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Summary: 

Stated preference methods are used to collect individual level data on what respondents 

say they would do when faced with a hypothetical but realistic situation. The hypothetical 

nature of the data has long been a source of concern amongst researchers as such data 

stand in contrast to revealed preference data which record the choices made by 

individuals in actual market situations. But there is considerable support for stated 

preference methods as they are a cost-effective means of generating data that can be 

specifically tailored to a research question and, in some cases, such as gauging 

preferences for a new product or non-market good, there may be no practical alternative 

source of data. While stated preference data come in many forms, the primary focus in 

this chapter will be data generated by discrete choice experiments and thus the 

econometric methods will be those associated with modelling binary and multinominal 

choices with panel data. 
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Introduction 

Stated preference (SP) methods are a useful source of individual level data on choices 

that individuals make or are likely to make. SP data record what respondents say they 

would do when faced with a hypothetical but realistic situation. Such data stand in 

contrast to revealed preference (RP) data which record the choices made by individuals in 

actual market situations. SP should be interpreted as a generic term that signals a type of 

survey data collection distinguished by its comparison with RP data. Notice that both SP 

and RP refer to data from which preferences can be inferred rather than representing 

actual preferences. While SP data come in many forms, the primary focus in this chapter 

will be data generated by discrete choice experiments (DCEs) and thus the econometric 

methods will be those associated with modelling binary and multinominal choices with 

panel data. 

 

The hypothetical nature of SP data has long been a source of concern amongst 

researchers but there is considerable support for a more balanced appraisal as indicated 

by Manski (2004):  

 

“Economists have long been hostile to subjective data. Caution is prudent but 

hostility is not warranted.”  

 

Studies such as List et al. (2006), Vossler et al. (2012) and Kesternich et al. (2013) 

provide validation of SP methods and together with Layton and Levine (2003), Small et 

al. (2005) and Sándor and Frances (2009) illustrate the breadth of applications using SP 

data and confirm that there is considerable acceptance of their use across a range of 

disciplines. 

 

It may seem somewhat curious that SP data collection is so popular in the Big Data 

environment of 2018. The deluge of raw material for potential input into producing 

empirical evidence needs to be balanced by the recognition that more data does not 

necessarily mean better data. It is invariably true that the data from new and rapidly 

expanding sources have not been collected with research in mind. They are not well 

suited to answer more nuanced and substantive questions because there is a mismatch 

between key concepts and available data or what’s available suffers from sample 

selection problems. This is where SP methods have a comparative advantage because 

they are a cost-effective means of generating data that can be specifically tailored to the 

research questions. In some cases, such as gauging preferences for a new product or non-

market good, there may be no practical alternative source of data.  
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Because SP data are generated with a particular research question in mind, there is 

considerable scope for innovative SP methods relating to research design including 

combining SP and RP data.  As such the position of Carson and Hanemann (2005) seems 

entirely appropriate:  

 

“Rather than seeing an inherent conflict between revealed and stated preference 

techniques, it is more productive to view the two approaches as complementary 

but having different strengths and weaknesses”.  

 

McFadden (2001) provides a similar view: 

 

“There will always be questions about how closely cognitive tasks in a 

hypothetical setting can match those in a real decision-making environment. 

Good experimental technique can remove the most obvious sources of 

incongruity, but calibration and validation using RP data is usually needed.”  

 

By necessity there is a need to limit what is covered in this chapter. The aim is to provide 

an overview of SP methods with the primary focus on the econometric methods that are 

ultimately used once the SP data have been collected. While there is considerable overlap 

in the econometric methods that are used to analyse both SP and RP data there are 

differences and these will guide the selection of topics to be covered. There will be little 

discussion of the important issues relating to the development and implementation of the 

choice survey that precedes data analysis. For general issues of survey design see Groves 

et al. (2009) and for experimental design see Street and Burgess (2007). Nor will there be 

any discussion of contingent valuation which is another form of SP data that is especially 

prevalent in environmental economics. These methods are well covered in Carson and 

Hanemann (2005). Even with these restrictions there is a considerable amount of material 

associated with the econometrics of stated preferences and an incomplete list of 

references that would complement this chapter includes Louviere et al. (2000), Train 

(2009), Ben-Akiva et al. (2016) and Lancsar et al. (2017). 
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Overview of Stated Preference Methods  

Stated preference methods are used to elicit an individual’s preferences for alternatives 

(goods, services, jobs) expressed in a survey context. They involve multiple dimensions 

that include logistics of data collection and questionnaire design underpinned by 

experimental design to define alternatives. All of this precedes, but should not be separate 

from, the ultimate analysis of the data and interpretation of the results. In contrast, the 

collection of RP data is typically divorced from the analysis stage and is the source of 

multiple data (modelling) problems. Griliches (1986) has argued that econometric 

methodology has evolved, in large part, to solve problems such as endogeneity and 

sample selection and to develop methods that extract meaningful inferences from non-

experimental data. SP methods provide an opportunity to avoid many of these problems 

and in doing so better understand the behavior of economic agents that is often difficult 

with RP data.  

 

In the case of DCEs, the survey questions are couched in terms of a realistic context that 

maps into the research question. Respondents are faced with a choice set of discrete and 

mutually exclusive alternatives defined in terms of attributes, and individuals are 

assumed to value these characteristics in coming to an evaluation of the alternative as a 

whole. Respondents are then required to answer one or more questions reflecting their 

evaluation of these alternatives. The same respondent then provides multiple outcomes 

for a sequence of different choice occasions or scenarios thus ensuring a cost-effective 

process of data collection. As an example, consider a representative choice scenario taken 

from Doiron et al. (2014) and displayed as Figure 1.  

 

 

Figure 1: Example of a scenario describing three alternative nursing jobs 

 

The respondents in this survey are students or recent graduates from undergraduate 

nursing programs and the focus is on understanding preferences for attributes of nursing 

jobs. The choice set comprises three alternative jobs described in terms or attributes such 
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as salary and type of hospital. The levels of these attributes are then varied over scenarios 

according to an experimental design to provide different choice sets and facilitate 

efficient estimation. In each scenario respondents are required to first choose their most 

preferred alternative. In this survey they are then asked a second question requiring them 

to choose the worse of the two jobs remaining after their initial choice.  

 

Some of the flexibility and opportunities one has in designing a SP survey can be 

illustrated by reference to this example. Including just the first question to determine the 

preferred alternative is possibly the most common way to generate choice outcomes and 

our discussion will concentrate on this case. The addition of the second question provides 

an example of what is called best-worst scaling that is becoming increasingly popular 

because of the extra preference information provided at low marginal cost; see for 

example Louviere et al. (2015). In this example, responses to these two questions 

together provide a complete ranking of the three alternatives.   

 

The hypothetical alternatives in Figure 1 are fully described by their attributes and hence 

are denoted by generic titles, Job A, B and C. They are said to be unlabelled alternatives. 

Sometimes it is more appropriate to provide a descriptive name for the alternatives that 

constitute the choice set. For example, the choice could have been a choice between two 

jobs, one of which was always designated as private hospital and the other public 

hospital.  Also, there could be an opt out option where respondents after the first question 

asking for their most preferred choice are asked whether they would actually choose that 

option. Or there could be a status quo option for respondents who already have a job, so 

this alternative would have attributes populated by the levels that describe that job and 

the investigator is determining which hypothetical alternative would be attractive enough 

to make respondents switch jobs.  

 

Choices depend on the environment or context in which they are made. In designing a SP 

survey, the choice context plays a major role in making the hypothetical choice realistic. 

In the nurse’s example, choosing an entry-level job in a hospital is a realistic and salient 

context for these respondents. Context can also be manipulated as part of the 

experimental design by defining different hypothetical environments in which the choice 

is to be made and then allocating respondents to these context treatments and by 

including context variables as attributes. For example, retention of nurses within the 

profession is a serious concern for policy makers and the study could have been extended 

by allocating respondents to context treatments that provided different information about 

foreshadowed government plans to change the working conditions of nurses.   
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While not included in Figure 1, respondent characteristics would also be collected as part 

of the survey. For example, the level of within hospital experience is likely to vary quite 

considerably between nursing students and early graduates and such experience may very 

well be one possible covariate that helps to explain variation in the relative valuation of 

job attributes across respondents. While valuable for analysis purposes, typical concerns 

about endogeneity of such covariates are less of a concern here because of the exogenous 

manipulation of the job attributes.   

 

Ultimately Doiron et al. (2014) are aiming to draw policy implications from a better 

understanding of the heterogeneity of preferences for different job attributes. This is a 

case where some RP data would be available from say a survey of nurses. Here though it 

is unlikely that such data would include information on the choice set and instead would 

typically include attributes of just the chosen job. Even if information on jobs in the 

choice set could be obtained, it will often be the case that there is not sufficient variation 

in the important attributes to allow estimation of relevant preferences.  

 

Layton and Levine (2003) is a case where use of SP data is advocated because no market 

data exists. They explore preferences for alternative climate change mitigation policies to 

reveal people’s willingness to pay for measures to alleviate the impact of future climate 

change. But it need not be an either-or situation. Small et al. (2005) investigate the 

distribution of driver preference for reliable highway travel to inform road pricing 

policies using a combination of SP and RP data. This flexibility to use SP methods to 

provide information to compliment other data sources is a big part of the appeal of SP 

methods.  

 

This initial overview has introduced several features of SP data that will eventually 

impact model specification and estimation.  As a starting point consider a base case 

where over a sequence of scenarios, respondents choose a preferred option from a choice 

set containing two or more discrete and mutually exclusive alternatives. 
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Econometric Models for Choice Data 

The Random Utility Model and MNL 

The Random Utility Model (RUM) is the basis for model specification providing a 

framework within which to formulate families of probabilistic discrete choice models. 

Assume the utility that respondent 𝑖 derives from choosing alternative 𝑗 in choice 

scenario 𝑠 is given by 

 

(1)  𝑈𝑖𝑠𝑗 = 𝜷′𝒙𝑖𝑠𝑗 + 𝜀𝑖𝑠𝑗; 𝑖 = 1, ⋯ , 𝑁; 𝑠 = 1, ⋯ , 𝑆; 𝑗 = 1, ⋯ , 𝐽;   

 

where there are 𝑁 respondents choosing amongst 𝐽 alternatives across 𝑆 scenarios. 𝒙𝑖𝑠𝑗 is 

a 𝐾-vector of observed attributes of alternative 𝑗 faced by person 𝑖 in scenario 𝑠, 𝜷 is a 

conformable vector of utility weights, and 𝜀𝑖𝑠𝑗 is the stochastic disturbance term 

representing characteristics unobservable by the analyst. 𝒙𝑖𝑠𝑗 could also include 

alternative specific constants (ASCs) and demographic characteristics of person 𝑖 but for 

notational convenience these have not been explicitly included. The analyst also observes 

discrete choices, 𝑦𝑖𝑠𝑗 = 1 if 𝑖 chooses alternative 𝑗 in choice scenario 𝑠 and zero 

otherwise.  

 

The decision-maker chooses alternative 𝑗 if it represents the highest utility in comparison 

with the utility associated with all other alternatives in the choice set. Thus, the 

probability of choosing alternative 𝑗 is given by: 

 

(2)  𝑃𝑖𝑠𝑗 = 𝑃𝑟𝑜𝑏(𝑦𝑖𝑠𝑗 = 1) = 𝑃𝑟𝑜𝑏(𝑈𝑖𝑠𝑗 − 𝑈𝑖𝑠𝑙 > 0) ∀𝑙 ≠ 𝑗. 

 

Econometric analysis now requires several specification issues to be resolved. Initially, 

consider multinomial logit (MNL) and its link to the RUM established by McFadden 

(2001). This remains a baseline for most extensions to more sophisticated models and for 

research on the theoretical underpinnings of decision-making in choice problems. MNL 

results from assuming the disturbance terms, 𝜀𝑖𝑠𝑗, are independently and identically 

distributed (iid) extreme values which leads to a computationally tractable model where 

the probability that individual 𝑖 chooses 𝑗 in scenario 𝑠 is given by: 

 

(3)  𝑃𝑖𝑠𝑗 =
𝑒𝑥𝑝(λ𝜷′𝒙𝑖𝑠𝑗)

∑ 𝑒𝑥𝑝(λ𝜷′𝒙𝑖𝑠𝑙)
𝐽
𝑙=1

 

 

where 𝜆 is the scale parameter that is inversely proportional to the standard deviation of 

the disturbance. In a standard MNL model, 𝜆 cannot be separately identified and is 

conventionally set to unity by assuming further that the disturbance terms are iid “type-I” 



8 | P a g e  

 

extreme values. Stating the presence of 𝜆 explicitly in (3) provides a useful basis for our 

subsequent discussion, nevertheless. To simplify notation later, it is also useful to write 

out the MNL likelihood of all observations on respondent i: 

 

(4) 𝐿𝑖
𝑀𝑁𝐿(𝜷) = ∏ ∏ [

exp (𝜷′𝒙𝑖𝑠𝑗)

∑ exp (𝜷′𝒙𝑖𝑠𝑙)
𝐽
𝑙=1

]

𝑦𝑖𝑠𝑗
𝐽

𝑗=1

𝑆

𝑠=1

 

 

which incorporates the conventional normalization of 𝜆 = 1. 

 

While MNL is convenient, the iid extreme values assumption for the unobserved 

component of utility implies unrealistic substitution properties associated with the 

independence of irrelevant alternatives (IIA) and ignores the panel structure of the data. 

MNL also assumes homogenous tastes for the attributes of the alternatives which is not 

compatible with compelling evidence of pervasive heterogeneity in consumer tastes. 

Consequently, much recent research has been devoted to developing more flexible 

models that allow for taste heterogeneity.  

 

Mixed Logit Models 

Specifying a multinomial probit (MNP) model under an alternative assumption of 

multivariate normality for the random components of utility is one possible way to 

proceed. Computational demands have limited the use of this type of model and instead 

practitioners have preferred the heterogeneous or mixed logit (MIXL) family of models. 

Here the original specification in (1) is rewritten as: 

 

(5)  𝑈𝑖𝑠𝑗 = 𝜷𝑖′𝒙𝑖𝑠𝑗 + 𝜀𝑖𝑠𝑗; 𝑖 = 1, ⋯ , 𝑁; 𝑠 = 1, ⋯ , 𝑆; 𝑗 = 1, ⋯ , 𝐽;   

 

which allows for unobserved individual specific deviations 𝜼𝑖 around baseline utility 

weights 𝜷 to produce individual specific utility weights 𝜷𝑖 = 𝜷 + 𝜼𝑖. It is these random 

coefficients that capture taste heterogeneity and distinguish this approach from fixed 

coefficient specifications such as MNL. This form of heterogeneity is in addition to that 

captured by interactions between observables that are assumed to have already been 

included in 𝒙𝑖𝑠𝑗. 

 

MIXL maintains the assumption that the 𝜀𝑖𝑠𝑗 are distributed type-I extreme value. The 

model is completed by specifying the distribution for 𝜷𝑖, called the mixing distribution. 

Part of the appeal of this class of models is that McFadden and Train (2000) show that by 

the appropriate choice of the mixing distribution one can approximate any random utility 

model. Their result is an existence proof that unfortunately does not help in the specific 



9 | P a g e  

 

selection of the mixing distribution. In most applications 𝜼𝑖 is assumed to have a 

multivariate normal distribution,  𝜼𝑖~𝑀𝑉𝑁(𝟎, 𝚺), and is denoted by N-MIXL.  

 

Often what is of most interest is marginal willingness to pay (WTP), or more generally a 

ratio between marginal utility weights on two different attributes that measures the value 

of one attribute in terms of the other attribute. Suppose (5) is rewritten as: 

 

(6)  𝑈𝑖𝑠𝑗 = −𝛼𝑖𝑝𝑖𝑠𝑗 + 𝜽𝑖′𝒛𝑖𝑠𝑗 + 𝜀𝑖𝑠𝑗   

 

where 𝑝𝑖𝑠𝑗 is the price and 𝒛𝑖𝑠𝑗 contains the remaining elements of 𝒙𝑖𝑠𝑗. Under this 

“preference space” approach, utility weights 𝛼𝑖 and 𝜽𝑖 are core parameters and WTP is 

derived as 𝒘𝒕𝒑𝑖 = 𝜽𝑖/𝛼𝑖. In contrast, the “WTP space” approach of Train and Weeks 

(2005) takes 𝛼𝑖 and 𝒘𝒕𝒑𝑖 as core parameters by re-parameterizing (6) as 

 

(7)  𝑈𝑖𝑠𝑗 = −𝛼𝑖𝑝𝑖𝑠𝑗 + 𝛼𝑖𝒘𝒕𝒑𝑖′𝒛𝑖𝑠𝑗 + 𝜀𝑖𝑠𝑗 

 

which allows the researcher to specify and estimate the joint distribution of 𝒘𝒕𝒑𝑖 directly. 

The researcher should bear in mind that the same mixing distribution may produce 

substantively different MIXL models in the two spaces. For example, the multivariate 

normality of {ln 𝛼𝑖 , 𝜽𝑖} is not equivalent to that of {ln 𝛼𝑖 , 𝒘𝒕𝒑𝑖} since the ratio of a 

normal to a lognormal is not a normal.  

 

As noted in discussion of (3), identification of these choice models requires a 

normalization of the scale parameter 𝜆 which is equivalent to multiplying (5) through 

by 𝜆. But given the possibility that there is variation in tastes it seems logical to consider 

variation in scale or heteroskedasticity across individuals. Introducing a person-specific 

scale term into (5) yields: 

 

(8)  𝑈𝑖𝑠𝑗 = 𝜆𝑖𝜷𝑖′𝒙𝑖𝑠𝑗 + 𝜀𝑖𝑠𝑗; 𝑖 = 1, ⋯ , 𝑁; 𝑠 = 1, ⋯ , 𝑆; 𝑗 = 1, ⋯ , 𝐽.   

 

In this form it is apparent that one possible explanation of the success of MIXL in fitting 

SP data is the presence of scale heterogeneity. Even in the absence of taste heterogeneity, 

variation in scale implies coefficient heterogeneity where the homogenous 𝜷’s are either 

scaled up or down according to 𝜆𝑖. This scale heterogeneity MNL (S-MNL) model is 

useful to consider because it represents a very parsimonious model of heterogeneity. 

 

The generalized MNL (GMNL) of Fiebig et al. (2010) includes all the previously 

discussed models as special cases. It uses (5) but specifies the utility weights as: 
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(9)  𝜷𝑖 = [𝜆𝑖𝜷 + 𝛾𝜼𝑖 + (1 − 𝛾)𝜆𝑖𝜼𝑖] 

 

and  𝜆𝑖 is assumed to have a lognormal distribution, 𝑙𝑛(𝜆𝑖)~𝑁(�̅�, 𝜏2). For identification 

the normalization 𝐸(𝜆𝑖) = 1 is applied and 𝜏 governs the extent of scale heterogeneity. 

The extra parameter 𝛾 does not appear in either S-MNL or N-MIXL, appearing only in 

the full GMNL. 𝛾 determines how the variance of the residual taste heterogeneity varies 

with scale when both appear in the model. For example, compare 𝛾 = 1 which implies 

 𝜷𝑖 = [𝜆𝑖𝜷 + 𝜼𝑖] to 𝛾 = 0  implying  𝜷𝑖 = 𝜆𝑖[𝜷 + 𝜼𝑖]. 

 

While scale and preference heterogeneity are conceptually distinct concepts, the basic 

confound between them makes interpretation difficult. Specifically, finding improved fit 

from extending N-MIXL to allow for scale heterogeneity may simply be a reflection that 

the normal mixing distribution is inappropriate, and a more flexible distribution is 

needed. Hess and Train (2017) stress the importance of allowing for a full 𝚺 matrix in a 

MIXL specification as scale heterogeneity induces correlation across parameters. Thus, 

N-MIXL with all random parameters specified as correlated can accommodate scale 

heterogeneity even though it is not explicitly specified. It does come at the cost of 

requiring many parameters to be estimated compared to a more parsimonious GMNL 

specification that allows the researcher to constrain the off-diagonal elements of 𝚺 to 0s 

without losing the ability to account for scale heterogeneity.  

 

MNL can be estimated by maximum likelihood, but the extensions introduced in the 

present section require simulation methods. Constructing a MIXL likelihood of 

observations on person i is conceptually straightforward since it involves evaluating the 

expected value of the MNL likelihood in (4) over the postulated distribution of 𝜷𝑖: 

specifically, 𝐸(𝐿𝑖
𝑀𝑁𝐿(𝜷𝑖)) =  ∫ 𝐿𝑖

𝑀𝑁𝐿(𝜷𝑖)f(𝜷𝑖)d𝜷𝑖 where f(.) is the joint density of 𝜷𝑖 

given the postulated distribution. This multiple integral does not have a closed-form 

solution, but can be approximated by simulation. The simulated log-likelihood function 

for a sample of N individuals is given by 

 

(10) 𝑆𝐿𝐿 = ∑ 𝑙𝑛 (
1

𝑅
∑ 𝐿𝑖

𝑀𝑁𝐿(𝜷𝑖
𝑟)

𝑅

𝑟=1
)

𝑁

𝑖=1
  

 

where 𝜷𝑖
𝑟 is the r-th draw for individual 𝑖 from the distribution of 𝜷𝑖, and the mean of R 

such draws inside ln(.) is the simulated counterpart of 𝐸(𝐿𝑖
𝑀𝑁𝐿(𝜷𝑖)). 𝜷𝑖

𝑟 is a combination 

of random components that vary from draw to draw and estimated parameters that remain 

constant (e.g. 𝜷 and 𝚺 in N-MIXL), but this combination takes a different form in each 
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MIXL model. The estimator obtained by maximizing 𝑆𝐿𝐿 is known as the maximum 

simulated likelihood (MSL) estimator. See Train (2009) for further details.  

 

Latent Class Models  

While N-MIXL and GMNL use continuous distributions to capture population 

heterogeneity in parameters, the MIXL framework can accommodate discrete 

distributions as well. The most well-known example is the Latent Class Logit Model 

(LCL) of Kamakura and Russell (1989) which uses (5), and postulates that the random 

coefficient vector 𝜷𝑖 follows a discrete distribution with 𝐶 support points such that 𝜷𝑖 ∈

{𝜷1, 𝜷2, … , 𝜷𝐶} and Pr (𝜷𝑖 = 𝜷𝑐) =  𝜋𝑐 for each 𝑐 = 1,2, … , 𝐶. To put it simply, LCL 

assumes that each respondent belongs to one of 𝐶 preference classes and each class 𝑐 

makes up fraction 𝜋𝑐 of the population. Then, the likelihood of observations on 

respondent i can be computed by mixing the MNL likelihood in (4) over the discrete 

distribution, resulting in the sample log-likelihood function 

 

(11) 𝐿𝐿𝐿𝐶𝐿({𝜷𝑐}𝑐=1
𝐶 , {𝜋𝑐}𝑐=1

𝐶−1) = ∑ 𝑙𝑛 (∑ 𝜋𝑐 × 𝐿𝑖
𝑀𝑁𝐿(𝜷𝑐)

𝐶

𝑐=1
)

𝑁

𝑖=1

 

 

where 𝐶 preference vectors and 𝐶 − 1 shares are parameters to be estimated, and the 

share of the last class, 𝜋𝐶, is constrained to satisfy the adding-up restriction ∑ 𝜋𝑐 = 1𝐶
𝑐=1 . 

To estimate LCL, one must pre-specify the total number of preference classes 𝐶. In the 

empirical literature, it is common practice to estimate LCL repeatedly for alternative 

values of 𝐶, and focus subsequent reporting and discussion on the results for an “optimal” 

value of 𝐶 that leads to the best fit in terms of the Bayesian Information Criterion or the 

Akaike Information Criterion.  

 

LCL does not require simulation-based methods because (11) is a closed-form 

expression. Moreover, the maximum likelihood estimator of LCL is invariant to re-

parameterizations of 𝜷1, 𝜷2, … , 𝜷𝐶, such as that of MNL. Among other things, this means 

that the WTP derived from LCL in the preference space must be identical to the WTP 

estimated directly by specifying LCL in the WTP space. 

 

How does LCL handle correlated tastes and scale heterogeneity? Note that there is 

nothing in the LCL structure that dictates how different or similar preference vector 𝛽𝑐 

for one class should be relative to another. In other words, LCL allows for any pattern of 

correlations among random parameters, including one that is observationally equivalent 

to scale heterogeneity. For instance, if the population comprises two classes and scale 

heterogeneity is the only form of heterogeneity present, LCL can easily capture this using 
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two vectors 𝜷1 and 𝜷2 that satisfy 𝜷2 = 𝑞𝜷1 for some positive scalar 𝑞. LCL is therefore 

not a model that assumes away scale heterogeneity; it is a model that postulates discrete 

heterogeneity in composite random parameters 𝜆𝑖𝜷𝑖. The Scale Adjusted Latent Class 

(SALC) Model of Magidson and Vermunt (2007) specifies a discrete mixture analogue to 

GMNL more explicitly, under the assumption that respondent 𝑖 simultaneously belongs to 

one of 𝐶 preference classes and one of S scale classes. While LCL does allow for scale 

heterogeneity, SALC may be useful to the extent that adding scale parameters is a more 

parsimonious way to account for scale heterogeneity than adding extra K-dimensional 

preference vectors. 

 

The LCL log-likelihood function in (11) has lent itself to several well-known variants 

and extensions. Ben-Akiva and Boccara (1995) use the LCL framework to model the 

notion that different respondents may consider different subsets of 𝐽 available alternatives 

for final choices. Their model operationalizes this heterogeneity in “consideration sets” 

by specifying each preference class to have an MNL likelihood function over a distinct 

subset of alternatives. The Endogenous Segmentation Model of Bhat (1997) allows 

population shares 𝜋𝑐 to vary with the observed characteristics of respondent 𝑖, by placing 

a fractional MNL structure on the shares. Note that while this approach appears 

seemingly more general, in a finite sample the resulting model may not nest one’s 

preferred LCL as a special case: adding a fractional MNL structure to an “optimal” LCL 

specification often leads to an empirically underidentified model, compelling the 

researcher to reduce the number of preference classes from what is “optimal” for LCL. 

Scarpa et al. (2009) use the LCL framework to model “attribute non-attendance”, the 

notion that different respondents may attend to different subsets of product attributes. In 

their model, each preference class is assumed to ignore a distinct subset of attributes, and 

the corresponding elements in their preference vector 𝜷𝑐 are constrained to 0s. Finally, 

Train (2008) estimates a hybrid model that combines LCL with N-MIXL by postulating 

that each preference class is a subpopulation of respondents who draw their preference 

vectors 𝜷𝑖 from a multivariate normal distribution specific to that class. 

 

Models for Ranked Data  

General Models 

As seen earlier in Figure 1, the SP survey may ask the respondent to state their preference 

ranking of alternatives in a choice set, instead of asking what they would like to choose 

from a choice set. What follows is a review of models that one may consider in the 

econometric analysis of ranked data. For brevity, the focus is on baseline specifications 

that do not address unobserved population heterogeneity. Extending each specification to 

accommodate population heterogeneity is straightforward and involves the same set of 

procedures as described in the previous sections on Mixed Logit Models and Latent Class 
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Models. In fact, the random parameter extensions of all models reviewed here have 

already appeared in the literature; see for example Yoo and Doiron (2013), Doiron et al. 

(2014) and Oviedo and Yoo (2017). 

 

Many economists may find it natural to proceed with the RUM in (1) as a behavioral 

foundation and formulate models for ranked data by equating the stated preference 

ranking with the latent ranking of utilities. Indeed, this is the approach that Beggs et al. 

(1981) take to derive the Rank-Ordered Logit (ROL) Model, which results from assuming 

that the disturbances 𝜀𝑖𝑠𝑗 are iid extreme values, just as under MNL. To facilitate 

discussion, suppose that respondent 𝑖 faced 𝐽 =  4 alternatives in scenario 𝑠, and ranked 

alternatives 4, 1, 3, and 2 as best, second-best, third-best and worst in that order. The 

ROL probability of this rank-ordering can be derived as 𝑃𝑖𝑠{4,1,3,2} = 𝑃𝑟𝑜𝑏(𝑈𝑖𝑠4 > 𝑈𝑖𝑠1 >

𝑈𝑖𝑠3 > 𝑈𝑖𝑠2), and is given by   

 

(12)  𝑃𝑖𝑠{4,1,3,2} =
𝑒𝑥𝑝(λ𝜷′𝒙𝑖𝑠4)

[∑ 𝑒𝑥𝑝(λ𝜷′𝒙𝑖𝑠𝑙)]4
𝑙=1

×
𝑒𝑥𝑝(λ𝜷′𝒙𝑖𝑠1)

[∑ 𝑒𝑥𝑝(λ𝜷′𝒙𝑖𝑠𝑙)]3
𝑙=1

×
𝑒𝑥𝑝(λ𝜷′𝒙𝑖𝑠3)

[∑ 𝑒𝑥𝑝(λ𝜷′𝒙𝑖𝑠𝑙)]3
𝑙=2

 

 

where λ is conventionally set to unity to achieve identification. Assuming the 

disturbances follow a multivariate normal distribution produces the Rank-Ordered Probit 

(ROP) Model (Train, 2009, p.158), and a generalized extreme value distribution produces 

the Nested Rank-Ordered Logit (NROL) Model (Dagsvik and Liu, 2009). Each rank-

ordered model directly inherits all the strengths and weaknesses of the corresponding 

choice model. For instance, ROL is like MNL in that it has a tractable functional form but 

exhibits the independence of irrelevant alternatives (IIA) property, whereas ROP is like 

MNP in that it may allow for more flexible substitution patterns but requires computer-

intensive methods for estimation.  

 

The product structure of ROL intuitively illustrates the primary benefit of using rank-

ordered data relative to choice data, though it must be stressed that this structure is a 

unique feature of ROL and is not shared by other models. Specifically, rank-ordered data 

provide more information on latent dependent variables (such as 𝑈𝑖𝑠4 > 𝑈𝑖𝑠1 > 𝑈𝑖𝑠3 >

𝑈𝑖𝑠2) than choice data (from which one can only learn the like of 𝑈𝑖𝑠4 >

max {𝑈𝑖𝑠1, 𝑈𝑖𝑠2, 𝑈𝑖𝑠3}), allowing the researcher to estimate a RUM of interest more 

efficiently. The ROL probability in (12) is a product of MNL probabilities in (3), 

making the source of efficiency gain easy to see: a single rank-ordered observation 

contributes to the sample log-likelihood the same amount of information as several 

choice observations (in this case three) on progressively smaller choice sets. The product 

structure of ROL is an implication of the IIA property, however, and does not generalize 
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to any other rank-ordered choice model. For example, the ROP probability is not a 

product of MNP probabilities, and the NROL probability is not a product of nested logit 

probabilities. It nevertheless remains true that ROP and NROL allow the researcher to 

estimate the RUM of interest more efficiently than their multinomial choice counterparts. 

 

The product structure also implies that ROL (again, neither ROP nor NROL) can be 

formulated by taking a fundamentally different approach. Instead of modelling the stated 

ranking as a latent utility ordering, the researcher may model it directly as a particular 

sequence of choices. Under this approach, continuing with the 𝐽 =  4 example, the first 

choice is over all four alternatives, the second choice is over three alternatives except the 

first choice, and the third choice is over two alternatives excluding the first and second 

choices; the example extends to other cases in an obvious manner. ROL then results from 

assuming that each choice is independent of another and generated from MNL. Hausman 

and Ruud (1987) take this approach to formulate the Heteroskedastic ROL (HROL) 

Model that allows scale parameter λ to vary across decision stages in the choice 

sequence, and Ben-Akiva et al. (1992) generalize HROL further by allowing a subset of 

utility weights to vary across the decision stages. Since Chapman and Staelin (1982), the 

sequential choice interpretation of ROL has sustained the notion that in cases where the 

researcher finds a discrepancy between MNL on first choices and ROL, the researcher 

must consider that as a symptom of unreliable rankings data and focus on the MNL 

estimation results. While the present section is not intended as a critical review of the 

empirical literature, we note that if the disturbances are not iid extreme values, both MNL 

and ROL estimators are inconsistent and there is no reason why they must lead to similar 

estimates.  

 

Fully ranking many alternatives from best to worst may be a task that most respondents 

find difficult, and SP surveys may be designed to elicit an incomplete ranking instead. 

For example, Layton and Levine (2003) ask the respondent to identify the best and worst 

out of five alternatives. When using ROL, it is easy to handle incomplete rankings where 

preferences are observed only up to the Cth best; the researcher simply needs to retain the 

first C MNL probabilities in the full ROL formula. For other types of models and 

incomplete rankings, the researcher may still formulate suitable econometric 

specifications by using the RUM in (1) to derive the probability of an incomplete 

ranking. But the resulting probability would become more cumbersome to evaluate than 

the corresponding probability of a complete ranking, because of the need to consider all 

possible permutations of missing preference orderings explicitly; see Vann Ophem et al. 

(1999) and Layton and Levine (2003) for examples in the context of ROL and ROP 

respectively.  
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Profile Case Best-Worst Scaling 

In recent years, an incomplete ranking task that asks the respondent to identify the best 

and worst attributes of an alternative, instead of the best and worst alternatives in a 

choice set, has become increasingly popular. Figure 2, taken from Yoo and Doiron 

(2013), shows an example of this type of “profile case” Best Worst Scaling (BWS) task 

which originates from the same survey as the “multi-profile case” BWS task in Figure 1. 

Now, instead of identifying the best and worst of three profiles or alternatives, the 

respondent evaluates one profile and state the best and worst out of its twelve 

characteristics. Louviere et al. (2015) provide a book-length treatment of the design and 

econometric analysis of BWS tasks. 

 

 

Figure 2: Example of a scenario describing profile case Best Worst Scaling 

 

While one may analyse profile case BWS using general econometric models for 

incomplete rankings, by far the most popular method is a purpose-built variant of MNL 

known as the Maximum-Difference (Max-Diff) Model (Marley and Louviere, 2005). 

When a profile case BWS respondent identifies the best and worst of 𝐾 attributes, Max-

Diff postulates that the respondent would evaluate 𝐾 × (𝐾 − 1) options where each 

option is a potential pair of best and worst attributes, and choose the option that 

maximizes their utility; in the context of Figure 2, {Best = Private Hospital, Worst = 

$950} is one option, and so are {Best = $950, Worst = Private Hospital} and other 

permutations of the job aspects. The Max-Diff probability takes a MNL functional form 

defined over such 𝐾 × (𝐾 − 1) options, where the index for each option measures the 

utility difference between the best attribute and the worst attribute in that pair; for 

example, options {Best = Private Hospital, Worst = fulltime only} and {Best = fulltime 

only, Worst = Private Hospital} would have index values of (𝜃𝑝𝑟𝑖𝑣𝑎𝑡𝑒 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 −

𝜃𝑓𝑢𝑙𝑙𝑡𝑖𝑚𝑒 𝑜𝑛𝑙𝑦) and (𝜃𝑓𝑢𝑙𝑙𝑡𝑖𝑚𝑒 𝑜𝑛𝑙𝑦 − 𝜃𝑝𝑟𝑖𝑣𝑎𝑡𝑒 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙) respectively, where 𝜃𝑘 measures 

utility from attribute 𝑘 and is a parameter to be estimated. The name Max-Diff originates 

from the assumption that the respondent would choose a pair that maximizes the utility 

difference between the two component attributes. Eliciting choices over attributes directly 
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has interesting implications for econometric identification and interpretation of utility 

parameters. For example, profile case BWS allows one to infer whether job aspect 

“private hospital” is preferred to another job aspect “fulltime only”, whereas the SP 

survey eliciting choices over alternatives allows one to infer only whether changing one 

job aspect is preferred to changing another job aspect. See Yoo and Doiron (2013) for 

fuller comparisons. 

 

 

Computing Strategies for Mixed Logit  

Alternatives to Maximum Simulated Likelihood 

In principle, once the (simulated) log-likelihood function of a MIXL model has been 

programmed, estimation of the model can proceed in the usual manner using any popular 

variant of gradient-based numerical optimization or “hill-climbing” techniques. In 

practice, however, researchers are likely to face at least two types of computational 

challenges. First, unless “good” starting values are selected, the numerical optimizer may 

terminate before finding a maximum, a situation that is often casually described as “the 

model failed to converge”. Unlike MNL, MIXL has a non-concave log-likelihood 

function which may sometimes display several nearly flat surfaces, making it difficult for 

the optimizer to see which hill to climb. Second, the numerical optimization process tends 

to progress rather slowly, and even in the modern computing environment new users of 

MIXL will quickly become accustomed to waiting for several hours, if not days, before 

seeing their estimation results. For models like N-MIXL and GMNL that require 

simulation methods, the source of the computational demand is apparent. While LCL 

results in a closed-form expression, estimating a C-class LCL specification is much more 

computationally demanding than estimating MNL C times because the dimension of the 

(quasi-)Hessian matrix increases quadratically in the number of model parameters. 

 

For proportional hazard models with discrete heterogeneity, Heckman and Singer (1984) 

have popularized the use of a fast and numerically stable computing strategy known as 

the expectation-maximization (EM) algorithms. Bhat (1997) develops a suitable version 

of the EM algorithm for LCL. The intuition behind this strategy is straightforward. 

Consider a fictional situation where the researcher can observe class membership 

dummies {𝑑𝑖𝑐}𝑐=1
𝐶  directly alongside choices and relevant regressors, where 𝑑𝑖𝑐 = 1 if 

respondent 𝑖 belongs to preference class c and 0 otherwise. Then MLE of each class share 

𝜋𝑐 is simply the sample mean of 𝑑𝑖𝑐 across all respondents, and MLE of preference 

vector 𝜷𝑐 can be obtained from a MNL regression for respondents whose 𝑑𝑖𝑐 = 1. More 

formally, the sample log-likelihood of observing the class dummies and choices in this 

fictional case is given by  
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(13)  𝜅({𝜷𝑐}𝑐=1
𝐶 , {𝜋𝑐}𝑐=1

𝐶−1) = (∑ ∑ 𝑑𝑖𝑐 𝑙𝑛 𝜋𝑐

𝐶

𝑐=1

𝑁

𝑖=1

) + (∑ ∑ 𝑑𝑖𝑐 𝑙𝑛 𝐿𝑖
𝑀𝑁𝐿(𝜷𝑐)

𝐶

𝑐=1

𝑁

𝑖=1

) 

   

where we use the same notation as earlier.  Of course the fictional construct {𝑑𝑖𝑐}𝑐=1
𝐶  is 

always missing in the real world, and Bhat’s EM algorithm is operationalized by 

replacing each 𝑑𝑖𝑐 with its expected value conditional on choices, or “posterior class 

shares”, which takes a tractable functional form of 𝑤𝑖𝑐 = 𝐸(𝑑𝑖𝑐|𝑐ℎ𝑜𝑖𝑐𝑒𝑠) = 𝜋𝑐 ×

𝐿𝑖
𝑀𝑁𝐿(𝜷𝑐)/(∑ 𝜋𝑠 × 𝐿𝑖

𝑀𝑁𝐿(𝜷𝑠)𝐶
𝑠=1 ). More specifically, at iteration 𝑡, the researcher 

evaluates 𝑤𝑖𝑐 using the estimates of {𝜷𝑐}𝑐=1
𝐶  and {𝜋𝑐}𝑐=1

𝐶−1 obtained from the preceding 

iteration 𝑡 − 1; then, the researcher obtains updates to each 𝜋𝑐 by taking the sample mean 

of the resulting 𝑤𝑖𝑐 across respondents, and 𝜷𝑐 by running a weighted MNL regression 

where each respondent’s choice observations are weighted by their own 𝑤𝑖𝑐. 

Interestingly, repeating this simple procedure until the estimates do not change between 

iterations produces the estimates that maximize the usual sample log-likelihood in (11).   

 

Train (2008) generalizes the EM algorithms to MIXL models incorporating continuous 

mixing distributions as well as discrete mixture of continuous distributions. At least for 

N-MIXL, the intuition behind this newer strategy is clear, though it is worthwhile 

emphasizing from the outset that the resulting Method of Simulated Moment (MSM) 

estimator is not identical to the MSL estimator when the number of simulated draws is 

fixed; in this respect, the present procedure contrasts with the EM algorithm for LCL that 

directly results in MLE. Now consider a fictional situation where the researcher can 

observe each respondent’s 𝜷𝑖, alongside their choices and relevant regressors. Then, 

MLE of the mean 𝜷 and covariance 𝚺 for the population multivariate-normal density are 

simply the sample mean and covariance of 𝜷𝑖. The sample log-likelihood of observing 𝜷𝑖 

and choices is then given by 

 

(14)  𝜅(𝜷, 𝚺) = (∑ 𝑙𝑛 𝑀𝑉𝑁(𝜷𝑖; 𝜷, 𝚺)

𝑁

𝑖=1

) + (∑ 𝑙𝑛 𝐿𝑖
𝑀𝑁𝐿(𝜷𝑖)

𝑁

𝑖=1

) 

  

which shows why estimating 𝜷 and 𝚺 does not require estimating any MNL model: the 

second term does not depend on 𝜷 and 𝚺. In practice, operationalizing this strategy 

requires replacing 𝜷𝑖 with simulated draws {𝜷𝑖
𝑟}𝑟=1

𝑅 , and weighting each draw 𝜷𝑖
𝑟 by its 

simulated “posterior density” ℎ𝑖
𝑟 = 𝐿𝑖

𝑀𝑁𝐿(𝜷𝑖
𝑟)/(∑ 𝐿𝑖

𝑀𝑁𝐿(𝜷𝑖
𝑚)𝑅

𝑚=1 ). Specifically, at 

iteration 𝑡, the researcher generates {𝛽𝑖
𝑟}𝑟=1

𝑅  using 𝜷 and 𝚺 obtained at iteration 𝑡 − 1, 

and evaluates {ℎ𝑖
𝑟}𝑟=1

𝑅  using those draws; then, the researcher obtains updates to 𝜷 and 𝚺 

by computing the weighted sample mean and covariance of those draws, using {ℎ𝑖
𝑟}𝑟=1

𝑅  as 



18 | P a g e  

 

weights. This recursive procedure continues until the estimates of 𝜷 and 𝚺 do not change 

between iterations. While this procedure still requires simulation of the likelihood 

function that appears in the denominator of {ℎ𝑖
𝑟}𝑟=1

𝑅 , it is a much simpler task than MSL 

that also requires computation of the gradient and (quasi-)Hessian of the simulated log-

likelihood function with respect to 𝜷 and 𝚺.  

 

When it comes to continuous mixture models like N-MIXL, the Hierarchical Bayesian 

(HB) procedure of Train (2001) is a popular alternative to EM. The name originates from 

approaching estimation of MIXL as a task that involves placing a prior distribution on a 

prior distribution. Continuing with the N-MIXL example, at the top-level, the researcher 

places a prior distribution on unknown parameters 𝜷 and 𝚺 of population density 

𝑀𝑉𝑁(𝜷𝑖; 𝜷, 𝚺). Then, at the next level, the researcher uses density 𝑀𝑉𝑁(𝜷𝑖; 𝜷, 𝚺) as a 

prior distribution on unknown parameters 𝜷𝑖 in the MNL likelihood 𝐿𝑖
𝑀𝑁𝐿(𝜷𝑖). The HB 

procedure makes it easy to apply Gibbs sampling to simulate the joint posterior 

distribution of 𝜷, 𝚺, and 𝜷𝑖. While an adequate summary of the technical details cannot 

be provided here, note that the procedure offers computational advantages that are similar 

to EM; generating draws of 𝜷𝑖 from its posterior distribution is a much simpler 

simulation exercise than what MSL demands, and updating the posteriors of 𝜷 and 𝚺 

involve basic algebraic operations on those draws. As Train (2001) stresses, the 

researcher may choose to use the HB procedure as an alternative computing strategy to 

obtain MSL estimates of MIXL models, without adopting it as a method of drawing 

Bayesian inferences; the posterior mean of 𝜷 and 𝚺 are asymptotically equivalent to the 

MSL estimator, though in a finite sample they may not be identical.  

 

A Comparison of Methods 

What explains the continued popularity of ML and MSL estimation of MIXL models, 

when these faster computing strategies are available? One possible factor is adaptability. 

Within the ML and MSL framework, when the researcher plans to incorporate a new 

mixing distribution, they only need to reprogram the (simulated) log-likelihood function; 

the extra step of coding algebraic derivatives is optional. For the EM algorithms and the 

HB procedure, however, incorporating a new mixing distribution may require more 

substantive changes to the recursive steps. A second and possibly more important factor 

is that, ironically, the faster computing strategies tend to slow down and may even run 

slower than ML and MSL as soon as the researcher simplifies the model specification by 

constraining certain parameters to be non-random. For example, consider estimation of 

LCL using equation (13). The presence of just one parameter that is common to all 

classes immediately implies that one cannot break down the second term into C separate 

MNL models, and maximizing this term would require joint estimation of all class-

specific parameters as well as the common parameter. Train (2009, p.308) reports an 
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illustrative N-MIXL application that involves 5 random parameters and 1 non-random 

parameter; in that case MSL finds a solution almost three times faster than the HB 

procedure. This kind of slowdown is a major drawback considering that the researcher 

may often want to estimate MIXL specifications with some non-random parameters, for 

example to distinguish observed heterogeneity in preferences from unobserved 

heterogeneity.  

 

The non-concave log-likelihood functions of MIXL models may exhibit not only flat 

surfaces, but also several local maxima. Unless “good” starting values are selected, even 

when the numerical optimizer produces a solution, there is no reason why the solution 

should be a global maximum. Despite the textbook emphasis on the importance of 

checking the sensitivity of results to alternative starting values, most empirical studies 

using MIXL, including many of our own, rarely report which starting values have been 

used and explored over. The folklore suggests that most practitioners use estimation 

results for special cases of a final model as starting values for the final model. As an 

alternative to this conventional strategy, Hole and Yoo (2017) explore the use of 

population-based optimization heuristics to conduct a more global search for “good” 

starting values. The findings suggest that the heuristics-based strategy may locate better 

maxima than the conventional strategy, even in those instances where multiple special 

cases of a final model lead to an identical and hence seemingly global maximum.        

 

 

Econometric Analysis with Multiple Data Sources 

Combining SP Data 

SP methods are especially amenable to various research design strategies that involve 

combining data. If the researcher conducts a SP survey with multiple samples drawn from 

the same population or similar populations, would they obtain comparable findings across 

the samples? Several studies have addressed this type of external validity question 

explicitly. For example, Capparos et al. (2008) investigate the robustness of preferences 

across data on choices and data on the best alternative from a ranking exercise, by 

randomizing respondents to either a choice format or a ranking format of an identical 

survey. Hall et al. (2006) compare the preferences for genetic tests for a general 

population sample and a sample where the choices are more salient. Fiebig et al. (2009) 

consider joint decision-making and explore differences in the preferences of women 

making choices and providers making recommendations in relation to cervical screening. 

Doiron and Yoo (2017) test the temporal stability of preferences by administering the SP 

survey in Figure 1 to the same group of respondents twice over a span of about 12 

months. If data collection occurs before and after a policy intervention, then repeated SP 

surveys can be used as a method of policy evaluation such as in Johar et al. (2013).   
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Even within the MNL framework, testing the stability of preferences is not a simple 

matter of testing whether utility parameters 𝜷𝐴 and 𝜷𝐵 are identical across data A and 

data B. The confounding factor is a possible shift in the scale; even when the underlying 

utility parameters are identical at 𝜷, the identified parameters 𝜷𝐴 = 𝜆𝐴𝜷 and 𝜷𝐵 = 𝜆𝐵𝜷 

may diverge in case there is more behavioral noise in one data relative to the other. In the 

context of Doiron and Yoo (2017), for example, one may conjecture that there would be 

less behavioural noise in the repeat survey since having participated in the initial survey 

may make the respondents more familiar with the choice task. A popular way to allow for 

possible scale differences in evaluation of preference stability is to focus on WTP 

parameters, which are not affected by variations in the scale.  But such tests on WTP 

must be applied with caution because a difference in the marginal utility of money (in the 

denominator) could induce the WTP parameters to diverge even when utilities associated 

with all other attributes (in the numerator) are identical. Indeed, Doiron and Yoo (2017) 

find more evidence of stability in direct comparisons of utility parameters 𝜷𝐴 and 𝜷𝐵 

than in comparisons of WTP, due to a substantial temporal variation in the marginal 

utility of money. As far as using parameter ratios to cancel out the scale factor goes, any 

one of utility parameters can be used as the common denominator of the ratios, and 

sensitivity checks across alternative choices of the denominator utility would be 

appropriate.  

 

Combined SP-RP Data 

In most cases the primary motivation for collecting SP data is the lack of suitable RP 

data, but in applications involving consumer goods the researcher may have access to 

both sources of data. Two well-known examples are Ben-Akiva and Morikawa (1990) 

who analyse transport mode choices by commuters, and Brownstone et al. (2000) who 

analyse private vehicle choices by households, using data collected from both SP and RP 

surveys. Even in these instances, however, the type and detail of information on product 

attributes are likely to vary across the two surveys, arguably for good reasons; 

constraining the flexibility, or increasing the complexity, of a SP design in an effort to 

create a replica of a RP choice context defeats the purpose of collecting SP data. The SP 

survey by Brownstone et al. (2000), for example, incorporates alternative fuel vehicles 

that are not available on the market but does not include all varieties of conventional 

vehicle models that are available on the market.   

 

In an econometric analysis of SP-RP data, an important consideration is therefore how 

best to exploit differences between the two data sources to the researcher’s advantage. An 

oft-cited principle is to use the large amount of independent variation in product attributes 

in the SP data to improve the statistical precision of utility parameter estimates associated 
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with those attributes, and to use the actual market settings of the RP data to estimate 

alternative-specific constants that equate the predicted market shares of existing products 

with their observed market shares (Train, 2009, Ch 7). Obviously, before allowing the SP 

and RP components of the implied joint model to share the utility parameters, the 

researcher should allow for a potential shift in the scale between the two data sources. 

The scale variation is arguably a bigger issue in the present context than in the 

comparison of two SP data sets, because the composition of unobservables affecting RP 

choices can be fundamentally different from those affecting SP choices: for example, 

consider the influence of the “word of mouth” in the RP settings. 

 

The basic template for the joint RUM of RP-SP data may be summarized as follows. 

Suppose that explanatory variables are categorized into 𝒙𝑖𝑠𝑗
𝑆ℎ𝑎𝑟𝑒𝑑, 𝒙𝑖𝑠𝑗

𝑆𝑃  and 𝒙𝑖𝑠𝑗
𝑅𝑃, where 

𝒙𝑖𝑠𝑗
𝑆ℎ𝑎𝑟𝑒𝑑 have identical utility parameters between the two data sources subject to the 

scale difference, and 𝒙𝑖𝑠𝑗
𝑆𝑃  and 𝒙𝑖𝑠𝑗

𝑅𝑃 have distinct utility parameters specific to the 

superscripted data sources. For instance, 𝒙𝑖𝑠𝑗
𝑆ℎ𝑎𝑟𝑒𝑑 may include product attributes that are 

observed in both settings, whereas  𝒙𝑖𝑠𝑗
𝑆𝑃  and 𝒙𝑖𝑠𝑗

𝑅𝑃 may include alternative-specific 

constants. Then the econometric model may be formulated from a system of RUM 

equations 

 

(15) 𝑈𝑖𝑠𝑗
𝑆𝑃 = 𝜹𝑆𝑃′𝒙𝑖𝑠𝑗

𝑆𝑃 + 𝜷𝑆𝑃′𝒙𝑖𝑠𝑗
𝑆ℎ𝑎𝑟𝑒𝑑 + 𝜀𝑖𝑠𝑗

𝑆𝑃 

  

(16) 𝑈𝑖𝑠𝑗
𝑅𝑃 = 𝜹𝑅𝑃′𝒙𝑖𝑠𝑗

𝑅𝑃 + 𝜆𝑅𝑃𝜷𝑆𝑃′𝒙𝑖𝑠𝑗
𝑆ℎ𝑎𝑟𝑒𝑑 + 𝜀𝑖𝑠𝑗

𝑅𝑃 

 

where the scale of the SP equation is normalized to 1 so that 𝜆𝑅𝑃 measures the scale of 

the RP equation relative to the SP equation. As long as 𝜆𝑅𝑃 is a non-random parameter, 

whether 𝜹𝑅𝑃 is subjected to scaling or not is a matter of re-parameterization that does not 

affect substantive results. As usual, assuming the iid type-I extreme value disturbances 

lead to MNL (Ben-Akiva and Morikwa, 1990) and modelling the utility parameters as 

multivariate-normal random coefficients lead to N-MIXL (Brownstone et al., 2000; Small 

et al., 2005). In practice, partitioning explanatory variables into 𝒙𝑖𝑠𝑗
𝑆ℎ𝑎𝑟𝑒𝑑, 𝒙𝑖𝑠𝑗

𝑆𝑃  and 𝒙𝑖𝑠𝑗
𝑅𝑃 is 

informed as much by a pre-analysis based on separate models for SP and RP data as by a 

survey design. For instance, in case the SP and RP coefficients on a shared attribute does 

not take the same sign in the separate models, ascribing their difference to a shift in the 

scale would be inappropriate.     
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Conclusion  

Modelling and understanding heterogeneity in how people make choices remains an 

active area of research. In these endeavours, stated preference methods are popular 

providing a cost-effective means of generating data that can address such questions, and 

in some cases, questions which are not amenable to analysis using conventional data 

sources. Their potential to be even more useful is likely to lie in clever research design 

strategies. In addition to the data combination examples discussed previously in this 

chapter, SP methods can be used in conjunction with conventional data collections; see 

Joyce et al. (2010) where DCEs have been imbedded in a longitudinal survey of doctors 

and King et al. (2007) where patient preferences for preventive asthma medications 

preferences were elicited using a DCE embedded in a randomized clinical trial. The 

econometric methodology for the appropriate analysis of such data has been reviewed but 

this is likely to be a fruitful area of future research as new challenges in combining data 

arise.   
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