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5 Effect sizes in multilevel models 
PeterTymms 

5.1 Introduction 
Several different approaches allow quantitative researchers to report the 
size of the effect being studied. When using multilevel models it has 
become common to discuss 'the proportion of variance accounted for ' as 
well as 'the intra-class correlation' . These two measures combined with 
a direct interpretation of the coefficients can provide a clear picture. But 
there has been a growing interest in the use of effect sizes as used in 
experimental designs as a measure of the size of an effect and this paper 
explores their possible use within multilevel modelling. 

By way of illustration the discussion is restricted to multilevel models 
found in educational research in which pupils are nested within schools. 
Th.e model therefore has two levels. Before any explanatory variables are 
added the equations representing the null model are: 

At the pupil level: Yij = f3oj + e; 

At the school level: f3oj = /Jo + Uj 

These may be combined to give a single equation: 

Where: 

Y .. = ao + u+ e· lj JJ1 J l 

Yij is the outcome measure for pupil i in school j 

f3oj is a constant which varies across schools 

ei is the error on the pupil measures 

uj is the error on the school measures 

cri is the variance at the pupil level 

cr~ is the variance at the school level 

(l) 

(2) 

(3) 

et: 
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Effect sizes have been defined in relation to interventions in which there 
is a control and an experimental group. Glass et al. (1981) defined effect 
sizes as the difference between the mean scores for the experimental and 
control groups expressed in Standard Deviation (SD) units. The SD was 
taken to be that of the control group. More recently Hedges and Olkin 
(1985, p. 78) have argued that the pooled SD should be used rather than 
the SD of one particular group and that is now the more commonly 
accepted definition, which will be used in this paper, although it should 
be noted that Glass and Hopkins (1996, p. 290) still prefer the earlier 
version. The Hedges and Olkin version will be used in this paper and the 
formula is: 

~ = X Exp - X conr 

SDpooled (4) 

In other words the effect size is the difference between the means for the 
experimental and control groups expressed as a fraction of the pooled 
standard deviation. 

This definition will be used to explore effect sizes in multilevel models 
under three headings. The first will look at dichotomous variables, the 
second at continuous variables, and the third at units that are conceived 
of as being measured on a continuous scale (random effects). 

5.2 Where the variable is dichotomous 
Suppose that some schools employed a psychologist and some did not. 
This may be represented by a dummy variable in the multilevel model 
and a coefficient associated with the variable is generated. Ideally the 
study would be an experimental one in which psychologists have been 
randomly assigned to schools, but it may also be that the controls are 
statistical. Ignoring any control variables for a moment the equation 
becomes: 

(5) 

Where /31 is the dummy variable representing the presence of a 
psychologist. 
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Now the calculation of the effect size is simply the difference in the 
means for the schools with and without psychologists (/31) divided by the 
pooled standard deviation (the square root of the within group variance). 
This is simply Oe; the standard deviation at the pupil level and the 
equation for the effect size is: 

(6) 

This formula and others in this section were first published in Tymms et 
al. (1997). 

An example comes from the ESRC funded investigation (Tymms and 
Merrell, 2003) in which booklets were randomly assigned to schools. 
The booklets were designed to help teachers work with children who 
were inattentive, impulsive and hyperactive. The results of one very 
simple model of the data are given below: 

Table 5.1 Outcome measure: attitude to reading (mean:-0.045 SD:0.88) 

Fixed 

Cons 

Dummy to indicate booklet 

Random 

Pupil 

School 

Coefficients 

-0.062 (0.013) 

0.038 (0.020) 

0.739 (0.008) 

0.029 (0.003) 

The coefficient associated with the random assignment of the booklet 
was not statistically significant at the 5% level but it is still important to 
estimate the effect size since the coefficient is the best available evidence 
for the impact of the booklet. This is a quite different position from the 
stance which says that there was not effect, i.e. that the proper position 
is to stick to the null hypothesis, and this stance has been cogently 
argued for on numerous occasions (see for example Cahan, 2000). 

The effect size from the model is 0.038/V0.739 = 0.044 
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The error on the effect size must be calculated by combining the errors 
from both the coefficient and the SD. If it is necessary to combine the 
errors then the general formula may be applied: 

If the error in X is errX and X=A/B or A *B then: 

errX 
x te~·Ar + [e~Br (7) 

In this case the error on the coefficient is proportionally very much 
greater than the error on the SD (53% of 1 %), which can therefore be 
ignored. 

So the error can be set at 53%. 

The effect size was 0.044 +/- 0.023 

As noted above it has been assumed that the design was equivalent to an 
experimental design with no controls. Where multilevel models employ 
additional controls the pooled standard deviation of pupil scores cre 
drops. The question then arises as to whether the standard deviation 
before or after controls should be used in the calculation of th.e effect 
size. This depends on bow one conceives of the experimental parallel. 
Let us suppose that the outcome measure was an attainment measures 
and the major control was prior achievement from a few years earlier. 
This will have resulted in a large drop in the pupil level variance of about 
a half and the SD therefore falls by about 70 per cent. If the effect size 
is now calculated using the reduced pupil level SD then this is parallel to 
an experimental design in which pupils of similar prior scores were 
selected to be part of the design and half were randomly assigning the 
treatment. 

This is a perfectly proper experiment to do, but of course the standard 
deviation of the group will be somewhat less than if one had worked with 
the full range. So although it might seem unfair to use the final standard 
deviation (after controls), as long as one defines what one is doing then 
the standard deviation from the final model is appropriate. 
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•'- ... 
The data on attitude to reading and the random assignment of booklet 
provides an example. When a control for the children's starting points 
was added the model became as shown in Table 5.2 below: 

Table 5.2 Model with inclusion of control 

Fixed 

Cons 

Dummy to indicate booklet 

Baseline 

Random 

Pupil 

School 

Coefficients 

-0.075 (0.014) 

0.053 (0.020) 

0.091 (0.008) 

0.734 (0.009) 

0.029 (0.004) 

Now ~e assignment of booklets is significant at the 5% level and the 
effect size is: 

0.053/--J0.734 = 0.061 

In this case the pupil level variance was hardly affected by the control 
variable but the coefficient associated with the dummy variable did 
change. 

As an aside it is worth noting that the above discussion, concerning 
which SD should be used when calculating effect sizes, raises an issue 
for those engaged in meta-analyses since protocols in the standard 
procedures do not involve any coding of the primary investigations 
relating to the degree to which interventions were restricted to sub
samples of the population. 

5.2.1 When the dummy variable is not a school effect 
Variables often appear in multilevel models simply as controls. That is to 
say, they are there to improve the model or because there is an inherent 
interest in them and not because they measure school differences per se. 
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For example, a treatment rrilght have been randomly assigned within 
schools but not across schools and there is an interest in the size of the 
effect, but it comes from a different perspective than that described 
above. Of course, it might be that the impact of the within school 
experiments varied across schools. The section below on units that form 
a continuum covers calculations of such effect sizes. 

If the variable has been randomly assigned within schools then the SD 
used for the calculation of the effect size should not be <Ye but rather the 
pooled SD of the experimental and control groups. Such information 
does not appear in a basic multi-level model but can be obtained by 
fitting separate level 1 variances for the two groups. More details can be 
found in Rasbash et al. (1989, p. 18). 

But although it is proper to run such models and to carry out the 
calculation to produce an unbiased estimate of the effect size if the 
effect size is small the result will be almost the identical to that 
produced using ere. The question is: how small is small? The chart below 
helps to quantify the answer. It shows the results of a simulation using 
10,000 cases and it suggests that if effect sizes were estimated to be 0.4 
or lower then no advantage is to be had in calculating effect sizes by 
more complex analyses than using the formula f3 fae. However, if it was 
greater than 0.4 then the effect size will be underestimated by an 
educationally important amount. An effect size of 1 will appear to be a 
little more than 10% lower than the true value. 

Figure 5.1 Effect sizes calculated using <Ye and the pooled SO 
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5.3 Where the measure is continuous 
It may be that a measure thought to impact on schools forms a 
continuous variable and this may have been randomly assigned to 
schools. Varying amounts of inspection time, for example, may have 
been allocated to schools. When a continuous variable is employed the 
parallel from Glass et al. (1981) is a correlation and they suggest: 

I 

~ = 2zrxy(l - riy) 
2 (8) 

where: 

r is the correlation between variables x and y 

z is the 'unit normal deviate at the pth percentile' 

Extracting an effect size from a continuous variable involves considering 
it <;tS though it were a dichotomous variable and deciding where to slice 
the continuous variable. If this is chosen as one SD above and below the 
mean then this simplifies according to Fitz-Gibbon and Morris (1987) 
to: 

ES - 2r (9) Jo - r) 

This is equivalent to the difference between the residuals of the 
standardised criterion corresponding to predictor scores one SD above 
and one SD below the mean expressed as a fraction of the SD of the 
residuals. This equation can be 'seen' in Figure 5.2, which shows the 
scatterplot of two normally distributed variables each with a mean of 0 
and a SD of 1. The slope of the line is equal to the correlation coefficient 
(r). Vertical lines have been drawn from the mean on the x-axis and from 
point one SD above and below the mean. Horizontal lines are then drawn 
from the points where these lines meet the regression line to the y axis 
and the effect size is the distance between the points marked r and -r 
divided by the SD of the residuals from the regression: 

n1 
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Figure 5.2 Graphical representation of the effect size using a 
continuous variable 

r 

-r 

-1 0 1 

In a simple multilevel model in which the continuous predictor and 
outcome variables have been normalised (mean = O; SD = 1) the coefficient 
is equivalent to r and the standard deviation of the pupil level scores, 
after controls, is ae- The formula for effect size becomes: 

(10) 

A slightly more complex formula is required if the predictor and 
criterion are not z scores. Consider Figure 5.2. The slope of the line is 
now /31 and the positions of the vertical lines correspond to one SD predictor 

to the right and left of the mean. Hence the distance between what was r 
and -r becomes 2 /31 * SDpredictor- The formula is: 

2 /31 * SD predictor 

CTe (11) 
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Using the multilevel model in the last box the effect size for the main 
control (baseline) can be calculated given the SD of the baseline 
measure which is 1. 

The effect size is: 

2*0.091 * 1 I ..J0.734 

or 0.21 

As in the last section the same discussion relating to the presence of 
control variables in the model and the impact that that has on the value 
of <Je applies. 

5.4 There are units (schools) that form a continuum 
In· this case a similar approach can be used and now the distance between 
one standard deviation above to one standard deviation below is twice 
the standard deviation at the school level and the formula is 
straightforward: 

(12) 

Again no account is taken of explanatory variables and the same 
argument applies as appeared earlier. 

Using the last multilevel model, the effect size for the school effect can 
readily be calculated. It is: 

2*..J0.029 I ..J0.134 

or 0.40 

This is a measure of the importance of the school in children's attitudes 
to reading. 
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5.5 Relationship of effect size to r2 and to the intra
class corirelation 
A general measure of the magnitude of a regression coefficient is the 
proportion of variance 'explained' by its inclusion in the equation. This 
is equal to the squared correlation coefficient. Hedges and Olkin (1985, 
p. 77) state that for equal sized experimental and control groups the link 
between the two measures (proportion of variance and effect size) is: 

fl2 
p2 = f:l2+ 4 

where: 

p is the correlation coefficient 

!:l is the effect size 

(13) 

This equation can be rearranged to give the formula quoted from Fitz
Gibbon and Morris (1987) earlier and gives a clear link between the 

· proportion of variance 'explained' and effect size. This is shown 
diagrammatically in Figure 5.3. 

Figure 5.3 The link between the proportion of variance 'explained' and effect size 
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It is common practice to express the size of the school effect in terms of 
the proportion of variance associated with the school. This is the intra-



G) 
N 
u; -u 
G) --w 

class correlation (p) and is given by: 

du 
p= d+d 

u e 
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(14) 

When the earlier formula expressing the effect size in terms of and is 
combined with the above it gives: 

~= /4P 
~T=p 

The relationship is shown in Figure 5.4. 

Figure 5.4 Relationship between effect size and intra-class correlation 
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(15) 

N.B. The similarity between Figures 5.3 and 5.4 arises because the rho 
in the intra-class correlation formula is the proportion of variance and 
this parallels r2 in the earlier effect size formula. 

5.6 Conclusion 
This paper has set out a straightforward way of addressing the issue of 
effect sizes when using multilevel models to study schools. It has 
provided formulae that allow effect sizes to be calculated in standard 

65 
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deviation units and has shown how these relate to the more commonly 
used measures of the sizes of effects in multilevel modelling, which are 
expressed in alternative forms. The effect sizes in multilevel models have 
been conceptualised in experimental tenns so that there can be a clear 
understanding of what they mean. 

The paper has not addressed issues associated with non-normal 
distributions, non-linear relationships nor has it dealt with anything other 
than very simple multilevel models. 
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