)L2(Ω) + B(uh, t; uh, ϕ) = (f, ϕ)L2(Ω). (2.6)

Consider for a moment the time discretization of (2.6) by the im-

plicit Euler method. Assume a partition 0 = t0 < t1 < · · · < tN = T

of the time-interval [0, T] is given and set kn = tn − tn−1. For f ≡ 0

the implicit Euler method reads

(uh(tn), ϕ)L2(Ω)+knB(uh(tn), tn; uh(tn), ϕ) = (uh(tn−1), ϕ)L2(Ω) for all ϕ ∈ Vh(tn).

If the mesh is not constant (e.g. moving), then the term (uh(tn−1), ϕ)

on the right hand side has to be calculated by a projection of uh(tn−1)

onto the space Sh(tn) with the new mesh.

An alternative way, a discrete equivalent of the so-called Lagrangian

formulation of the PDE,

ut − L(t)u =
du

dt
− (∇u)�xt − L(t)u = f(t),

is far more efficient even in the one-dimensional case. Here, du/dt

stands for the derivative of u(x(ξ, t), t) with respect to t. This form of

the PDE is analyzed in greater generality in Jimack and A.J. (1991)

and Cao et al. (1999).

Based on this formulation, we can write an alternative formulation

of the semidiscrete Galerkin finite element method (2.6). Equation

(2.6) is equivalent to

∑
i

u′i (Φi, ϕ)L2(Ω) −
(

∂x

∂t
· ∇uh, ϕ

)
L2(Ω)

+ B(t, uh; uh, ϕ) = (f, ϕ)L2(Ω).

(2.7)

The form (2.7) of the semidiscrete finite element method can be easily

discretized in time by any ODE solver. One possible choice is described

in Section 2.3.2.

18

2.3.2 Discretization in Time

To enable adaptive time-stepping for the physical PDE, we use the sec-

ond order singly diagonally implicit Runge-Kutta (SDIRK2) method.

This method was proposed for moving mesh equations in Beckett et al.

(2001) and Beckett et al. (2002). Details about the derivation and sta-

bility properties can be found in Hairer and Wanner (1991).

Suppose the SDIRK2 method is employed to integrate the system

u̇ = f(t, u),

where f : R ×Rm → Rm on the grid t0 < t1 < t2 < Then, with

kn = tn − tn−1 and γ = (2−√2)/2, the method is given by

v1 = f(tn−1 + γkn, u(tn−1) + γknv1), (2.8)

v2 = f(tn−1 + kn, u(tn−1) + (1− γ)knv1 + γknv2),

u(tn) = u(tn−1) + kn((1− γ)v1 + γv2).

To obtain a local estimate of the error, the second-order SDIRK2

scheme can be combined with an appropriate first-order scheme. To

maximize computational efficiency, we use

û(tn) = u(tn−1) + knv1 (2.9)

where v1 is that calculated in (2.8). For details about the time step

control, see Beckett et al. (2001) or Ortner (2003). In this section,

we briefly review a method of decoupling the physical from the mov-

ing mesh equations which reduces the effort for solving the MMPDE

significantly.

For evolving the mesh, we use the implicit Euler method in time.

For evolving the physical PDE, we use the SDIRK2 scheme (2.8). Sup-

pose we have computed x(tn−1) and uh(tn−1). We use uh(tn−1) as a

first approximation for uh(tn) to compute an approximation of the

19

mesh x(tn). We then use this approximation to the new mesh to com-

pute an approximation of uh(tn). This procedure is iterated as often

as necessary to improve the approximations for x(tn) and uh(tn).

The arising nonlinear systems are solved either by a Newton method

or by a fixed point iteration. If the nonlinear iteration does not con-

verge, the stepsize is decreased until it is successful.

2.4 Artificial Smoothing of the Monitor Functions

The necessity of spatial smoothing is discussed in Huang and Russell

(1997) in great detail. Smoothing the monitor function, e.g. by some

local averaging procedure, can greatly improve performance and even

accuracy. The reason is mainly that the iterations converge faster so

that bigger time-steps can be taken, while at the same time a slightly

displaced mesh will only insignificantly decrease accuracy. In fact,

a smoother mesh might even improve it. Spatial smoothing has been

fully studied and we shall not discuss it further. Apart from explaining

analytically why spatial smoothing is important, the analysis in Ortner

(2003) suggests that smoothness in time is just as important and might

bring additional stability and performance. We impose this in two

ways.

• At every time-step we take a weighted average between the com-

puted monitor function and that from the last time-step, i.e., we

use g = TMP SM gold + (1− TMP SM)gnew.

• Becket et al. Beckett et al. (2001) suggest using 4 mesh iterations

in the alternating solution procedure. Instead we use 8 relaxed

iterations, i.e., we choose a relaxation parameter MRELX ∈ (0, 1]

and take xnew = xold+MRELX×d if d is the usual iteration step.

20

An intensive benchmark was carried out, producing solutions for sev-

eral monitor functions and a wide variety of choices of MRELX and

TMP SM. For a very large range of smoothing parameter choices, the

error changes on such a small scale that we can practically choose the

parameters solely based on performance considerations. For all of the

experiments in this work, we use: TMP SM = 0.3, MRELX = 0.6.

2.5 Modifications to the Moving Mesh Method for

the Solution of the Porous Medium Equation

The first modification is the implementation of the boundary move-

ment. To achieve this, we simply add a subroutine to the code which

determines the interface movement by approximating (3.2) by the

trapezium rule method. This is done every time before a mesh it-

eration in the alternating solution procedure. The inner derivatives

are determined by a linear extrapolation method. The extrapolation

values are evaluated at the element centers.

For a simple solution, such as the selfsimilar test solution in closed

form, we could simply use any of the monitor functions presented in

Section 2.2. To be able to resolve the boundary movement, especially

when it should be zero, we modify the jump monitor function. We

define

gPM = 0.6× gJMP + 0.4×
(

x− (s+ + s−)/2

s+ − s−

)6
max |ux|2

1/M + |ux|2 . (2.10)

Again, some additional scaling procedures are not considered in this

definition. The PM monitor function has no specific interpretation.

It is constructed to create a strong concentration of gridpoints at the

boundary if the solution should be flat there, compared to other parts

of the domain.

The two modifications described so far are sufficient to solve for

21

easy solutions, like (3.3) or the waiting time solution with zero initial

interface speed.

3 Model Problems

3.1 The Viscous Burgers Equation

We consider the viscous Burgers equation

ut + uux − νuxx = 0, in (0, 1)× (0, T)

u(0, t) = a(t),

u(1, t) = b(t),

u(x, 0) = u0(x).

The problem we consider is when a(t) = b(t) = 0 and

u0(x) = sin(2πx) +
1

2
sin(πx),

which is shown in Figure 2. This benchmark was chosen because it

does not require a well-adapted initial mesh.

3.2 The Porous Medium Equation

We consider the following special case of the porous medium equation:

ut = (uux)x in R× [0, T] (3.1)

u(0) = u0 ≥ 0,

where u0 has compact support. It arises as a model for many physical

phenomena, such as the spreading of a thin film of liquid under grav-

ity or the percolation of gas through a porous medium. For further

information see Lacey et al. (1982) and references therein. Here, we

summarize those results which are used in this paper.

22

Figure 2: Frames of a solution of the viscous Burgers equation with

ν = 10−3.

23

The porous medium equation (3.1) has a unique weak solution,

i.e., a solution in the distributional sense. If the support of the initial

condition u0 is compact then the support of u(·, t) is compact for all

t. If the solution u is positive in the interval (s−(t), s+(t)) and zero

outside then the interfaces s± move at speeds

ds−
dt

= − lim
x→s

−
+

ux(x) and
ds+

dt
= − lim

x→s+−
ux(x). (3.2)

Note that for the MMPDE method equation (3.2) is used to deter-

mine the boundary movement of the computational domain. For the

SGWMFE method, this condition is not necessary as the boundary

movement is part of the solution of the SGWMFE method. The SG-

WMFE methods result in a set of two PDEs at each node, one for the

value of u and one for the positions of the nodes in the x-axis. This

is the case also for the boundary nodes thus all that is necessary to

apply at the boundary is the zero boundary condition for u and the

nodes are allowed to freely move in the x-axis. An alternative way to

determine the interface is to use the fact that the mass
∫
R

u(x) dx and

the center of gravity
∫
R

xu(x) dx are conserved by the solution of (3.1).

This approach turned out to be very unstable when used on top of the

MMPDE method.

Next, we review some classes of solutions that we will test our

methods on. The first is a family of similarity solutions, the Barenblatt

solutions,

u(x, t) =

⎧⎨
⎩

1
6
t−1/3(a2 − x2t−2/3), |x| ≤ at1/3,

0 |x| ≥ at1/3,
(3.3)

where a is a positive constant. This solution is plotted for several times

in Figure 3.

The porous medium equation possesses solutions for which an inter-

face can remain fixed for a finite time and then start moving. The time

24

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Barenblatt Solution

x

u

t = 0

t = 0.25

t = 0.5

t = 0.75

t = 1

Figure 3: Frames of a Barenblatt solution of the porous medium equa-

tion with time shifted by 0.1, and a = (0.1)−1/3.

t∗ for which the interface remains stationary is called the waiting time.

Solutions which exhibit such a behaviour are called waiting time solu-

tions. The following facts are due to Lacey (1983). Suppose the initial

condition has an interface at x = x0 and the solution is positive to its

left. Let α = limx→x0− u0(x)/(x − x0)
2, β = supx<x0

u0(x)/(x − x0)
2,

and let tγ = 1/(6γ) for all γ > 0. Then tβ ≤ t∗ ≤ tα and if β = α,

we know the exact waiting time. An example of an initial condition

which satisfies this condition is u0(x) = χ[−1,1](x) sin(π(x + 1)/2)2. In

the case tα = t∗, it is furthermore known that this interface is continu-

ously differentiable, in particular, it starts moving at zero initial speed.

We call this solution the First Waiting Time solution. Several frames

of a numerical solution (using the MMPDE method) are plotted in

Figure 4.

25

t =
 0

t =
 0

.0
5

t =
 0

.0
62

t =
 0

.0
67

54
7

t =
 0

.1

 First Waiting Time Solution

Figure 4: Frames of the First Waiting Time solution of the porous

medium equation.

26

Figure 5: Convergence in L∞(L∞) of MMPDE vs. SQWMFE solving

Burgers’ equation with ν = 10−3.

Figure 6: Convergence in L∞ at a fixed time t = 0.2 of MMPDE vs.

SQWMFE solving Burgers’ equation with ν = 10−3.

27

4 Numerical results

The notation in the figures below is as follows: SGWMFE denotes

computations with the string gradient weighted moving finite element

method (see Section 1). Solutions computed by the MMPDE method

(see Section 2) are denoted by the name of the monitor function used:

‘arclen’ for the arclength monitor function, ‘jmp’ for the second derivative-

based monitor and ‘pmmon’ for the monitor which was specifically

constructed for the porous medium equation. In Section 4.3, we only

use the ‘pmmon’ monitor function. There, the notation for MMPDE

computations depends on whether the interface is completely free (‘pm-

mon’) or is restricted to move on away from the mass (‘pmmon, eb’).

Compare also Section 2.5.

4.1 Benchmark 1: Nonlinear advection

In our first benchmark, we solve the viscous Burgers equation, de-

scribed in Section 3.1. Frames of the solution using the MMPDE

method are shown in Figure 2. We see from Figure 5 that the MM-

PDE method and the SGWMFE method are comparable in order of

accuracy and both show a nearly second order accuracy taking the in-

finity norm over all integration time steps. In Figure 6 with the infinity

norm at the particular time t = 0.2 similar slopes for the convergence

rates are observed however one can see that the SGWMFE produces

more accurate results particularly when less nodes are used, which also

appears in the following two benchmark solutions.

28

Figure 7: L∞ errors in numerical solutions of the Porous Medium

Equation at time t = 0.1.

4.2 Benchmark 2: Barenblatt solutions of the porous

medium equation

Figures 7 (short time integration) and 8 (long time integration) show

plots of the convergence rates relative to the number of nodes used.

Both the MMPDE and the SGWMFE methods behave as expected for

the smooth similarity solution. Comparable results (for the long time

integration) were also obtained in Baines et al. (2003) for their moving

mesh method.

4.3 Benchmark 3: A waiting time solution of the

porous medium equation

In this benchmark, we examine whether the two numerical schemes are

capable of reproducing the waiting time solution described in Section

29

Figure 8: L∞ errors in numerical solutions of the Porous Medium

Equation at the final time t = 10.

Figure 9: Right interface of the waiting time solution of the porous

medium equation, using different numerical schemes.

30

Figure 10: Convergence rates for: the maximum error (0 ≤ t ≤ 1/2)

of the right interface approximations of the waiting time solution, the

error of the right interface at the particular time t = 1/2, and the error

in the mass integral of the solution at time t = 1/2.

31

3.2. Here, we are interested in the correct behaviour of the interface

and subsequently the long time error.

Due to the lack of an analytical solution, we compare with a numer-

ical solution, using the MMPDE approach with 512 mesh points. We

use the shortcuts sgwmfe, mmpde-eb and mmpde to respectively denote

the numerical solutions using the string gradient weighted moving finite

element method, the MMPDE method with enforced positive interface

speed and the pure MMPDE method. Figure 9 shows plots of the

interfaces for the waiting time solution and different mesh sizes. The

convergence rates of the approximations of the interfaces are plotted

in Figure 10.

The results in Figures 9 show a number of things. One can observe

that clearly SGWMFE does not keep its boundary node on the point

x = 1 as does the enforced boundary implemented in the MMPDE

method, this is because the boundary nodes in the SGWMFE method

were not enforced to only move in one direction. This however does not

imply a poor solution at the boundary since the solution is zero beyond

the location of the boundary point until the boundary begins to move.

If you look very closely, you will see that MMPDE without the enforced

boundary also does this to a much smaller extent, see the plot with 33

nodes in Figure 9. From Figure 9 one can see that SGWMFE predicts

the critical waiting time sooner than does the MMPDE method. This

problem could be removed as with the MMPDE method by enforcing

the boundary to only move in one direction. For the results shown in

this paper this was not applied nor are the nodes initially optimally

placed, so regardless of the initial positions you can see that in time

the solutions from SGWMFE are more accurate than the MMPDE

method once the boundary begins to move (beyond the waiting time).

It is clear that for this start up problem an enforced velocity boundary

32

condition on the MMPDE method is much better at predicting the

waiting time solution given that one uses a sufficient number of nodes.

Analyzing the MMPDE method on its own, it is clear that with the

enforced velocity boundary condition the solutions are much more ac-

curate, where as the MMPDE method without the imposed boundary

undershoots the waiting time.

If we now focus our attention on Figures 10 we see that the accu-

racy of the numerical solutions behave quite differently in the waiting

time interval than it does after the boundary is moving, once again

concluding that as time progresses SGWMFE becomes more accurate

than the MMPDE method. It should be noted that for this start up

problem the time steps were chosen initially for both methods. Gen-

erally the time steps for SGWMFE are chosen dynamically, though

for the MMPDE method implemented here the time steps are chosen

initially since the interest here was on the waiting time solutions, and

for comparison purposes the same time steps had to be imposed for

the SGWMFE as well. Because of this, smaller time steps were chosen

and the solution is sometimes more accurate than would have been

required by the error tolerance.

5 Summary

From the numerical results shown in this report we conclude that for

the viscous Burgers equation the SGWMFE/GWMFE and the MM-

PDE methods produce comparable results. Depending on the monitor

function used for the MMPDE to solve Burgers’ equation, the MMPDE

can produce results that are slightly better or worse than those of SG-

WMFE/GWMFE. For both porous medium equation examples studied

in this report it is observed that the longer time results obtained using

33

SGWMFE/GWMFE are more accurate than those produced using the

MMPDE method. However for the startup problem of obtaining the

critical time t∗ (the waiting time) the MMPDE method predicts this

more accurately.

Acknowledgement: I would like to thank Christoph Ortner for

his efforts and the use of his codes to obtain the MMPDE simulations,

as well as for parts of his MSc thesis which contributed to the MMPDE

section of this report.

References

Baines M. (1994). Moving Finite Elements . Oxford University Press

Inc, New York.

Baines M., Hubbard M., and Jimack P. (2003). A Moving Finite Ele-

ment Method using Monitor Functions. Technical report, School of

Computing, University of Leeds, Leeds. 2003.04.

Beckett G., Mackenzie J., Ramage A., and Sloan D. (2001). On the Nu-

merical Solution of One-Dimensional PDEs Using Adaptive Meth-

ods Based on Equidistribution. Journal of Computational Physics ,

167:372–392.

Beckett G., Mackenzie J., Ramage A., and Sloan D. (2002). Computa-

tional Solution of Two-Dimensional Unsteady PDEs Using Moving

Mesh Methods. Journal of Computational Physics , 182:478–495.

Blom J.G. and Verwer J.G. (1989). On the Use of the Arclength and

Curvature Monitor in a Moving Grid Method which is Based on the

Method of Lines . Technical report, Tech. Report NM-N8902, CWI,

Amsterdam.

34

Cao W., Huang W., and Russell R.D. (1999). An r-Adaptive Finite

Element Method Based Upon Moving Mesh PDEs . Journal of Com-

putational Physics, 149:221–244.

Carlson N.N. and Miller K. (1998a). Design And Application Of A

Gradient-Weighted Moving Finite Element Code I: In One Dimen-

sion. SIAM J. Sci. Comput., 19(3):728–765.

Carlson N.N. and Miller K. (1998b). Design And Application Of A

Gradient-Weighted Moving Finite Element Code II: In Two Dimen-

sions. SIAM J. Sci. Comput., 19(3):766–798.

Hairer E. and Wanner G. (1991). Solving Ordinary Differential Equa-

tions II – Stiff and Algebraic Problems. Springer Series in Compu-

tational Mathematics. Springer Verlag, Berlin Heidelberg.

Huang W., Ren Y., and Russell R.D. (1994). Moving Mesh Partial Dif-

ferential Equations (MMPDEs) Based on the Equidistribution Prin-

ciple. SIAM Journal of Numerical Analysis, 31(3):709–730.

Huang W. and Russell R.D. (1997). Analysis of Moving Mesh Partial

Differential Equations with Spatial Smoothing . SIAM Journal of

Numerical Analysis, 34(3):1106–1126.

Huang W. and Russell R.D. (1999). Moving Mesh Strategy Based on

a Gradient Flow Equation for Two-Dimensional Problems . SIAM

Journal of Scientific Computing , 20(3):998–1015.

Jeffreys H. and Jeffreys B.S. (1946). Methods Of Mathematical Physics .

Cambridge University Press, Cambridge.

Jimack P. and A.J. W. (1991). Temporal Derivatives in the Finite-

Element Method on Continuously Deforming Grids. SIAM Journal

of Numerical Analysis, 28(4):990–1003.

35

Lacey A. (1983). Initial Motion of a Free Boundary . IMA Journal of

Applied Mathematics , 31:113–119.

Lacey A., Ockendon J., and Tayler A. (1982). “Waiting Time” Solu-

tions of a Nonlinear Diffusion Equation. SIAM Journal of Applied

Mathematics, 42(6):1252–1264.

Miller K. (1981). Moving Finite Elements II . SIAM J. Numer. Anal.,

18(6):1033–1057.

Miller K. (1997). A Geometrical-Mechanical Interpretation Of

Gradient-Weighted Moving Finite Elements. SIAM J. Numer. Anal.,

34(1):67–90.

Miller K. and Miller R.N. (1981). Moving Finite Elements I . SIAM J.

Numer. Anal., 18(6):1019–1032.

Ortner C. (2003). Moving Mesh Partial Differential Equations. MSc.

thesis, Oxford University Computing Laboratory, Oxford.

Wacher A. (2004). String Gradient Weighted Moving Finite Elements

For Systems of Partial Differential Equations . DPhil thesis, Oxford

University Computing Laboratory, Oxford.

Wacher A., Sobey I., and Miller K. (2003). String Gradient Weighted

Moving Finite Elements For Systems of Partial Differential Equa-

tions I . Numerical Analysis internal report 03/15 .

Wathen A. and Baines M. (1985). On The Structure Of The Moving

Finite-Element Equations . IMA J. Numer. Anal , 5:161–182.

