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1 Introduction

We consider undirected finite graphs that have no loops and no multiple edges. A graph
is denoted G = (VG, EG), where VG is the set of vertices and EG is the set of edges.

A graph containment problem is to decide whether one graph can be modified into
some other graph by using a number of specified graph operations. For example, by
allowing any combination of the four operations edge deletions, edge contractions, ver-
tex deletions and vertex dissolutions the following containment problems are captured:
testing on (induced) minors, (induced) topological minors, (induced) subgraphs, induced
spanning subgraphs, dissolutions and contractions. Algorithms for detecting specific in-
duced subgraphs such as paths and cycles have been proven to be useful in the design
of algorithms that solve more general graph containment problems. We will discuss one
open problem in this area and give a potential application afterwards.

We first state some terminology required. Two (not necessarily induced) paths P
and Q in a graph G are called mutually induced if the following two conditions are both
satisfied:

(i) P and Q are vertex-disjoint;

(ii) G has no edges with one end-vertex in P and the other one in Q.

2 Problem Description

We can now formulate the following three decision problems. In each of these problems
the input consists of a graph, in which some vertices are specified; we call these vertices
terminals.

Problem 1
Instance: a graph G with 4 terminals s, t, u, v;
Question: do there exist two mutually induced paths P and Q such that P

and Q have end-vertices {s, u} and {t, v}, respectively?

Problem 2
Instance: a graph G with 4 terminals s, t, u, v;
Question: do there exist two mutually induced paths P and Q such that P

and Q have end-vertices either {s, u} and {t, v}, or else {s, v} and
{t, u}, respectively?
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Problem 3
Instance: a graph G with 4 terminals s, t, u, v;
Question: do there exist two mutually induced paths P and Q such that P and Q

have end-vertices either {s, u} and {t, v}, or {s, v} and {t, u}, or else {s, t}
and {u, v}, respectively?

Fellows [4] showed that Problem 1 is NP-complete. This result also follows from the
paper of Bienstock [1] by considering the gadget that he used to prove NP-completeness
of the problem 2-in-a-Cycle which is to test whether a given graph contains an induced
cycle through two given terminals. Lévêque, Lin, Maffray, and Trotignon [6] showed that
2-in-a-Cycle is NP-complete even for graphs of maximum degree 3. In both papers, the
two terminals are of degree 2. This property can be used for a straightforward reduction
that shows that Problem 2 is NP-complete even for graphs of maximum degree 3. We
call Problem 3 the 4-on-2-Paths problem and pose the following problem.

Problem 2.1. What is the computational complexity of 4-on-2-Paths?

As related work, we mention that Chudnovsky and Seymour [2] showed that the problem
3-in-a-Tree, which is to test whether a given graph contains an induced tree containing
three given terminals, can be solved in polynomial time, whereas the computational
complexity of 4-in-a-Tree is still open. In contract, the problem 3-in-a-Path, which
is to test whether a given graph contains an induced path passing through three given
terminals, is NP-complete even for graphs of maximum degree 3. This follows from the
result of Bienstock [1], as observed by Derhy and Picouleau [3].

3 A Possible Application

A graph G contains a graph H as an induced minor if H can be obtained from G after
a sequence of graph operations that may be vertex deletions and edge contractions. For
a fixed graph H (i.e., that is not part of the input), the H-Induced Minor problem is
to test whether some given graph contains H as an induced minor.

Let H∗ denote the graph obtained from subdividing the centre edge of a double star
with two leaves on each side, i.e., H is the graph with vertices a1, a2, b, c, d, e1, e2 and
edges a1b, a2b, bc, cd, de1, de2.

Theorem 3.1 ([5]). For any fixed forest H 6= H∗ on at most 7 vertices, the H-Induced
Minor problem can be solved in polynomial time.

A possible application of 4-on-2-Paths (should it belong to P) would be to use it as
a subroutine for solving the missing case in Theorem 3.1.

Problem 3.2. What is the computational complexity of H∗-Induced Minor?

References

[1] Daniel Bienstock. On the complexity of testing for odd holes and induced odd paths.
Discrete Mathematics 90 (1991) 85–92. (Corrigendum, Discrete Mathematics 102
(1992) 109.)

2



[2] Maria Chudnovsky and Paul D. Seymour, The three-in-a-tree problem. Combina-
torica 30 (2010) 387–417.

[3] Nicolas Derhy and Christophe Picouleau, Finding induced trees. Discrete Applied
Mathematics 157 (2009) 3552–3557.

[4] Michael R. Fellows, The Robertson-Seymour theorems: A survey of applications.
Contemporary Mathematics 89 (1989) 1–18.
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