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Introduction

In all of what follows, we are concerned with the problem of estimating the HC5 (con-
centration hazardous1 to 5% of species) for a chemical based on the SSD (species sensi-
tivity distribution) concept and using acute data. Data for the chemical will be a limited
number of test results (LC50s or appropriate EC50s — hereafter all referred to as EC50s).
An EC50 measures the toxicity of a chemical to a particular species or, equivalently, the
sensitivity of the species to that chemical.

The intention is that parts I, II and III of this report should be accessible to scientists with
an expertise in applying species sensitivity distributions while the technical material in
the appendices is aimed at computationally-expert Bayesian statisticians.

1Hazardous here actually means that the concentration is greater than or equal to the EC50 for a
species

1



Contents

I Science 4

1 Background: Aldenberg & Jaworska (A&J) 4
1.1 The Aldenberg and Jaworska HC5 calculation . . . . . . . . . . . . . . 4

1.2 Assumptions underlying the A&J calculation . . . . . . . . . . . . . . 5

2 RIVM database 6
2.1 Taxonomic classification for the database . . . . . . . . . . . . . . . . 7

3 Data Analysis 7
3.1 Intertest variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Sensitivity tendency of a species . . . . . . . . . . . . . . . . . . . . . 8

3.3 Interspecies correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Hierarchical taxonomic structure of sensitivity . . . . . . . . . . . . . . 12

3.5 Conclusions from the data analysis . . . . . . . . . . . . . . . . . . . . 13

4 Redefining the SSD — true sensitivities, taxonomic scenarios and scenario-
based HC5s 14
4.1 Motivation for defining scenarios . . . . . . . . . . . . . . . . . . . . . 14

4.2 True versus measured sensitivities . . . . . . . . . . . . . . . . . . . . 15

4.3 Scenario based SSDs and HCps . . . . . . . . . . . . . . . . . . . . . . 15

5 Hierarchical Statistical Modelling 16
5.1 The single chemical A&J model . . . . . . . . . . . . . . . . . . . . . 16

5.2 Multiple chemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.3 Adding features to A&J’s model . . . . . . . . . . . . . . . . . . . . . 17

5.4 The final model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Computation 19

II Software Tool (hSSD) 20

7 Structure of the tool 20

8 Using the tool 20

9 User Interface 22

2



10 Documentation 22

III Example 25

References 36

Acknowledgements 38

IV Appendices 39

A Hierarchical Statistical Modelling 39
A.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.2 Model structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.3 Parameterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

B Details of computation 42
B.1 Prior distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

B.2 Ecotoxicity database . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

B.3 Algorithm for sampling from the initial posterior . . . . . . . . . . . . 43

B.4 Output from analysing the database . . . . . . . . . . . . . . . . . . . 47

B.5 Algorithm for MCMC sampling for a new chemical . . . . . . . . . . . 50

C Hadfield’s problem/algorithm 54
C.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

C.2 Exploiting the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 54

D R code to obtain initial posterior 56

3



Part I

Science
1 Background: Aldenberg & Jaworska (A&J)

There is a large literature on ecotoxicological risk assessment and in particular on SSDs.
See Posthuma et al (2002) for an introduction to the area and Craig et al (2012) for a
more statistically focussed account. Aldenberg and Jaworska (2000) is a particularly
important article as it provides a statistical model and HC5 calculation which was sub-
sequently made available for general use via the ETX software (ETX 2.0 , 2004) and
adopted as part of the REACH guidance (EC , 2006; ECHA , 2008). One way of un-
derstanding this project is that it updates the A&J statistical model in several ways to
account for features of available data which are inconsistent with their model and then
makes the updated model and resulting hazardous concentration calculation available
in software.

1.1 The Aldenberg and Jaworska HC5 calculation

Everything works on logarithmic scale as is usual for SSDs; base 10 logarithms will be
used throughout this document. Denote the log-EC50s for n species by y1, . . . , yn and
let y be the sample mean and s the sample standard deviation.

Then the log-HC5 estimate is
y − κs/

√
n

where κ is the 50th percentile of the non-central t-distribution with n − 1 degrees of
freedom and non-centrality parameter 1.645

√
n

For upper and lower confidence/credibility limits on the log-HC5 use the appropriate
percentiles of the same non-central t-distribution. For example, for a lower 10% confi-
dence/credibility limit, take κ to be the 90th percentile of the non-central t-distribution
with n− 1 degrees of freedom and non-centrality parameter 1.645

√
n.

A numerical example:

• Suppose that the log-EC50s for n = 8 species are: 3.00, 3.15, 3.32, 2.74, 3.78,
0.94, 4.70 and 4.18 (based on EC50s measured in µg/l).

• Then y = 3.23 and s = 1.13.

• The values of κ corresponding to the central estimate and upper and lower 10%
limits are respectively 4.86, 3.10 and 7.79.

• The log-HC5 estimate is 3.23 − 4.86 × 1.13/
√

8 = 1.29 (10% lower and upper
limits 0.12 and 1.99). The HC5 estimate is therefore 19.5µg/l (lower and upper
limits 1.32 and 97.7).

The calculation is based on assuming a normal distribution for log-EC50s. The obvious
normal distribution to fit to the data is one with mean y and standard deviation s. Fig-
ure 1 shows the fitted normal distribution (black curve), the data (black dots) and the
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Figure 1: Example of the Aldenberg and Jaworska calculation

A&J estimate (plus symbol) and upper and lower 10% limits (crosses). It also shows
the naive estimate of the HC5, the 5th percentile of the fitted normal distribution, using
grey lines. We see that the naive estimate is quite close to the A&J estimate for this
sample size; however, the naive method gives no indication of the uncertainty attached
to the estimate.

The data used in this example are actually the real data for one of the chemicals in our
working database to be described later. However, two of the data values are actually
censored and so in fact we should not be applying the A&J calculation to them anyway.
These data will reappear in part III of this report which gives an example of how to use
the software tool which we have developed.

1.2 Assumptions underlying the A&J calculation

The explicit assumptions made by A&J are:

• The SSD (of log-EC50s) for a chemical has a normal distribution.

• Measured log-EC50s may be considered to have been randomly sampled from the
SSD.

In relation to the first of these, the statistical population (group of species) to which the
SSD refers is rarely made explicit. Moreover, one does not choose species at random to
test.

5



However, the mathematical argument based on random sampling is also justified if we
can instead make the assumption of exchangeability: for a new chemical, sensitivities
for all species are a priori exchangeable. What does this mean in practice? It means
that if asked to predict a test result (say by giving a probability distribution over pos-
sible values), we would make the same prediction for each species. Moreover, for any
two species which might be measured, knowing which species they were would not
give us any information about the difference between their log-EC50s: we would think
that either species was equally likely to have the higher EC50 and the fact that species
were or were not closely taxonomically related would have no bearing on the expected
magnitude of the difference between their EC50s.

There are also two further implicit assumptions underlying the A&J calculation:

• There is no benefit in looking at outcomes for other chemicals. From a Bayesian
statistical perspective, this means that there is no information to incorporate in a
prior distribution. From a frequentist perspective, it means that there is no point
in extending the statistical model to include other chemicals.

This assumption has been criticised, for example in EFSA (2006). A major
source of instability/uncertainty for the A&J calculation for small sample sizes is
that the sample standard deviation is then very variable between samples. How-
ever the data from other chemicals indicates that the per-chemical population
standard deviation is not so variable between chemicals. That information can be
used in a more sophisticated form of the A&J calculation, as proposed in EFSA
(2006), to give a better estimate of the HC5 for a new chemical. However, that

calculation only addresses this single issue and does not address the other weak-
nesses of the A&J calculation.

• Measurements are exact (no extra variation). No distinction is made in A&J
between a measured EC50 and the true EC50 for the same chemical and species.

There is also no correct way to take censored data into account without changing
the calculation.

2 RIVM database

In the rest of the report, we make use of a database of acute test results for a wide variety
of chemicals and aquatic species.

Hickey et al (2012) give an account, including references, of the underlying database
obtained from RIVM and of rules used to reduce that database to one suitable for the
research described in that paper: the endpoint must be an LC50 or an EC50; the effect
must be mortality or immobility; the minimum duration in the experiment must be 48
hours for crustacea or insecta and 96 hours for others and the measurement must be
point-wise or censored but not approximate; the species tested must be identified fully
to species level (many tested species were identified only to genus level or higher).

We start with the same database which has 30806 records involving 3448 chemicals
and 1557 latin names; of the 30806, 10842 were EC50s, 17451 LC50s and 2076 NOECs
— the 30369 mentioned by Hickey et al (2012). We apply essentially the same rules:
Hickey et al (2012) erroneously excluded 28 measurements when restricting to data
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with fully specified species. This leaves us with 9798 records. Hickey et al (2012)
worked with 6576 of these obtained by restricting attention to chemicals for which there
point-wise measurements for at least 5 distinct species. We do not make that restriction
here as we are not attempting at any point to fit an SSD to data from a single chemical
without reference to data from other chemicals. However, in the process, described be-
low, of establishing a taxonomic classification for the species involved, 3 measurements
were found to be for species not in the animalia kingdom and were excluded, leaving
9795 measurements in our working database involving 2047 chemicals and 631 species
(7745 chemical-species combinations).

2.1 Taxonomic classification for the database

We wanted a reasonably full hierarchical taxonomic classification for the species in
our working database. As provided by RIVM, there was a classification into major and
minor taxonomic groups but this was not really suitable for our needs. Scott Dyer kindly
provided a classification for a good many species which was derived from the US EPA’s
ECOTOX database and this was used as the basis for the process described below. That
classification has the following taxonomic levels from high to low: kingdom, phylum
division, sub-phylum division, super-class, class, order, family, genus and species.

It is worth noting that an attempt to construct a consistent classification directly for the
original 30806 records, from sources such as ITIS and Catalogue of Life, foundered
for a combination of reasons: issues with consistency of use of latin names with depre-
cated synonyms often being used; the effort involved in searching multiple taxonomic
databases; the difficulties in finding any classification for some species; inconsistencies
in classification systems used by different databases. It may well be worth the effort to
complete that process in the future.

Of the 631 species in our working database, 607 were matched in the classification
provided by Scott Dyer; of the remainder 22 were found in ITIS, 4 in Catalogue of
Life and 1 in Uniprot. No attempt was made to investigate whether the same species
was present using more than one synonym. In order to make the taxonomic hierarchy
of the the working database completely hierarchically coherent, it was necessary to
fill-in higher components of the classification for some species from more complete
classifications for other species in the same genus or family. The resulting hierarchy
is fully coherent in the sense that classifications at each level of the hierarchy below
kingdom are a refinement of the classifications at the preceding higher level.

3 Data Analysis

We can examine the validity of the assumptions discussed in section 1 by appropriate
data analysis. Except where stated otherwise, the analyses that follow are all based on
the working database of aquatic acute toxicity tests described in section 2.

3.1 Intertest variation

Intertest variation (or “measurement error”) means variability of test outcomes for a
single chemical-species combination. Hickey et al (2012) give a detailed discussion
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Figure 2: Differences between measured log-EC50s for the same chemical-species com-
bination, pooling all combinations

of intertest variation, the empirical evidence for intertest variation, and consequences
of adjusting the A&J calculation to incorporate it. Here we will consider just a simple
graphical summary of intertest variation.

In the working database, there are many instances where the same chemical-species
combination has been tested more than once. For each pair of tests on the same combi-
nation, we calculate the magnitude of the difference between the two measured log-EC50s.
We display all those differences as a histogram in Figure 2. The median difference be-
tween measurements on the same combination is approximately 0.3 which corresponds
to roughly one-third of an order of magnitude of difference in size between the cor-
responding EC50s on original scale. This may or may not be considered to be large.
However, there is a long tail to this distribution. Roughly 10% of differences are greater
than 1 which corresponds to an order of magnitude difference between EC50s. Clearly,
intertest variation is not a tiny contribution.

It is also clear that this distribution is too heavy-tailed to be modelled by a homogeneous
normal distribution for intertest variation. There may well be explanatory factors which
would allow the use of a normal distribution model with standard deviation depending
on those factors but we have not found such factors in the database and we will use a
heavy-tailed t-distribution model in section 5.

3.2 Sensitivity tendency of a species

EFSA (2006) and Craig et al (2012) reported evidence that species sensitivities were
not a priori exchangeable. In particular, they suggested that rainbow trout had a ten-
dency to be more sensitive than average for a chemical. Figure 3 is similar to one in
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Figure 3: Informal tendency of rainbow trout to be more sensitive than average: each
point corresponds to a single chemical; vertical axis shows ratio of average (geometric
mean) EC50 for other fish to EC50 for rainbow trout; there are many more points above
the line of equality than below.

EFSA (2006) and is based on the same data. Formal statistical evidence was provided
in Craig et al (2012), quoting a P-value of 4 × 10−15 for the null hypothesis of ex-
changeability. They also found that, when all rainbow trout data were excluded from
the analysis, the null hypothesis was still strongly rejected with various other species be-
ing proposed as non-exchangeable. Further analyses carried in this project by Graeme
Hickey (see various progress reports) suggest that there is no reason to consider a small
number of species as the exceptions with the others being considered exchangeable;
a more reasonable view is that each species has some tendency to be above or below
average and that the magnitude of the tendency varies between species. It is likely
that rainbow trout was singled out not because of an exceptionally strong tendency but
because there is a lot of relevant data: it has been tested on many chemicals.

3.3 Interspecies correlation

There is a considerable body of literature indicating the existence of interspecies corre-
lation (across chemicals) in sensitivity and suggesting that it might be used in a variety
of ways, in particular to improve estimation of HC5s. For example, see Dyer et al
(2006) and Dyer et al (2008).

An example of an interspecies association is shown in Figure 4. It’s clear that there is
a strong interspecies correlation: the Pearson correlation is 0.955. However, we would
expect to see some correlation due simply to the fact that chemicals themselves vary in
overall toxicity. For a highly toxic chemical, most species will have a low EC50 and for
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Figure 4: Example of an interspecies association
.

a relatively inert chemical most will have a high EC50. To emphasise that each point in
Figure 4 comes from a different chemical, Figure 5 shows the same data with the CAS
number overlaid for each point.

Figure 6 shows the same data as before but we have added to the plot the average sensi-
tivity for each chemical of species other than the two for which the correlation is being
investigated. We see quite clearly that the points with higher EC50s for the two focal
species also have higher average EC50s for other chemicals. A substantial contribu-
tion to this particular inter-species correlation appears to be inter-chemical variation in
overall toxicity. The important question is whether this is the dominant contribution or
whether there is additional correlation because the positions within SSDs of two species
are linked in some way: a positive correlation of this kind would mean that finding the
first species to be in the upper (or lower) end of the SSD for a particular chemical would
increase the likelihood that the second species would also appear in the upper (or lower)
end of that SSD. In order to explore this issue, we need some way of assessing whether
a particular EC50 is at the upper or lower end of the corresponding SSD.

Of course, we don’t know the SSD mean and standard deviation but we can ask how
a particular EC50 compares to the other EC50s in our database for the same chemical.
For each point in Figure 6, subtract from the log-EC50 measurements for both focal
species (the axis coordinates) the mean toxicity for that chemical for all other species
which have been tested (the larger-text number not in parentheses next to each point);
we call this process “standardising” the measurements. The association between the
standardised measurements is shown in Figure 7. We see that there is still a clear as-
sociation, but it is weaker than originally: the Pearson correlation is now 0.710. This
informal analysis suggests that there may well be a real interspecies correlation, even

10



●

●

●

●

●

●

●

●

●

●

●

CAS: 50293

CAS: 55389
CAS: 63252

CAS: 72208

CAS: 72435

CAS: 121755
CAS: 133062

CAS: 298000

CAS: 315184

CAS: 1397940

CAS: 2032599

−2

−1

0

1

2

3

4

− 2

(10 ng/l)

− 1

(100 ng/l)

0

(1 µg/l)

1

(10 µg/l)

2

(100 µg/l)

3

(1 mg/l)

4

(10 mg/l)

oncorhynchus clarkii  log10(EC50)  (µg L)

pe
rc

a 
fla

ve
sc

en
s 

 lo
g 1

0(E
C

50
)  

(µ
g

L)

Figure 5: Example of an interspecies association showing that each point is a different
chemical.
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Figure 6: Example of an interspecies association showing the mean sensitivity of other
species tested on each chemical.

11



●

●

●

●

●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
Standardised  oncorhynchus clarkii  log10(EC50)

S
ta

nd
ar

di
se

d 
 p

er
ca

 fl
av

es
ce

ns
  l

og
10

(E
C

50
)

Figure 7: Example of an interspecies association after standardising each sensitivity
relative to mean sensitivity of other species tested on the same chemical.

after adjusting for inter-chemical variation in overall toxicity. In what follows, we call
the correlation between the standardised measurements the “residual correlation”.

What we don’t yet know is what drives the residual correlation (after standardising)
and how the residual correlation varies depending on the pair of species in focus. A
difficulty is that the number of chemicals involved is not usually very large and that
the other species used to standardise each point vary from chemical to chemical for a
particular pair of focal species and between pairs of focal species. Consequently, there
is likely to be a considerable amount of noise attached to each estimate of residual
correlation and we really need a way to see what happens for many pairs of species.

3.4 Hierarchical taxonomic structure of sensitivity

An obvious driver for the residual correlation is similarity between species and the
most readily available measure of similarity of two species is through their taxonomic
classifications. Figure 8 shows box-plots of the raw (no standardising) and residual
correlations for all pairs of species in the database, restricting to cases where the pair of
species have test results for at least 6 chemicals in common. The box-plots are divided
according to the taxonomic similarity of the pair of species: we describe the taxonomic
similarity as as, for example, “family” if the species are in the same family but not the
same genus.

Looking at the solid-line box-plots (raw correlations), and in particular at the median
lines, we see that the correlations are highest for species in the same genus and weaken
as the taxonomic similarity decreases, being lowest for species which are not even in
the same phylum. A similar pattern holds for the dashed-line box-plots (residual corre-
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Figure 8: Raw and residual Pearson correlations for all pairs of species having test
results for at least 6 chemicals in common, grouped according to taxonomic similarity:
for example, a pair of species in the same family but different genera will appear in the
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lations) but the correlations are substantially weaker and in fact the median correlation
is close to 0 for pairs of species which are not in the same phylum. It seems likely that
much of the variation in residual correlation is sampling variation driven by the limited
number of chemicals involved in each correlation and variations in the species used
to standardise each measurement; for species from different phyla, we cannot rule out
the possibility that all the variation is sampling variation, i.e. that there is actually no
residual correlation for such species.

3.5 Conclusions from the data analysis

• Intertest variation is real and large enough that it should not be ignored.

• Species tendencies are real. It is likely that they vary. It is also plausible that they
exhibit taxonomic structure.

• Interspecies correlation is real. It is not just due to variation in overall toxicity but
is linked to taxonomic similarity.
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4 Redefining the SSD — true sensitivities, taxonomic scenarios and scenario-
based HC5s

In what follows, the term “taxonomic scenario” is used to mean the choice of which
species are included in the SSD, with particular emphasis on the taxonomic classifica-
tion of those species.

4.1 Motivation for defining scenarios

One might well wonder why this is necessary.

The first part of the answer is that it’s not necessary when one trusts the assumptions
underlying the A&J calculation: if all species are exchangeable, it does not matter
which species one measures and it does not matter which species are in the SSD; this is
provided also that there are so many species in the SSD that we don’t run into difficulties
because we are modelling a finite number of sensitivities by a continuous distribution.
One could even add intertest variation to the A&J model (see Hickey et al (2012)) and
address the issue censored data without needing to introduce taxonomic scenarios.

The second part of the answer is that there is a conflict between the assumption of
exchangeability and the existence of species sensitivity tendencies and residual inter-
species correlations. If we accept the conclusions of our earlier data analysis, we should
not continue to use A&J unless we can establish that modelling things correctly actually
makes little difference to the final HC5.

The third part of the answer is that the existence of species sensitivity tendencies and
residual interspecies correlations means that inference about the HC5 must depend on
both which species are tested and which species are in the SSD:

• Known tendencies of tested species could in principle be handled by adjusting
the test results.

However, the existence of tendencies for species in the SSD implies that it matters
which species are in the SSD. For example, if only less-sensitive species are in
the SSD, the HC5 must be higher.

• Taxonomically structured inter-species residual correlation affects uncertainty about
the sensitivities of untested species; there will be less uncertainty for those which
are taxonomically more similar to tested species.

• The inter-species residual correlation also affects

– the magnitude of uncertainty about the relative positions in the SSD of two
untested species;

– the overall amount of information we get from the test data; usually we will
receive less information by testing closely related species than more distant
species; an exception would be if the SSD was taxonomically restricted
when one might benefit from taxonomically restricting the choice of species
to test.

• Taxonomically structuring tendencies affects estimates of sensitivity for species
related to those tested and estimates of relative position of species in the SSD.
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The effects of all of these on inference about the HC5 may or may not be large; there
seems no obvious way to find out without doing the modelling properly.

4.2 True versus measured sensitivities

As discussed earlier, the A&J model/calculation makes no distinction between true and
measured sensitivities. On the other hand, we have seen that intertest variation is not
negligible; in other words, it is not reasonable to ignore the distinction.

For risk assessment purposes, it seems clear that it is the true sensitivities of species
which are really relevant to the assessment. Therefore, the conceptual model of the SSD
should be applied to true sensitivities and it is the 5th percentile of true sensitivity about
which we wish to make inferences from data; the actual calculations will of course be
applied to measured sensitivities and it is part of the role of a statistical model to bridge
the gap between measured and true sensitivities.

In an attempt to avoid ambiguity and/or confusion in what follows, we will continue
to use EC50 to refer to a measurement of sensitivity and we will write TEC50 for the
corresponding true sensitivity.

4.3 Scenario based SSDs and HCps

We have just argued that it is necessary to decide which species are to be included in
the SSD. The “scenario specific SSD” for a chemical is then the distribution of true
sensitivities for the species included in the scenario. Note that statistically this is now
explicitly a distribution for a finite population.

It seems natural to define the scenario specific HC5 as the 5th percentile of that distri-
bution.

The complication is that a distribution for a finite population does not really have well-
defined percentiles. If there are N species in the SSD, there will be N concentrations
of interest: the N TEC50 values. Let us label them x(1) ≤ x(2) ≤ .... ≤ x(N) so that x(1)
is the lowest TEC50 and x(N) the highest. For J = 1, 2 . . . , N − 1, any concentration
greater than or equal to x(J) and less than x(J+1) is then hazardous2 to J species in the
SSD; this can be expressed as a percentage of species: 100(J/N)%. For example, if
there are N = 8 species in the scenario, then any concentration between the second and
third lowest of the TEC50s is hazardous to 2 out of the 8 species, i.e. to 25%.

This raises two issues in terms of defining an HC5 or equivalent: only certain percent-
ages are possible and there is a actually a range of concentrations corresponding to each
of those percentages. However, in many situations risk managers end up defining an ac-
ceptable environmental concentration which should be the highest concentration which
is safe enough. Setting aside the very important issues involved in extrapolating from
single-species acute sensitivity to field ecosystems, any concentration between x(J) and
less than x(J+1) is hazardous to 100(J/N)% of species and so the highest such concen-
tration is just below x(J+1). We could therefore consider x(J+1) to be the HC100(J/N)

provided that we make it clear that concentrations must be lower than this level.

2Same meaning of hazardous as in the phrase “concentration hazardous to 5% of species” defining
the HC5.
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When N is small, there are not many possible values of 100(J/N) and the software
described in part II makes the user select one of them. For larger N , there are enough
values of 100(J/N) that there will be one a little less than or equal to 5 (or other value
of p of interest) which can be used as though it was 5. In this case the software requires
the user to choose a whole number p to define an approximate HCp.

Finally, it is not obvious that this scenario-specific HC5 (or HCp for some other p) is
a quantity of interest for risk assessment. Some of that doubt applies just as much to
the A&J calculation and there is a literature discussing the appropriateness of using the
A&J HC5. Making the SSD apply only to a finite number of species is likely to raise
further questions, especially when N is small. Computing a hazardous concentration
is not the only possible way to exploit the posterior distribution of true sensitivities for
the scenario species obtained using the new statistical model; it may be that SSDs for
taxonomic scenarios need to be summarised in a different way altogether.

5 Hierarchical Statistical Modelling

Here we give a relatively non-technical outline of how to build a multivariate statistical
model of sensitivity, for multiple chemicals and multiple species, which incorporates (i)
intertest variation, (ii) inter-chemical variation of overall toxicity and of magnitude of
interspecies sensitivity variability, (iii) species sensitivity tendencies and (iv) residual
interspecies correlation. The modelling exploits the taxonomic classification of species
to make tendencies likely to differ less for closely related species and to make inter-
species correlation stronger for closely related pairs of species.

Full mathematical details of the resulting model are given in appendix A.

It is not really possible to convey a proper sense of the modelling approach without
using some mathematical notation. To try to make what follows more digestible, it is
broken into a sequence of steps each adding a bit of complexity.

5.1 The single chemical A&J model

For a single chemical, the A&J model is a normally distributed SSD for log-EC50s with
mean µ and standard deviation φ. This can be written as:

yj = µ+ φzj

where

– j indexes species;
– yj is the log-EC50 for species j;
– zj is the standardised chemical-species interaction3;
– the zj are independently sampled from the standard normal distribution (mean 0,

standard deviation 1)

5.2 Multiple chemicals

When more than one chemical needs to be modelled, we need a notation to make ex-
plicit which chemical is being considered. We do this by adding an index i to each

3The term ‘interaction’ is used here in a statistical rather than chemical sense.
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quantity in the single chemical model:

< yij = µi + φizij (1)

where i now indexes chemicals and j continues to index species.

Note that there is an index i on µ and φ which means that each chemical has a different
mean and standard deviation for its SSD.

5.3 Adding features to A&J’s model

5.3.1 Feature 1: inter-test variation

We now need to distinguish measured from true sensitivity. In doing so, we also need
to allow for the possibility of more than one measurement for a particular chemical-
species combination.

We write
yijk = µij + εijk

where:

– as before, i indexes chemicals and j indexes species;
– the new index k indexes (potential) multiple measurements for the same chemical-

species combination;
– yijk denotes a log-EC50; specifically, it is the kth log-EC50 measurement for

chemical i tested on species j.;
– µij is the true sensitivity (log-TEC50) of species j to chemical i.
– εijk is the intertest variation component (“measurement error”) for this particular

log-EC50.

We adapt the multiple-chemical version of the A&J model to be a model for true sensi-
tivities (log-TEC50s) instead of measured sensitivities (log-EC50s). We simply replace
yij by µij in (1) to give

µij = µi + φizij (2)

The intertest variation will always have zero mean. A normal distribution would be
mathematically and computationally convenient but is unrealistic. A scaled t-distribution
provides the necessary long-tailed distribution indicated by the earlier data analysis.
The degrees of freedom might either be specified a priori or learned from the data along
with other parameters.

5.3.2 Feature 2: species’ tendencies

For each species, we add a sensitivity tendency parameter to (2):

µij = µi + βj + φizij

Here, βj is the sensitivity tendency of species j. Since it has only a j index, this value
applies to all chemicals.

A simple model is that sensitivity tendencies follow a normal distribution.
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5.3.3 Feature 3: interspecies correlations

We introduce interspecies correlation in two ways:

– correlating the tendencies for two species j and j′ so that Corr[βj, βj′ ] = ρjj′
means that pairs of species with higher ρjj′ are likely to have smaller differences
between the corresponding pair of tendencies.

– correlating the SSD variability (chemical-species interactions) so that Corr[zij, zij′ ] =
γjj′ means that the difference between two species’ interactions for the same
chemical is likely to be smaller when γjj′ is greater.
Note that the correlation here only depends on the two species and is the same for
all chemicals and only applies to interactions for the same chemical.

At this stage we seem to be introducing a very large number of correlation parameters
(two for every pair of species).

5.3.4 Feature 4: taxonomic structure for correlations

To avoid the problem of having too many correlation parameters and to take into account
what we learned from the earlier data analysis, we make the correlations actually depend
only on the taxonomic distance between a pair of species.

The detail depends on the precise taxonomic classification scheme we choose to use.
Here we will consider the hypothetical situation where we use just three levels of clas-
sification: phylum, family and species. Then

– Species in the same family are at distance 1 from each other
– Species in the same phylum but different families are at distance 2
– Species in different phyla are at distance 3

The correlations will be zero for pairs of species at distance 3. So we now needs just
four correlation parameters: γ1 and ρ1 will be used for pairs of species at distance 1 and
γ2 and ρ2 for pairs at distance 2.

More generally, in a classification scheme with L levels, there will be 2(L− 1) correla-
tion parameters.

5.3.5 Feature 5: model variation of per-chemical SSD parameters

Each chemical has an SSD mean parameter µi. We suppose that the inter-chemical
variation in these follows a normal distribution.

Similarly, we suppose that the inter-chemical variation in the SSD variation parameter
φi follows a gamma distribution (on the scale of 1/φ2)

5.4 The final model

For computational purposes it is easier to represent the correlation structure above by
breaking the species sensitivities and the chemical-species interactions into sums of
independent components of variation. The result would be a classical mixed model (also
known as random-effects or multi-level models) except for two features: the presence of
the per-chemical scaling φi and the use of t-distribution to describe intertest variation.
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6 Computation

In practice, there are five aspects to computation:

• Specify a prior distribution for the hyper-parameters (variances of tendency and
interaction components, variability of per-chemical SSD parameters etc). We
propose the use of relatively diffuse individual prior distributions which do not
require elicitation of expert judgements.

• Choose a suitable database of ecotoxicity data. We currently use the working
database described in section 2

• Fit a variety of versions of the model to the database to decide which levels of
taxonomic classification to include in the the model.

As is usual with statistical models, there is a trade-off between complexity, com-
putation time and quality of prediction. Overly simple models make poor predic-
tions but so too do overly complex ones.

A good deal of time has been spent in early 2013 looking at this issue from a
variety of perspectives including informal data analysis (Figure 8), the Akaike
and Bayes information criteria AIC and BIC (Burnham and Anderson , 2002),
the deviance information criterion DIC (Spiegelhalter et al , 2002) and recent
work (Plummer , 2008) addressing known weaknesses in AIC, BIC and DIC for
hierarchical random-effects models.

No conclusive answer has yet been reached about which levels of taxonomic clas-
sification to incorporate in building the hierarchical structure. Provisionally, it
would seem that phylum, order, family, genus and species are all contenders for
inclusion with the greatest doubt about the inclusion of order and/or genus.

• Obtain the initial posterior distribution of all the model parameters which are
relevant to the database.

The initial posterior will be represented by a Monte Carlo sample obtained us-
ing Markov Chain Monte Carlo implemented in R (R Core Team , 2012); see
appendix D for the code. That sample will then be used in the software tool
described later to make inferences for new chemicals.

• In the software tool, for each new chemical, the initial posterior will then be used
as the prior distribution for a version of the model specific to the new chemical.

That prior will be updated by the software tool using test data for the new chem-
ical to obtain the posterior distribution of sensitivities to the new chemical of all
species in the user’s chosen taxonomic scenario.

Again the posterior will be represented by a Monte Carlo sample obtained by
Markov Chain Monte Carlo but this time implemented in Matlab (Matlab , 2012)
which also provides the graphical user interface for the software tool.

• Use the posterior for the new chemical to compute the posterior distribution of
summary quantities such as the scenario-specific HC5.

Details of computation are provided in appendix B.
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Part II

Software Tool (hSSD)
In addition to the science described earlier, an important output of the project is an open-
source freely accessed software tool which makes the model and algorithms available
for general use. The name of the tool is “hSSD” which stands for “hierarchical species
sensitivity distribution”.

7 Structure of the tool

The tool provides a graphical user interface to the methodology. It is written in Matlab
(Matlab , 2012) and the source code is included with the software. However, Matlab is
not freely available and so the software is distributed as a “compiled Matlab” program
which does not require the user to have a Matlab license. Instead, the user must down-
load and install the “Matlab compiler runtime” which is available for free and which
enables the user to run compiled Matlab programs.

To reduce the burden of installation for users, Microsoft Visual Studio 10 is used to
build a Microsoft Installer for the tool, resulting in a standard Microsoft .msi file. The
user simply downloads an executable zip file and executes and installation takes place,
checking for problems as it proceeds.

8 Using the tool

To use the tool, the user must explicitly provide

• Test data for a new chemical. These are measured EC50s and can be point values
or censored (upper, lower or interval) values.

• The chosen taxonomic scenario: the list of species to be included in the SSD.

• Full taxonomic classification for any species which appears in the test data or
the taxonomic scenario and which is not already listed in the file of taxonomic
classifications which accompanies the software.

The user can add classifications using the graphical user interface and save the
extended file of taxonomic classifications for future use.

Implicitly, the user is also specifying an HDF5 file (see section B.4) to be used. The
HDF5 contains the details of the model being used and the sample from the initial
posterior distribution described in sections 5 and 6. An HDF5 file is distributed with
the software and is used by default; it is based on the model described here, a particular
choice of taxonomic levels, and the database described in section 2.

It is not currently envisaged that users will create other HDF5 files for themselves.
Allowing the user to choose an HDF5 file to use in the software provides flexibility for
the future by effectively allowing some changes to software without having to distribute
an entirely new version. For example, we might want to change the database or to assist
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users in using different databases or to allow users to experiment with different choices
of taxonomic levels.

The user then “runs the model” for the new chemical: the algorithm from section B.5.
Because this is a Monte Carlo algorithm, one must specify the number of samples to
be taken from the posterior and because it is an Markov Chain Monte Carlo algorithm,
the user must also specify how much the output should be “thinned” and how much
initial output should be discarded (“burn-in”). The sample size, thinning rate and burn-
in period are all options under the control of the user but the software is distributed with
default values so that the user does not need immediately to consider these issues. The
user’s preferences can be saved to be used automatically when the software is run again.

Once the model run is complete, the user can explore various aspects of the output:

• The main output “screen” shows the estimated SSD and uncertainty attached to
the estimate. The horizontal axis is concentration and the vertical access is the
fraction of species “affected”: a species is considered affected at a given concen-
tration if its true EC50 is lower than the given concentration4

Test results are overlaid for those tested species which are also in the scenario.
This can be done in two distinct ways. In both cases, the vertical coordinate of
a species is given by the rank of that species in the scenario-SSD, based on the
posterior median estimate of true sensitivity for each species: each time through
the MCMC loop we sample a value for the true sensitivity for each species in the
scenario and at the end can compute the median of that value for each species in
the scenario. The choices for the horizontal coordinate are

– Each species is plotted as point with horizontal coordinate given by the EC50

measurement: lower/upper bound is used for upper/lower censored data and
mid-point of interval for interval-censored data. Censored data are plotted
with a greyed-out symbol.

– Each species is plotted as point with horizontal coordinate given by the pos-
terior median estimate of true sensitivity of the species. Optionally, a hor-
izontal line is plotted showing a credible interval for the true sensitivity of
the species.

Optionally, the user can show the estimated HCp together with upper and lower
credible bounds on the estimate. The value of p is chosen using a pop-up menu
which offers a list of possible values. When the number N of species in the
scenario is small, the choices offered are all the allowable ones (see section 4.3);
for larger N , the user is offered whole number values of p and the software uses
the largest allowable value less than or equal to the user’s choice.

Optionally, the user can show the estimated “fraction affected” (FA) at a concen-
tration specified by the user. The fraction affected is the percentage of scenario
species for which the true EC50 is lower than the given concentration. The cen-
tral estimate is the posterior mean of FA and is accompanied by upper and lower
credibility estimates.

Various further options exist to control symbols, colours and fonts used and to ad-
just locations of species names or to display them as higher levels of classification
or even to omit them altogether.

4This matches the use of the term “hazardous”.
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Figure 9: Splash screen for hSSD software

• A second output screen provides access to information about each individual
species in the scenario.

The user selects a species from a pop-up menu and the software shows the pos-
terior distribution of true sensitivity (log-TEC50) for that species. This screen has
two intended purposes: to facilitate the user who is interested in the risk to in-
dividual species as well as in the HCp; to enable the user to develop insight, by
examining detailed output, into what the model and algorithms actually do.

• A third output screen provides access to diagnostic information about the MCMC
process itself.

The user can examine trace and autocorrelation plots for the MCMC sample of
true sensitivity for each species in the taxonomic scenario. The species to be
considered is chosen from a pop-up menu.

9 User Interface

When the user starts the software, it immediately displays a “splash screen” (Figure 9)
to show that something is happening; the splash screen remains visible until the main
user interface starts up and is ready to use, at which point the splash screen disappears.

The opening screen for the main user interface is shown in Figure 10.

Further information about the interface will be conveyed via the example in part III of
this report; the example includes a number of additional screen-shots.

10 Documentation

A small amount of documentation is currently included with the software. It is intended
simply to get the user started; the software interface is meant subsequently to be self-
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Figure 10: Initial window for the main user interface of the hSSD software
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explanatory to users who understand the basic science. In practice, we do not yet know
whether the documentation is sufficient nor whether the interface is self-explanatory;
we also need to publish the science to make it more available.
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EC50 Lower-limit on EC50 Upper-limit on EC50 Species
— 0·0 1000·0 corophium salmonis

1400·0 1400·0 1400·0 crassostrea gigas
2100·0 2100·0 2100·0 daphnia magna
550·0 550·0 550·0 daphnia pulex

6000·0 6000·0 6000·0 macoma balthica
8·7 8·7 8·7 metapenaeus monoceros

— 50000·0 — mytilus edulis
15000·0 15000·0 15000·0 poecilia reticulata

Table 1: Data used in example: EC50s are expressed in µg/l; censored data have only
an upper or lower limit on the EC50.

Part III

Example
We now give a worked example of basic use of the software and interpretation of the
results. We use as data for a new chemical the data for sodium sulfide (CAS=1313822)
from the working data base described in section 2. These data were chosen because
they are real data and include both lower-censored and upper-censored data. Although
these data are for a chemical in the database, the software treats them as though they
were new data and no connection is made in the software to the fact that they derive
from sodium sulfide. The data are presented in Table 1. Note that these data were also
used in section 1 to illustrate the A&J calculation; however the censoring was ignored
in that calculation.

Data can be entered individually into hSSD or provided as an Excel (.xls) file: the
example data are available as demo2.xls distributed with hSSD from version 1.3
onwards. Note that the units used for EC50s may be specified in the Excel file by an
integer entered in column F of row 1: 1=ng/l, 2=µg/l, 3=mg/l etc.

By clicking the Import button (see Figure 10) and selecting demo2.xls in the re-
sulting file dialog, we arrive at Figure 11.

We now have to choose the species to be included in the scenario. To do so, we click on
2. Scenario and then on Add All Species. The result is shown in Figure 12.

Now we need to run the model. To do so with default MCMC settings, we simply click
3. Run Model. Initially we get a “progress bar” screen like in Figure 13 and then,
when the calculation is finished, we are taken directly to the output screen shown in
Figure 14. The figure shows the output screen after three choices have been made by
the user: (i) the range of concentrations for the plot has been set to run from 0.01µg/l
to 107µg/l using the text-entry boxes at the top-right of the plot; (ii) for the HCp output,
p = 5 has been selected using the drop-down menu and approximated in the software by
the nearest available value p = 4.91; and (iii) a concentration for the fraction affected
(FA) output has been set to 10µg/l.

The plot shows the median estimate of the SSD together with upper and lower bounds;
as indicated by Aldenberg and Jaworska (2000), the bounds can be interpreted in two
ways: (a) horizontally to give a range representing uncertainty about the concentration
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Figure 11: Screen shot of the hSSD software after the data for the example have been
loaded.
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Figure 12: Screen shot of the hSSD software after scenario has been chosen — all
species are in the scenario.
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Figure 13: The hSSD software “progress bar” screen.

corresponding to a particular percentage of species affected; or (b) vertically to give a
range representing uncertainty about the percentage of species affected at a particular
concentration. For each tested species which is included in the scenario, a point is
plotted: the horizontal coordinate is the posterior median estimate of the TEC50 and the
vertical coordinate is the position of that species in the scenario-specific SSD, i.e. the
estimate of the percentage of scenario species which are more sensitive than the tested
species (based on tghe posterior median estimate of sensitivity of each species). The
median estimate of the HC5 and upper and lower bounds (90% credibility) are shown
underneath the plot at the bottom-left while the mean estimate of the fraction affected
and uppper and lower bounds (at least 90% credibility) are shown to the bottom-right.

Figure 15 shows the effect of selecting the Plot HCx tick-box which visually high-
lights the interval for the HC5 reported underneath. Similarly, Figure 16 shows the
effect of selecting the Plot FA. tick-box to visually highlight the estimate of the FA
and associated uncertainty.

Figure 17 shows the SSD overlaid with the uncertainty attached to each estimate of true
sensitivity for the tested species; the species names have been omitted this time.

Figure 18 shows the SSD with the data points overlaid and plotted using + symbols.
Species names are positioned at the right of the graph this time.

We can also look at the posterior uncertainty relating to the true sensitivity (TEC50) of
an individual species from the scenario: Figures 19 and 20 show the uncertainty about
two species: one tested and the other not tested.

To conclude this part of the report, it may be interesting to compare the earlier A&J
HC5 estimate of 19.5µg/l (10% lower and upper limits 1.32 and 97.7) with the estimate
provided for the scenario in this example: 15.6 (5% lower and upper limits 0.63 and
424.). A more valid comparison arises from making the limits more comparable: 5%
lower and upper limits for the A&J estimate are 0.42 and 140. In making any com-
parison, bear in mind that the A&J calculation completely ignored the fact that highest
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Figure 14: Screen shot of the hSSD software showing the basic output screen.
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Figure 15: Screen shot of the hSSD software showing the output emphasising the HC5

estimate and uncertainty summarised underneath the plot.
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Figure 16: Screen shot of the hSSD software showing the output emphasising the HC5

estimate and uncertainty summarised underneath the plot.
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Figure 17: Screen shot of the hSSD software showing the output, emphasising the
uncertainty attached to the true sensitivity of each tested species.
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Figure 18: Screen shot of the hSSD software showing the output; the SSD is over-
laid with the data for the tested species; censored values are indicated by greyed-out
symbols.
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Figure 19: Posterior uncertainty about the true sensitivity (TEC50) to the example chem-
ical of a tested species (poecilia reticulata).

Figure 20: Posterior uncertainty about the true sensitivity (TEC50) to the example chem-
ical of an un-tested species (acanthopagrus schlegeli).
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EC50 was in fact censored and could in fact be any value above the recorded 50000 µg/l
while one of lower EC50s was censored in the other direction. We are of course com-
paring chalk and cheese, as there are many other fundamental differences beteween the
calculations, but one interesting question which arises is: how much difference would
there be between A&J and hSSD across a range of scenarios, chemicals and sample
sizes/structures?
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Part IV

Appendices
A Hierarchical Statistical Modelling

In what follows, we give details of our multivariate statistical model of sensitivity.

A.1 Notation

• i indexes chemicals.

• j indexes species.

• k indexes measurement(s) for the same chemical-species combination.

• yijk is the k-th measured log-sensitivity for chemical i tested on species j. This
will be a log-EC50 for some acceptable end-point, probably mortality or in some
cases immobility.

• Taxonomic structure in the model may use a subset of the levels in use in standard
taxonomic classification systems. ` indexes taxonomic levels in the model. It
ranges from 1 to L where L is the number of levels in the classification being
used in the chosen model.

• t`(j) is then the taxonomic classification of species j at level ` for ` = 1, . . . , L.

A.2 Model structure

The structure of model we consider for now is:

yijk = µij + εijk (3)

and
µij = µ+ αi + βj + ψij (4)

In (3) and (4):

• µij is the true log-sensitivity for species j exposed to chemical i;

• εijk is “measurement error” or, more pedantically, intertest variation;

• µ is the overall central value of log-sensitivity across all chemicals and species;

• αi is difference between the central value of log-sensitivity for chemical i and µ;
thus µ+ αi is the central value of log-sensitivity for chemical i.

• βj is the (log-sensitivity) “tendency” of species j; this applies to all chemicals.

• ψij is the (log-sensitivity) “interaction” between chemical i and species j; this is
what allows the position of a species in the SSD to vary between chemicals.
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However, we want to be able to incorporate both chemical-specific variability and
taxonomically-related structure while at the same maintaining as much exchangeability
as possible. Therefore, we write

ψij = φiξij (5)

where

• φi > 0 scales (log-sensitivity) variation for chemical i; this allows some chemi-
cals to exhibit more variation in sensitivity than others.

• ξij is directly comparable between different chemicals whereas ψij is not; this
is the quantity we want to use as the basis for (partial) exchangeability between
interactions;

We introduce taxonomically related structure by

βj = β1t1(j) + · · ·+ βLtL(j) (6)

and
ξij = ξi1t1(j) + · · ·+ ξiLtL(j) (7)

so that the tendency of a species is made up of tendency components corresponding to
its classifications at the levels of the taxonomic classification system being used and a
similar decomposition applies to the interaction between each chemical and species. In
this notation, β`t is the tendency component at level ` for a species whose classification
at level ` is t.

We complete the structure with statements about exchangeability and independence.

• All εijk values are are a priori exchangeable.

This assumption could easily be relaxed, for example by making them exchange-
able only within taxonomically defined groups; we could also make the ε distri-
bution depend on covariates should they be available.

So that the decomposition in (3) is meaningful, the ε... distribution is centered at
zero.

• All αi values are a priori exchangeable. The α. distribution is located at zero.

• At each taxonomic level `, all β`t values are exchangeable.

Each β`. distribution is located at zero.

• All φi values are exchangeable. The φ. distribution has scale one.

• At each taxonomic level `, all ξi`t values are exchangeable.

Each The ξ.`. distribution is located at zero.

• Conditional on any parameters for the various distributions representing exchange-
ability, we specify that the following (blocks) are a priori independent:

µ, {αi}, {β1t}, . . . , {βLt}, {φi}, {ξi1t}, . . . , {ξiLt}, {εijk}
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A.3 Parameterisation

We now make specific distribution family choices for all the components of the model:

• Write
εijk = σε

zijk√
κijk

where zijk are iid (independent and identically distributed) N(0, 1) and κijk are
iid Γ(1

2
νκ,

1
2
(νκ − qκ)). The z... and κ... blocks are independent of each other and

of all the other blocks of parameters of which ε... was previously declared to be
independent.

This construction gives ε... a scaled t-distribution with νκ degrees of freedom.
The degrees of freedom may be fixed or may be sampled; either way it will be
included in the sample from the posterior for the database. The parameter qε will
be fixed; its purpose is to improve independence in the sample from the posterior
obtained by MCMC.

• the chemical central values αi are iid N(0, σ2
α);

• the species tendency components at each level ` are iid N(0, σ2
β`);

• the interaction components at each level ` are iid N(0, σ2
ξ`);

• λi = 1/φ2
i , the reciprocal squares of the chemical scalings, are iid Γ(1

2
νφ,

1
2
(νφ −

qφ)). Again νφ may be sampled or fixed and qφ is fixed.

The reason for choosing a scaled t-distribution for measurement error rather than a
normal distribution is the long-tailed behaviour observed in Figure 2.

Where normal distributions were chosen, the intent was to provide enough flexibility
to infer variability of the model component involved whilst making MCMC reasonably
straightforward to implement.

The single-parameter gamma distribution for the λi was chosen to provide the capacity
to infer inter-chemical relative variation in per-chemical SSD variability; the typical
magnitude of SSD variability is determined by the σ2

ξ` parameters.

Conditional on the hyper-parameters σα, σβ1, . . . , σβL, σξ1, . . . , σξL, νφ, σε and νκ, we
specify that the following (blocks) are a priori independent:

µ, {αi}, {β1t}, . . . , {βLt}, {φi}, {ξi1t}, . . . , {ξiLt}, {κijk}, {zijk}
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B Details of computation

For a summary of the overall computational approach, see section 6.

B.1 Prior distribution

The prior on the hyper-parameters consists of a number of independent components:

p(µ, σα, σβ1, . . . , σβL, σξ1, . . . , σξL, νφ, σε, νκ) ∝
p(µ)p(σα)p(σβ1, . . . , σβL)p(σξ1, . . . , σξL)p(νφ)p(νκ)/σε

where, at present,

• µ ∼ N(0, 102) which is a fairly diffuse distribution assigning 95% probability to
a range covering 40 orders of magnitude for central sensitivity.

• p(σα) ∝ 1.

• p(σβ1, . . . , σβL) ∝ 1.

• p(σφ1, . . . , σφL) ∝ 1.

• p(νφ) is uniform on 1/νφ subject to νφ > max(1, qφ).

• p(νκ) is uniform on 1/νκ subject to νκ > max(1, qκ).

B.2 Ecotoxicity database

We use the database and taxonomic classifications described in detail in section 2.

Additional notation specific to the database:

• The set of all chemicals i in the database is I.

• The set of all species j in the database is J .

• The set of all chemical-species combinations (i, j) in the database is JI . The set
of species tested on chemical i is Ji.

• For the database, k ranges from 1 to Kij for (i, j) ∈ JI .

• L` is the set of classifications at level ` for species in the database and T` is the
number of such classifications. Thus, for species in the database, t`(j) ∈ L`.
Similarly, Li` is the set of classifications at level ` for species in the database
tested on chemical i.
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B.3 Algorithm for sampling from the initial posterior

In what follows, I am going to assume that a decision has already been made about
which levels of taxonomic classification to include in the model.

I will also assume initially that there are no censored data and then subsequently explain
how to adapt the algorithm to cope with censored data.

The initial posterior will be represented by a Markov Chain Monte Carlo sample. The
rest of this section describes an algorithm for MCMC sampling from the posterior dis-
tribution of all the parameters given the data in the database.

The parameters to be inferred, collectively denoted by θ, are:

µ, σα, {σβ` : ` = 1, . . . , L}, νφ, {σξ` : ` = 1, . . . , L}, σε, νκ,
{αi : i ∈ I}, {λi : i ∈ I}, {β`t : ` = 1, . . . , L; t ∈ L`}, {ψi`t : i ∈ I; ` = 1, . . . , L; t ∈ Li`},

{κijk : (i, j) ∈ JI ; k = 1, . . . , Kij}

where we define ψi`t = φiξi`t. Note that the z... do not appear in this list as their values
are determined by the data together with the other parameters.

For MCMC we choose to work with the ψ... rather than the ξ... as it leads to a more
straightforward update. To do so, we need to note that ψi`t |φi, σξ` ∼ N(0, φ2

iσ
2
ξ`) and

that the ψ... are conditionally independent given φ. and σξ1, . . . , σξL.

The posterior pdf is

p(θ | y) ∝ p(νφ)p(νκ)p(σε)

×
∏
i∈I

pnormal(αi; 0, σα)

×
L∏
`=1

∏
t∈L`

pnormal(β`t; 0, σβ`)

×
∏
i∈I

pgamma(λi;
1
2
νφ,

1
2
(νφ − qφ))

×
∏
i∈I

L∏
`=1

∏
t∈Li`

pnormal(ψi`t; 0, φiσξ`)

×
∏

(i,j)∈IJ

Kij∏
k=1

pgamma(κijk;
1
2
νκ,

1
2
(νκ − qκ))pnormal(yijk;µij, σε/κ

1
2
ijk)

where

µij = µ+ αi +
L∑
`=1

β`t`(j) +
L∑
`=1

ψi`t`(j)

Here, pnormal(x;µ, σ) is the probability density at x of the normal distribution with mean
µ and standard deviation σ and pgamma(x; a, b) is the probability density at x of the
gamma distribution with shape a and rate b.

We will use a Metropolis within block Gibbs approach. The sampling/updating blocks
are:
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• {κijk}

• σα, {σβ`}, {σξ`}, σε

• {φi}

• νφ and νκ

• µ, {αi}, {β`t}, {ψi`t} (the linear predictor)

B.3.1 Updating the κ block

We can see that κijk only appears in

pgamma(κijk;
1
2
νκ,

1
2
(νκ − qκ))pnormal(yijk;µij, σε/κ

1
2
ijk)

so that

p(κijk | . . . ) ∝ κ
1
2
νκ−1

ijk exp{−1
2
(νκ − qκ)κijk}κ

1
2
ijk exp{−1

2
κijk(yijk − µij)2/σ2

ε}

= κ
1
2
(νκ+1)−1

ijk exp{−1
2
κijk[νκ − qκ + (yijk − µij)2/σ2

ε ]}

Thus the conditional distribution of κijk is Γ(1
2
(νκ + 1), 1

2
[νκ − qκ + (yijk − µij)2/σ2

ε ]).

The κ... values are conditionally independent and it is computationally more efficient
in a language such as R to sample them in a single line of code so as to avoid explicit
looping.

B.3.2 Updating the σ block

Except for σε, each σ appears only in the normal pdfs for the quantities whose variability
it controls, and even the case of σε requires only a minor change. Therefore the updates
are all essentially the same, depending only on how many quantities are controlled by
the parameter and the sum of squares of of those quantities.

Consider the σε case. We have

p(σε | . . . ) ∝ p(σε)
∏

(i,j)∈JI

Kij∏
k=1

pnormal(yijk;µij, σε/κ
1
2
ijk)

∝ σ−1ε σ−Kε exp{−1

2
σ−2ε

∑
(i,j)∈JI

Kij∑
k=1

κijk(yijk − µij)2}

where K =
∑

(i,j)∈JI Kij .

Changing variable to τε = 1/σε with Jacobian τ−3/2ε , we see that the conditional distri-
bution of τε is Γ(1

2
K, 1

2

∑Kij
k=1 κijk(yijk − µij)2).

What’s really happening here is that σε is the standard deviation of the normally dis-
tributed quantity eijk = εijk/κ

1
2
ijk and the resulting gamma distribution is really Γ(1

2
ne,

1
2
Se)

where ne is the number of e... and Se is the sum of their squares.

Similarly, we find the following conditional distributions:
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• τα | ... ∼ Γ(1
2
(nα − 1), 1

2
Sα) where nα = |I| and Sα =

∑
i∈I α

2
i .

• τβ` | ... ∼ Γ(1
2
(nβ` − 1), 1

2
Sβ`) where nβ` = |L`| and Sβ` =

∑
t∈L` β

2
`t.

• τξ` | ... ∼ Γ(1
2
(nξ`−1), 1

2
Sξ`) where nξ` =

∑
i∈I |Li`| and Sξ` =

∑
i∈I
∑

t∈Li` ξ
2
i`t =∑

i∈I
∑

t∈Li` ψ
2
i`t/φ

2
i .

Unlike τε, each of these has one less degree of freedom than the number of quantities
because the prior on the corresponding standard deviation was uniform.

Note that the σ-parameters are conditionally independent given everything else.

B.3.3 Updating the φ block

λi only appears in

pgamma(λi;
1
2
νφ,

1
2
(νφ − qφ))

L∏
`=1

∏
t∈Li`

pnormal(ψi`t; 0, φiσξ`)

so that

p(λi | . . . ) ∝ λ
1
2
νφ−1

i exp{−1
2
(νφ − qφ)λi}λ

1
2
nλi

i exp{−1
2
λi

L∑
`=1

∑
t∈Li`

ψ2
i`t/σ

2
ξ`}

= λ
1
2
(νφ+nλi )−1

i exp{−1
2
λi[νφ − qφ +

L∑
`=1

∑
t∈Li`

ψ2
i`t/σ

2
ξ`]}

where nλi =
∑L

`=1 |Li`|
Thus the conditional distribution of λi given everything else is Γ(1

2
[νφ + nλi ],

1
2
[νφ −

qφ +
∑L

`=1

∑
t∈Li` ψ

2
i`t/σ

2
ξ`]). Again, the λi are conditionally independent and so it may

be more efficient to sample them all in a a single line of code.

B.3.4 Updating the ν block

The νφ and νκ updates have essentially the same structure. First, consider the situa-
tion where we observe x1, . . . , xn where xi | ν ∼ pgamma(xi;

1
2
ν, 1

2
(ν − q)). Then the

conditional pdf of ν is proportional to

p(ν)

[
(1
2
[ν − q])ν/2

Γ(ν/2)

]n (∏
i

xi)
ν/2 exp{−1

2
ν
∑

xi}

which on taking the (natural) logarithm becomes

log p(ν) + n
{

1
2
ν log(1

2
[ν − q])− log Γ(1

2
ν) + 1

2
νlog x− 1

2
νx
}

We can easily use a Metropolis random walk to update ν. We choose to so by making
appropriately sized normally distributed random steps on 1/ν restricted5 to some ap-
propriate interval. This corresponds to putting a uniform prior on 1/ν on that interval.

For νκ, the equivalent of xi is κijk and n = K (defined earlier).

For νφ, the equivalent of xi is λi and n = |I|.
5To be precise, we make proposals outside the interval but those are always rejected.
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B.3.5 Updating the linear predictor block

We are now left with the problem of updating the parameters of the linear predictor: µ,
α., β.., ψ....

Fortunately, when the other parameters are known, the model is a standard linear mixed
model with heterogeneous errors having known heterogeneity. Many algorithms have
been proposed but the algorithm in MCMCglmm (2010) is highly efficient, making
clever use of sparse matrix computations. See appendix C for the details.

We need to formulate our linear predictor update problem as a linear mixed model.
Writing y and ε for the vectors formed respectively from all the yijk and all the εijk, and
ϑ for the vector formed from all the linear predictor parameters, we have

y = Wϑ+ ε

where W is a constant matrix implementing (4) for the database, ϑ has a multivariate
normal distribution prior with known mean ϑ0 and known variance Σ, and ε is a vector
of independent mean zero normal components having known standard deviations. In
this framework, we can efficiently obtain a sample from the distribution of ϑ given y
by the method described in detail in appendix C. An important contributing factor to
the efficiency is that the matrix W is sparse (many zeroes) and the pattern of sparseness
does not change between MCMC iterations.

Σ and W may be constructed as follows:

– Let us order the parameters according to the blocks listed at the start of this sec-
tion and assume that we have a specified ordering for the elements of I and for
each L` for ` = 1, . . . L. Then we will order: (i) α. to correspond to the ordering
of I; (ii) β.. in order first of increasing ` and then by the specified ordering of L`;
and (iii) ψ... first by `, then by I and then within each Li` to be consistent with
the ordering on L` (uniquely defined since Li` ⊆ L`).

– For this ordering, Σ1/2 has a very simple form: it is diagonal with the following
sequence of elements: (i) prior standard deviation of µ; (ii) σα repeated |I| times;
(iii) σβ` repeated T` times for ` = 1, . . . , L and arranged in order of increasing `;
(iv) φiσξ` repeated |Li`| times for i ∈ I and ` = 1, . . . , L and arranged in order
of increasing ` and within each ` in the order of the elements of I.

– We can order the components of y in any order; we just need to be consistent
and to be able to determine i, j and k for each element. The matrix W is then
determined by the orderings of the components of y and ϑ. The standard deviation
of each εijk is σε/κ

1
2
ijk.

B.3.6 Censored data

Censoring is easily handled: we sample values for censored yijk once in each MCMC
loop. Denoting the lower and upper bounds (possibly infinite) from censoring by Lijk
and Uijk respectively, we sample yijk from the normal distribution N(µij, σ

2
ε/κijk) trun-

cated to the interval [Lijk, Uijk].
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B.3.7 Initial values

For initial values when working in R, I made the following choices:

• In order to avoid a complicated calculation, I simply initialised each σ to 1 with
the exception of σε which I set to 0.5. These choices mean that enough early
output (burn-in) from the chain must be discarded to be sure that the chain has
reached equilibrium.

• All φi were initialised to 1.

• All κijk were initialised to 1.

• More recent code starts with νφ = 1 and νκ = 2.

• Initial values of yijk for censored measurements were taken to be the censoring
value for left or right censored data and the interval mid-point for interval cen-
sored data.

My main goal was to avoid having to provide initial values for the linear predictor
parameters; in principle these could have been initialised by output from fitting a version
of the model without φi by REML (restricted maximum likelihood) using the lme4
package for R.

B.3.8 Ordering of blocks

The initial values described are sufficient to enable the linear predictor block to be
sampled. After that, many orderings are possible and I made the following arbitrary
choice of order: censored data values, κ block, σε, νκ, remainder of the σ block, φ
block, νφ.

B.4 Output from analysing the database

We use the HDF5 format for transferring data. HDF5 is a widely used system for
handling/storing hierarchical numerical data and has working interfaces in both R and
Matlab on both Linux and Windows.

Entries in HDF5 files are named rather like files on a UNIX system (or Windows except
that “/” replaces “\”).

Here is the current structure which can evolve easily by changing version numbers if
we run into difficulties.

HDF path Type of object Value
/Version single integer currently 1
/MetaScenario group
/Model group
/Posterior group
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B.4.1 Meta-scenario details

The meta-scenario is a collection of species which must include at least all the species
in the database but may include others if available. In the MetaScenario group in the
HDF5 file, we provide a list of those and their full taxonomic classification.

By the term full classification, we do not mean to make a judgement about correct
classification practice. Its practical meaning is that all versions of the model fitted to
the database, when choosing the classification levels to include in the final model, uses
a subset of the levels in the full classification.

Meta-scenario notation:

• L∗ is the number of levels in the full classification being used in the meta-scenario.

• `∗ indexes levels in the classification. It ranges from 1 (coarsest, probably king-
dom) to L∗ (finest, probably species). Each higher level must be a (possibly
trivial) refinement of the previous level.

• T ∗`∗ is the number of different classifications found in the meta-scenario at level
`∗.

The MetaScenario group in the HFD5 file has the following structure:

HDF path Type of object Value Notation
/Version single integer currently 1
/ScenarioType single integer currently 1
/ScenarioName character string
/ScenarioDescription character string
/NumberOfSpecies single integer M
/LatinNames vector of M

character strings
/NumberOfClassificationLevels single integer L∗

/NamesOfClassificationLevels vector of L∗

character strings
/NamesOfClassifications group with L∗

entries
/NamesOfClassifications/1 vector of T ∗1

character strings
/NamesOfClassifications/2 vector of T ∗2

character strings
...
/CodedClassification M by L∗ matrix encoded so that the ith

row gives the
classification for the ith
latin name and the jth
column in that row is the
position of its
classification in “/Name-
sOfClassifications/j”
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B.4.2 Model description

This defines the model being used and names and describes it. It is “aware” of the
meta-scenario. For the current model, it also defines L and how the levels in the model
correspond to levels in the meta-scenario and gives values for qκ and qν . The corre-
spondence of taxonomic levels in the model to levels in the full classification in the
meta-scenario is determined by `∗1 < · · · < `∗L where `∗` is the index in the full classifi-
cation of level ` used in the model.

The Model group in the HFD5 file has the following structure:

HDF path Type of object Value Notation
/Version single integer currently 1
/ModelType single integer currently 1 (the

model described
above)

/ModelName character string
/ModelDescription character string
/NumberOfTaxonomicLevels single integer L
/TaxonomicLevels vector of L increasing

values in 1, . . . , L∗
`∗1 < · · · < `∗L

/ClassificationsUsed group with l entries
/ClassificationsUsed/1 vector of T1 integers values selecting

entries from
classification
level `∗1 in the
meta-scenario

/ClassificationsUsed/2 vector of T2 integers values selecting
entries from
classification
level `∗2 in the
meta-scenario

...
/Qkappa number
/Qphi number

B.4.3 Posterior distribution

This defines the type of posterior being provided (currently an MCMC sample). For the
current type of posterior, it then indicates the number of samples and gives the sample
data. It is “aware” of the model being used. The current description of the “Samples”
group is for model type 1.

We need to output all parameters which may be needed in when dealing with a new
chemical. These are µ, σα, σβ1, . . . , σβL, {β1.}, . . . , {βL.}, νφ, σξ1, . . . , σξL, σε and
νκ. The reason we need the actual β-values and not the actual φ-values is that the
former apply to all chemicals whereas the latter are chemical-specific. The reason we
might also need the σβ parameters is that they provide the distribution of tendencies for
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species which are not in the database but which for which test data are available for a
new chemical.

The Posterior group in the HFD5 file has the following structure:

HDF path Type of object Value Notation
/Version single integer currently 1
/PosteriorType single integer currently 1 (denotes

MCMC sample)
/NoOfSamples single integer n
/Samples group
/Samples/mu vector of n numbers µ
/Samples/nu group
/Samples/nu/kappa vector of n numbers νκ
/Samples/nu/phi vector of n numbers νφ
/Samples/beta group
/Samples/beta/1 n by T1 matrix β1.
/Samples/beta/2 n by T2 matrix β2.
...
/Samples/sigma group
/Samples/sigma/epsilon vector of n numbers σε
/Samples/sigma/alpha vector of n numbers σα
/Samples/sigma/beta n by L matrix σβ1, . . . , σβL
/Samples/sigma/xi n by L matrix σξ1, . . . , σξL

B.5 Algorithm for MCMC sampling for a new chemical

B.5.1 More notation

• The collection of all the database data is now y and all the parameters in the model
for the database are θ (as before).

• The data for the new chemical are y0jk (collectively y0). The values of (j, k)
involved will be referred to as “measured”.

• Any extra parameters for the new chemical are θ0. θ0 contains two groups of
parameters: those needed for the construction of y0jk and those needed for the
construction of µ0j for all species in the scenario; in both cases, we omit those
parameters which already appear in θ.

• Let ζ be the subset of θ given which y0, θ0 and y are independent. Denote the
remainder of θ by γ.

• Let ζ0 be the subset of θ0 which actually appear in p(y0 | θ0, ζ) and let γ0 be the
rest of the parameters in θ0.

• “Relevant” (`, t) are those from the database which actually appear for species in
the scenario or the data for the new chemical.
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• “Novel” (`, t) are those which appear in the scenario or data for the new chemical
but which are not in the database.

• “Active” (`, t) are all those which are either relevant or novel.

• “Measured” (`, t) are all (`, t`(j)) for measured j.

B.5.2 The parameter groups in detail

• What’s in ζ? µ, all the σ and ν parameters and β`t for all relevant (`, t).

• What’s in γ? β`t for irrelevant (`, t) in the database and all κ..., φi and φi`t for the
database.

• What’s in ζ0? κ0jk for measured (j, k), α0, φ0, ψ0`t for all measured (`, t) and β`t
for all measured novel (`, t).

• What’s in γ0? ψ0`t for all unmeasured active (`, t) and β`t for all unmeasured
novel (`, t)

From these parameter groups, we can obtain the following decomposition: (correspond-
ing to a DAG):

p(ζ, γ, y, ζ0, γ0, y0) = p(y | γ, ζ)p(γ | ζ)p(ζ)p(γ0 | ζ)p(ζ0 | ζ)p(y0 | ζ0, ζ) (8)

B.5.3 Structure of algorithm

To make inference about the scenario-specific SSD, in particular the scenario-specific
HCp for an allowable value of p, we need the joint posterior distribution of all the true
sensitivities µ0j to the new chemical for species in the scenario. This can be obtained by
marginalisation from p(θ0, ζ | y, y0). Taking a sample from p(θ0, ζ | y, y0) would suffice.

Moreover, integrating out γ from (8) and rewriting p(y | ζ)p(ζ) as p(ζ | y)p(y), we arrive
at

p(θ0, ζ | y, y0) = p(γ0 | ζ)p(ζ0, ζ | y, y0)

and
p(ζ0, ζ | y, y0) ∝ p(y0 | ζ0, ζ)p(ζ0 | ζ)p(ζ | y)

Looking closely at p(γ0 | ζ), we can see all the components of γ0 are conditionally
independent and sampled from normal distributions. If we can obtain a sample from
p(ζ0, ζ | y, y0), it is then trivial to extend it to a sample from p(θ0, ζ | y, y0)
Now, from stage 3 we have a random sample from p(θ | y) and so, simply by omitting
some variables, that is a random sample from p(ζ | y) which can therefore be used di-
rectly as a mechanism in an MCMC algorithm for making proposals for ζ from p(ζ | y)
as part of a Metropolis-Hastings update step. Applying the usual formula, the accep-
tance ratio would then be

p(y0 | ζ0, ζproposed)p(ζ0 | ζproposed)

p(y0 | ζ0, ζold)p(ζ0 | ζold)

51



and we shall see that this is easily computed. There is a possibility that the acceptance
rate will be low, in which case a more intelligent proposal mechanism may be needed
— perhaps something which looks a little like a random walk over key variables.

We shall also need a mechanism for making updates of ζ0. This is essentially the same
problem as updating θ in the MCMC algorithm used in stage 3 for sampling from the
posterior for the database.

B.5.4 Nitty-gritty

Then
p(y0 | ζ0, ζ) =

∏
measured (j, k)

pnormal(y0jk;µ0j, σε/κ
1
2
0jk)

where µ0j may be calculated using (4), (5), (6) and (7), and

p(ζ0 | ζ) =pnormal(α0; 0, σα)

× pgamma(λ0;
1
2
νφ,

1
2
(νφ − qφ))

×
∏

measured (j, k)

pgamma(κ0jk;
1
2
νκ,

1
2
(νκ − qκ))

×
∏

measured (`, t)

pnormal(ψ0`t; 0, φ0σξ`)

×
∏

measured novel (`, t)

pnormal(β`t; 0, σβ`)

How to update ζ0 in an MCMC algorithm?

• κ0jk — this is just the same as for the main algorithm: sample from Γ(1
2
(νκ +

1), 1
2
[νκ − qκ + (y0jk − µ0j)

2/σ2
ε ]).

• φ0 — this is just the same as for the main algorithm: sample from Γ(1
2
[νφ +

nλ0 ],
1
2
[νφ − qφ +

∑
measured (`, t) ψ

2
0`t/σ

2
ξ`]) where nλ0 is the total number of mea-

sured (`, t).

• α0, measured novel β`t, measured ψ0`t — again similar for the main algorithm.
Write

y0 = W1ϑ1 +W2ϑ2 + ε0

where: (i) ϑ2 consists of α0, measured novel β`t and measured ψ0`t; (ii) ϑ1 con-
sists of those components of ζ needed to compute µ0j for measured j, i.e. µ and
measured relevant β`t; (iii) ε0 is the vector of all ε0jk for measured (j, k).

Then ϑ1 is known and we can apply the algorithm from appendix C taking y =
y0 −W1ϑ1, W = W2, ϑ = ϑ2 and ε = ε0.

There may or may not be much benefit in exploiting sparseness W2. Given that
Matlab support for CHOLMOD is currently incomplete6, we just use ordinary
Cholesky factorisation and back-solving.

6However, examination of the scipy interface suggests that extended the current Matlab interface
should be fairly straightforward.
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Having updated ζ and ζ0, we should then sample γ0 and compute µ0j for all species
in the scenario. We then compute the percentiles of these µ0j values as the values of
HCp for various values of p; see section 4.3 for a discussion of the issue. Iterating the
MCMC loop many times, we obtain a collection of HCp values which represents the
posterior uncertainty about the scenario-specific HCp for the new chemical.

B.5.5 Censoring

The fore-going assumes that there are no censored data values for the new chemical.
As with the database analysis, a censored data value [L0jk, U0jk] simply adds an extra
node to the Bayesian network which has y0jk has its only parent. Consequently we can
proceed by data augmentation and including a step to sample all censored y0jk in the
MCMC loop.

As for the main algorithm, we initialise each censored y0jk to be the mid-point between
L0jk and U0jk if both are finite or to be the unique finite value if only one is finite.

In order to sample y0jk, we need to know µ0jk, σε and κ0jk. A convenient point in the
MCMC sequence to do so is when we have just computed all the true sensitivities to the
chemical for the purpose of calculating the HC5.
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C Hadfield’s problem/algorithm

This appendix is a restatement (with correction) of the method described in appendix
A.2 of MCMCglmm (2010)

Suppose that y = Wϑ + ε where (prior distribution) ϑ ∼ N(ϑ0,Σ) and ε ∼ N(0, R)
are independent and the matrix W is of full rank. We assume also that ϑ0 is known and
that Σ and R are known positive definite symmetric matrices

The question is how to simulate (efficiently) from p(ϑ | y).

C.1 The algorithm

A standard result for the multivariate normal shows that ϑ | y ∼ N(C−1[Σ−1ϑ0 +
W TR−1y], C−1) where C = W TR−1W + Σ−1.

Hence Cϑ | y ∼ N(Σ−1ϑ0 + W TR−1y, C) since C is symmetric. If we can simulate
from this distribution and then (effectively) pre-multiply by C−1 we are done.

Hadfield uses a method for simulating ϑ | y which he attributes to Garcia-Cortes and
Sorensen (2001) and then gets slightly wrong in his own text. Here’s my account of his
method:

• Simulate ϑ∗ and ε∗ from the prior.

• Set y∗ = Wϑ∗ + ε∗

• Compute ϑ̃ = C−1W TR−1(y − y∗).

• Set ϑ† = ϑ̃+ ϑ∗ to be the simulation of ϑ | y

Since, it is clearly multivariate normal, we just need to show that Cϑ† has the right
mean and variance.

But

Cϑ† = Cϑ̃+ Cϑ∗

= W TR−1y −W TR−1y∗ +W TR−1Wϑ∗ + Σ−1ϑ∗

= W TR−1y −W TR−1Wϑ∗ −W TR−1ε∗ +W TR−1Wϑ∗ + Σ−1ϑ∗

= W TR−1y + Σ−1ϑ0 + Σ−1(ϑ∗ − ϑ0)−W TR−1ε∗

The first two terms in the final expression are the required mean and have zero variance,
the third term is N(0,Σ−1) and the final term is N(0,W TR−1W ) so that the whole
expression has the required mean and variance.

C.2 Exploiting the algorithm

What makes the algorithm nice is that everything is very easy and computationally ef-
ficient except for the apparent need to multiply by C−1: in our (and Hadfield’s) frame-
work, W is sparse; Σ and R are both diagonal.

Moreover, a good way to calculate ϑ̃ = C−1x is to numerically solve Cϑ̃ = x in an
efficient manner. When C is positive definite and symmetric, Cholesky factorisation
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of C followed by back-solving generally works well. It is even more efficient when
C is sparse as it tends then also to have a sparse Cholesky factor for a good choice of
pivoting order. Finally, Cholesky factorisation of many such matrices requires much
less effort if the the sparseness of C is known to be the same each time.

The Matrix package for R contains support for sparse matrices, repeated Cholesky
factorisation of the same sparseness structure and back-solving using sparse factors. It
is in fact based on CHOLMOD by Tim Davis (as in Davis (2006)).

In fact, because of an implementation detail, I slightly adapt the algorithm. Write C∗ =
Σ1/2CΣ1/2 = Σ1/2W TR−1WΣ1/2 +I . Then C∗Σ−1/2ϑ̃ = Σ1/2W TR−1(y−Wϑ∗− ε∗).
The most fundamental object here is H∗ = Σ1/2W TR−1/2 so that C∗ = H∗H

T
∗ + I and

we find ϑ̃ by first solving C∗ϑ̃∗ = H∗R
−1/2(y−Wϑ∗− ε∗) equation to find ϑ̃∗ and then

setting ϑ̃ = Σ1/2ϑ̃∗.

The reason for doing this is that CHOLMOD provides support for Cholesky factorisa-
tion and back-solving for matrices of the form AAT + bI where one just passes in the
matrix A: for us A = H∗ above and b = 1.
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D R code to obtain initial posterior

deviance.hetpsi4 = function(
sigma.epsilon, nu.kappa, mu.y,
y, have.censored, censored, yL, yU,
q.kappa) {

nu.kappa.scale.factor = sqrt((nu.kappa-q.kappa)/nu.kappa)
scale.epsilon = sigma.epsilon * nu.kappa.scale.factor
loglld1 = -log(scale.epsilon)+dt(

(y-mu.y)[!censored]/scale.epsilon,
nu.kappa,
log=TRUE)

deviance = numeric(length(y))
deviance[!censored] = -2*loglld1
if(have.censored) {

loglld2 = pintervalt(
yL, yU,
nu.kappa,
center=mu.y[censored],
scale = scale.epsilon,
log.p=TRUE
)

deviance[censored] = -2*loglld2
}
deviance

}

iterate.hetpsi4 = function(
state0, N, thin=10, burn=0,
detailed=FALSE, shout=NULL,
switchtosingle=Inf,
doublechol=FALSE
){

## Unpack the state of the chain
for(n in names(state0)) assign(n, state0[[n]])

verydetailed = switchtosingle<N
if(verydetailed) {

detailed=TRUE
Nsingle = N-switchtosingle

}

## Storage for results
deviance.out = numeric(N)
mu.out = numeric(N)
sigma.epsilon.out = numeric(N)
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sigma.alpha.out = numeric(N)
sigmas.beta.out = matrix(numeric(N*L), nrow=N)
colnames(sigmas.beta.out) = taxlevels
sigmas.xi.out = matrix(numeric(N*L), nrow=N)
colnames(sigmas.xi.out) = sprintf("%s:CAS", taxlevels)
if(nu.phi.free) nu.phi.out = numeric(N)
if(nu.kappa.free) nu.kappa.out = numeric(N)
if(detailed) {

beta.out = matrix(numeric(N*sum(ns.beta)), nrow=N)
# colnames(beta.out) =

}
if (verydetailed) {

vartheta.out = matrix(numeric(Nsingle*nrow(Wt)), nrow=nrow(Wt))
rtilde.out = matrix(numeric(Nsingle*n.y), nrow=n.y)
kappa.out = matrix(numeric(Nsingle*n.y), nrow=n.y)
ycens.out = matrix(numeric(Nsingle*n.censored), nrow=n.censored)

}

## Needed to support DIC calculation
mu.y.bar = rep(0, n.y)
Dbar.y = rep(0, n.y)

## The baseline Cholesky factor of C_* which is (relatively)
## expensive to compute and which we then update with less effort
## each time round the MCMC loop
basechol = Cholesky(tcrossprod(Wt), Imult=1)

cat("Starting main loop\n")

for(t in seq(-burn+1,N)) {
if(!is.null(shout))

if (t%%shout==0)
cat(sprintf("Iteration %d\n", t))

for(dummy in 1:thin) {
sigmatilde = c(
100,
rep(sigma.alpha, n.CAS),
rep(sigmas.beta, ns.beta),
sigmas.xi[ell.for.psi]*phi[i.for.psi]
)

rtilde = sigma.epsilon/sqrt(kappa)

varthetastar = rnorm(n.vartheta, 0, sigmatilde)
estar = rnorm(n.y, 0, rtilde)
SighWtRnegh =
Diagonal(x=sigmatilde) %*% Wt %*% Diagonal(x=1/rtilde)

RHS = SighWtRnegh %*%
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((y-crossprod(Wt, varthetastar)-estar)/rtilde)
Cstarchol = update(basechol, parent=SighWtRnegh, mult=1)
if(doublechol) {
Cstarchol2 = update(basechol, parent=SighWtRnegh, mult=1)
stopifnot(identical(Cstarchol,Cstarchol2))

}
varthetatilde = sigmatilde*solve(Cstarchol, RHS)
vartheta = varthetatilde+varthetastar

## Compute the true sensitivity for each datum
mu.y = as(crossprod(Wt, vartheta), "numeric")
## Sample values for the censored data (if any)
if(have.censored)
y[censored] = rcensnorm(

n.censored,
yL,
yU,
mu.y[censored],
sigma.epsilon/sqrt(kappa[censored])
)

## Added to debug problem with MCMC failure
stopifnot(all(is.finite(y)))
## Compute epsilon as pre-cursor to deviance and kappa sampling
epsilon = y - mu.y
## Compute the deviance now
deviance.y = deviance.hetpsi4(
sigma.epsilon, nu.kappa, mu.y,
y, have.censored, censored, yL, yU,
q.kappa
)

## sample kappa values followed by sigma.epsilon
kappa = rgamma(
n.y,
(nu.kappa+1)/2,
(nu.kappa-q.kappa+(epsilon/sigma.epsilon)ˆ2)/2
)

## Added to debug problem with MCMC failure
stopifnot(all(is.finite(kappa)) && all(kappa>0))
sigma.epsilon = 1/sqrt(rgamma(1, n.y/2, sum(kappa*epsilonˆ2)/2))

## Update nu.kappa if varying
if (nu.kappa.free)
nu.kappa = nu.update(
nu.kappa,
n.y,
mean(kappa),
mean(log(kappa)),
delta = 0.1,
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q = q.kappa,
nu.min = 1
)

sigma.alpha = 1/sqrt(rgamma(
1,
(n.CAS-1)/2,
sum(as(vartheta[alpha.lookup]ˆ2, "numeric")/2)
))

sigmas.beta = 1/sqrt(rgamma(
L,
(ns.beta-1)/2,
as((do.sum.beta.by.ell %*% vartheta[beta.lookup]ˆ2)/2,

"numeric")
))

psi2 = vartheta[psi.lookup]ˆ2

sigmas.xi = 1/sqrt(rgamma(
L,
(ns.psi.by.ell-1)/2,
as((do.sum.psi.by.ell %*% (psi2/phi[i.for.psi]ˆ2))/2,

"numeric")
))

phi.sums = do.sum.psi.by.i %*% (psi2/sigmas.xi[ell.for.psi]ˆ2)
phi = 1/sqrt(rgamma(
n.CAS,
(nu.phi+ns.psi.by.i)/2,
(nu.phi-q.phi+as(phi.sums, "numeric"))/2
))

## Now should sample nu.phi here

if (nu.phi.free)
nu.phi = nu.update(
nu.phi,
n.CAS,
mean(1/phiˆ2),
-2*mean(log(phi)),
delta = 0.2,
q = q.phi,
nu.min = 1
)

}
if(t==switchtosingle) thin = 1
if(t<=0) next
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## Save results
deviance.out[t] = sum(deviance.y)
mu.out[t] = vartheta[1]
sigma.epsilon.out[t] = sigma.epsilon
sigma.alpha.out[t] = sigma.alpha
sigmas.beta.out[t,] = sigmas.beta
sigmas.xi.out[t,] = sigmas.xi
if (nu.phi.free) nu.phi.out[t] = nu.phi
if (nu.kappa.free) nu.kappa.out[t] = nu.kappa
if(detailed) beta.out[t,] = vartheta[beta.lookup]
if(verydetailed && (t>switchtosingle)) {

vartheta.out[,t-switchtosingle] = as.vector(vartheta)
rtilde.out[,t-switchtosingle] = rtilde
kappa.out[,t-switchtosingle] = kappa
if(have.censored)
ycens.out[,t-switchtosingle] = y[censored]

}
## Save for computing D(thetabar)
mu.y.bar = mu.y.bar + (mu.y-mu.y.bar)/t
Dbar.y = Dbar.y + (deviance.y-Dbar.y)/t

}

state = list()
for(n in names(state0)) state[[n]] = get(n)

result = cbind(
mu=mu.out, sigma.epsilon=sigma.epsilon.out,
sigma.alpha=sigma.alpha.out,
sigmas.beta.out,sigmas.xi.out,
deviance=deviance.out
)

if (nu.phi.free) result = cbind(result, nu.phi=nu.phi.out)
if (nu.kappa.free) result = cbind(result, nu.kappa=nu.kappa.out)
if(detailed) result = cbind(result, beta.out)

ret = list(state=state, result=result, mu.y.bar=mu.y.bar,
Dbar.y=Dbar.y)

if(verydetailed) {
ret$extradetail = list(

vartheta = vartheta.out,
rtilde = rtilde.out,
kappa = kappa.out)

if(have.censored)
ret$extradetail$ycens = ycens.out

}
ret

}
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MCMC.hetpsi4 = function(
N, data, metascenario, taxlevels, thin=10, burn=10,
Nblock=200,
nu.phi=NULL, q.phi=NULL,
nu.kappa=NULL, q.kappa=NULL,
detailed=FALSE, shout=NULL,
h5filename=NULL, h5name, h5description,
switchtosingle=Inf,
doublechol=FALSE
) {

require(Matrix)
require(doBy)

nu.phi.free = is.null(nu.phi)
if(nu.phi.free && is.null(q.phi)) q.phi = 1
nu.kappa.free = is.null(nu.kappa)
if(nu.kappa.free && is.null(q.kappa)) q.kappa = 1

## I managed to verify that, omitting the first row, the Wt matrix
## is the same as that from lmer in mixed77@Zt. To do so, I had to
## construct Wt at the end using the following code. I might also
## have needed to be careful about the merge of data and
## metascenario messing things up.

## Wt = rBind(
## Matrix(1, nrow=1, ncol=n.y),
## do.call("rBind", rev(Wt.psi)),
## Wt.alpha,
## do.call("rBind", rev(Wt.beta))
## )

if(!is.null(h5filename)) {
detailed = TRUE
require(rhdf5)
if (file.exists(h5filename)) file.remove(h5filename)
h5createFile(h5filename)
h5write(1, h5filename, "Version")
write.h5.metascenario(metascenario, h5filename)

}
## Get rid of data for species not in the metascenario. Very
## important that they have compatible taxonomic classification,
## i.e. from same run of encode.
data = merge(data, metascenario)
## Only allow point or censored data
stopifnot(all(data$conc.ind %in% c("P", "L", "U", "I")))

## Consider censoring
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censored = data$conc.ind!="P"
have.censored = any(censored)
n.censored = sum(censored)
yL = data$lconc.low[censored]
yU = data$lconc.upp[censored]
if(have.censored) {

yL[is.na(yL)] = -Inf
yU[is.na(yU)] = Inf
stopifnot(all(yL<=yU))
stopifnot(all(is.finite(yL)|is.finite(yU)))

}

## Get rid of redundant factor levels now
CAS = factor(data$CAS)
classifications = droplevels(data[taxlevels])

L = length(taxlevels)
ellstar = match(taxlevels, names(metascenario))
taxlevels = taxlevels[order(ellstar)]
names(taxlevels) = taxlevels

if(!is.null(h5filename)) {
h5model = list(

Version=1,
ModelType=1,
ModelName=h5name,
ModelDescription=h5description,
NumberOfTaxonomicLevels=L,
TaxonomicLevels=ellstar,
ClassificationsUsed = local({
x = lapply(
1:L,
function(ell) match(levels(classifications[[ell]]),

levels(metascenario[[taxlevels[ell]]]))
)

names(x) = 1:L
x

}),
Qkappa = q.kappa,
Qphi = q.phi
)

h5write(h5model, h5filename, "Model")
}

n.y = nrow(data)
Wt.alpha = as(CAS, "sparseMatrix")
Wt.beta = list()
Wt.psi = list()
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i.for.psi = list()
#t.for.psi = list()
for(ell in 1:L) {

Wt.beta[[ell]] = as(classifications[[ell]], "sparseMatrix")
ti = interaction(classifications[[ell]], CAS, drop=TRUE)
ti.data.frame = data.frame(t=classifications[[ell]], i=CAS, ti=ti)
ti.data.frame = unique(ti.data.frame)
## Next two lines just make sure that the psi levels are ordered
## as described in the algorithms document
ti.data.frame = orderBy(˜i+t, ti.data.frame)
stopifnot(all(sort(ti.data.frame$ti)==ti.data.frame$ti))
Wt.psi[[ell]] = as(ti, "sparseMatrix")
i.for.psi[[ell]] = ti.data.frame$i
#t.for.psi[[ell]] = ti.data.frame$t

}
n.CAS = nrow(Wt.alpha)
ns.beta = sapply(Wt.beta, nrow)
ns.psi.by.ell = sapply(Wt.psi, nrow)
Wt = rBind(

Matrix(1, nrow=1, ncol=n.y),
Wt.alpha,
do.call("rBind", Wt.beta),
do.call("rBind", Wt.psi)
)

# Number of linear predictor parameters
n.vartheta = nrow(Wt)
# Next three lines create vectors for pulling different kinds of
# variance component out of vartheta

alpha.lookup = 1+seq(n.CAS)
beta.lookup = 1+n.CAS+seq(sum(ns.beta))
psi.lookup = 1+n.CAS+sum(ns.beta)+seq(sum(ns.psi.by.ell))

## Used to find matching phi for psi/xi values
i.for.psi = do.call("c", i.for.psi)
# t.for.psi = do.call("c", t.for.psi)
do.sum.psi.by.i = as(factor(i.for.psi), "sparseMatrix")
ns.psi.by.i = rowSums(do.sum.psi.by.i)
stopifnot(sum(ns.psi.by.i)==sum(ns.psi.by.ell))
ell.for.psi = factor(rep(1:L, ns.psi.by.ell))
do.sum.psi.by.ell = as(ell.for.psi, "sparseMatrix")
do.sum.beta.by.ell = as(factor(rep(1:L, ns.beta)), "sparseMatrix")

## return(list(Wt=Wt, i.for.psi=i.for.psi, ell.for.psi=ell.for.psi,
## t.for.psi = t.for.psi,
## alpha.lookup=alpha.lookup, beta.lookup=beta.lookup,
## psi.lookup=psi.lookup, ns.beta = ns.beta,
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## CAS=CAS, classifications=classifications,
## do.sum.psi.by.ell = do.sum.psi.by.ell,
## do.sum.psi.by.i = do.sum.psi.by.i,
## do.sum.beta.by.ell = do.sum.beta.by.ell))

## Initial values
kappa = rep(1, n.y)
y = data$lconc.low
if(have.censored)

y[censored] = ifelse(
is.finite(yL),
ifelse(is.finite(yU), (yL+yU)/2, yL),
yU
)

sigma.alpha = 1
sigma.epsilon = 0.5
sigmas.beta = rep(1, L)
sigmas.xi = rep(1, L)
phi = rep(1, n.CAS)
if(nu.phi.free) nu.phi=1
if(nu.kappa.free) nu.kappa=2

state = list()
for(n in c("y", "taxlevels", "L",

"have.censored", "n.censored",
"censored", "yL", "yU",
"ns.beta", "n.y", "n.CAS", "n.vartheta",
"ell.for.psi", "i.for.psi", "Wt",
"alpha.lookup", "beta.lookup", "do.sum.beta.by.ell",
"psi.lookup", "do.sum.psi.by.ell", "ns.psi.by.ell",
"do.sum.psi.by.i", "ns.psi.by.i",
"sigma.alpha","sigmas.beta", "sigmas.xi", "sigma.epsilon",
"kappa", "phi",
"nu.kappa.free", "nu.kappa", "q.kappa",
"nu.phi.free", "nu.phi", "q.phi"))

state[[n]] = get(n)

## Perform the burn-in
if (burn>0) {

iter.result = iterate.hetpsi4(
state, burn, thin=thin, burn=0, detailed=FALSE, shout=shout,
doublechol=doublechol)

state = iter.result$state
}

## And now the main iteration in lumps of Nblock at a time
Ndone = min(N, Nblock)
iter.result = iterate.hetpsi4(
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state,
Ndone, thin=thin, burn=0,
detailed=detailed, shout=shout,
doublechol=doublechol)

for(n in names(iter.result)) assign(n, iter.result[[n]])
while(N>Ndone) {

Nnow = min(N-Ndone, Nblock)
iter.result = iterate.hetpsi4(

iter.result$state,
Nnow, thin=thin, burn=0,
detailed=detailed, shout=shout,
doublechol=doublechol)

Ndone = Ndone+Nnow
result = rbind(result, iter.result$result)
mu.y.bar = mu.y.bar + Nnow*(iter.result$mu.y.bar-mu.y.bar)/Ndone
Dbar.y = Dbar.y + Nnow*(iter.result$Dbar.y-Dbar.y)/Ndone

}

# for(n in names(state)) assign(n, state[[n]])

## Save the h5 file if needed
if(!is.null(h5filename)) {

h5sample = list(
Version = 1,
PosteriorType = 1,
NoOfSamples = N,
Samples = list(
mu = mu.out,
nu = list(
kappa=nu.kappa.out,
phi = nu.phi.out
),

beta = local({
x = lapply(
1:L,
function(ell)
beta.out[,as.logical(do.sum.beta.by.ell[ell,])]

)
names(x) = 1:L
x

}),
sigma = list(
epsilon=sigma.epsilon.out,
alpha=sigma.alpha.out,
beta=sigmas.beta.out,
xi=sigmas.xi.out
)

)
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)
h5write(h5sample, h5filename, "Posterior")

}

list(result=result, state=iter.result$state,
fit = data.frame(mu.y.bar=mu.y.bar, Dbar.y=Dbar.y),
y=y, censored=censored, yL=yL, yU=yU, q.kappa=q.kappa
)

}

deviance.plugin = function(MCMCout, onerun=TRUE) {
result = MCMCout$result
sigma.epsilon.bar = exp(mean(log(result[,"sigma.epsilon"])))
nu.kappa.bar = mean(result[,"nu.kappa"])
if (onerun)

mu.y = MCMCout$fit$mu.y.bar
else

mu.y = summaryBy(mu.y.bar˜.Sequence, MCMCout$fit)$mu.y.bar.mean
deviance = deviance.hetpsi4(

sigma.epsilon.bar, nu.kappa.bar, mu.y,
MCMCout$y, any(MCMCout$censored), MCMCout$censored,
MCMCout$yL, MCMCout$yU,
MCMCout$q.kappa
)

deviance
}
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