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Summary . We address the uncertainty of deterministic computer models that rely on both in-
put parameters and system conditions. We refer to such models as multi-deterministic. Multi-
deterministic models allow the system condition to vary, and thus have the potential to produce
more than one result per input. We introduce the notion of latent computer model outcomes
which respond to the results of the multi-deterministic model when using the appropriate, but
unknown, system condition for the physical system of interest. The goal for this paper is
to make inferences about the latent model given a sequence of realized multi-deterministic
model evaluations. We consider the case where the sequence of models is judged a priori to
be second order exchangeable over the system condition and use Bayes linear methods to as-
sess the posterior expectation and variance of the latent model given the realised evaluations.
We demonstrate our methods using multi-deterministic results from a galaxy formation model
called Galform for which the system condition is the specfication of dark matter over time and
space.

1. Introduction

Many natural phenomena, such as, volcano eruptions, daily temperature, and star forma-
tion, are influenced by underlying physical processes which are not fully understood. To
learn about such processes, observational data is often supplemented by synthetic datasets
manufactured by mathematical models which characterize the processes theoretically and
are embedded in computer simulation experiments. However, with the benefits of using
synthetic data, comes the responsibility of accurately assessing the uncertainty of the math-
ematical model. In this paper, we develop a novel way to assess one source of uncertainty
for a type of model which we refer to as multi-deterministic. We consider a model to be
“multi-”, not purely, deterministic when a range of output values from a computer model
may result deterministically for the same input parameter values, provided differing system
conditions. An assessment of the variation in output due to multiple conditions is vital
for understanding the uncertainty of model based inferences. The goal of this paper is to
show that we can make the required assessment of uncertainty, if we consider the versions
of the computer model evaluated under different system condition choices to be a sequence
of second-order exchangeable computer models.

A multi-deterministic model can be considered to be a collection of deterministic models
which share the same domain, share the same co-domain, do not present obvious theoretic or
computational advantages, and generate disparate predictions. In the presence of multiple
models, current approaches tend to base model predictions on either the outcomes from
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one (arguably, the “best”) model or the outcomes averaged, per input, across conditions.
However, such methods will likely underestimate the prediction uncertainty. For example,
consider an unobserved or latent model that corresponds to the physical process in the
sense that the model actually relies on the appropriate, or possibly true, system condition.
Methods that average one or more realized computer model rely on the strong assumption
that the average equals the latent model without error. For this paper, we choose not to
ignore the possibility of error and propose using the outcomes from multiple models to
estimate the latent model with uncertainty. In turn, inferences about the true process will
be based on our latent model assessments.

Many computer models that are treated currently as deterministic, should be consid-
ered as multi-deterministic and have the potential to estimate a latent model. In Section
2, we provide a non-exhaustive list of multi-deterministic models which incorporate system
conditions differently. In particular, we describe a model called Galform which we use in
Section 9 to demonstrate our methods. Galform simulates the formation of one million
galaxies within our universe and includes a system condition that represents dark matter.
The exact configuration of dark matter present throughout the evolution of our universe is
unknown, so any specification of dark matter will be uncertain and the choice will affect
model outcomes. From approximately 1000 model evaluations for 40 different dark matter
specifications, our methods enable us to construct an emulator for the latent Galform out-
comes, i.e., outcomes based upon the dark matter configuration which actually underlies
our universe. For our analysis, we consider the outcomes from Galform per system con-
dition specification to be second-order exchangeable with both each other and the latent
outcomes, and we use Bayes linear methods to make posterior moment assessments.

The outline of the paper is as follows. In Section 2, we describe several common multi-
deterministic models and establish notation. In Section 3, we define the notion of a latent
model and state explicitly the analysis goals for this paper. In Section 4 we discuss the
second-order exchangeability assumptions that we make to analyze a latent model given
multi-deterministic model results. We explain the role of emulators in our analysis and how
to estimate them in Sections 5 and 6. We then develop the theory for making Bayes linear
adjustments to the estimated emulators in Section 7 given multi-deterministic data. In
Section 8, we describe how to elicit prior judgments about model parameters from experts,
and we apply our methods to Galform in Section 9. We conclude with a discussion of our
work in Section 10.

2. Multi-deterministic Models

Any deterministic model that relies on a pre-specified system condition, such as a set of
initial conditions or a forcing function, may be viewed as a multi-deterministic model.
Consider a deterministic computer model f that depends upon both a system condition

c and input vector x (x = [x1, ..., xp]) and returns f (c)(x) (f (c)(x) = [f
(c)
1 (x), .., f

(c)
q (x)]).

Purely deterministic models fix the condition, e.g., c = cj, so that for x = xi and x = xi′ ,
f (cj)(xi) = f (cj)(xi′ ) when xi = xi′ . Multi-deterministic models, however, allow for model
results to differ for equal inputs because specifications for c may vary; if cj 6= cj′ , f (cj)(xi)
need not equal f (cj′)(xi), even though the inputs xi are the same. In this section, we
provide common examples of multi-deterministic models and define the notation we use for
the remainder of the paper.
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2.1. Examples

For some multi-deterministic models, the purpose for the system condition in the com-
puter model is indistinguishable from the role of any other input variable. In such cases,
the dependence structure of f (c)(x) on c might have a reasonable parametric form and a
statistical analysis for the computer model may simply treat the system condition as an
additional input variable. However, this paper addresses the uncertainty of model based
inferences when the relationship between the system condition c and the functional output
f (c)(x) is not of direct interest, but an assessment of the variation in model predictions
due to c is still important. If we were to compare these multi-deterministic models to a
mixed statistical model (McCulloch, 2002) which contains both fixed and random effects,
the system condition might correspond to the random effect. The following describes four
examples of multi-deterministic models.

(a) The quantity c may represent an unknown physical condition that is too complex
to be assessed parametrically. For example, some scientific theories suggest that the
processes controlling the evolution of our observable universe rely on the presence of
dark matter. However, the actual dark matter present since the Big Bang is currently
unmeasurable, so any galaxy formation computer model (e.g, Galform, Section 9) that
relies on the specification of dark matter is inherently uncertain. Similar examples
include c representing computer model forcings, such as boundary conditions, con-
tinental configurations, global elevations, and a vegetation distribution, fixed ocean
currents, solar variation etc. (e.g., Sewall et al., 2007). Also, c may associate with
initial condition specifications for models spun up to equilibrium.

(b) The quantity c may represent a condition that is only measurable with some degree
of variance or measurement error. System condition specifications based on observa-
tional data result in a range of possibilities for c, hence a range for model output, that
is based on the limitations in data collection technologies. For example, ocean current
models that include land configurations or rainfall-runoff models based on precipita-
tion measurements induce uncertainty in f (x) that is unrelated to the interactions of
the process variables x.

(c) The quantity c may index model outcomes which relied on differing known conditions
that are, in practice, unquantifiably different. For example, climate or crop-yield
models may simulate the effects of environmental changes in different global regions.
Depending upon the model resolution, each region might contain mountains, bodies of
water, vegetation, animal life, urban developments etc. that collectively affect model
output, but are, in practice, too difficult to quantify. The variation due to region is
not practical to characterize and the region serves as the experimental unit for the
computer experiment.

(d) The quantity c may represent a set of model results that condition on fixing a subset
of input variables to expert elicited values because they were identified as inactive
or due to cost constraints. For example, if x = [xa, xb] a researcher might fix xa to
reasonable values in hopes of exploring the space of f(xb) thoroughly. In some cases
however, setting a subset of inputs to constant values may limit the outcome range
to unknown regions of the output space, and adjustments should be made to account
for this bias.
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2.2. Notation
We can formulate all of the above examples with the following notation. The condition and
inputs, c and x, may take values cj and xi (xi = [xi1, .., xip]) respectively, where cj ∈ C and
xi ∈ X . For a computer experiment which explores m conditions and n(c) values for x, let
m(xi), n(cj), m, and n represent respectively the number of conditions explored for x = xi,
the number of runs completed for condition cj , the number of different conditions explored,
and the total number of runs across conditions, n =

∑m

j=1 n(cj). We denote the outcomes
from an experiment as sequences where {f (x)}[m(x)] contains the model outcomes across
conditions for input x; {f c}[n(c)] contains the model results for condition c across inputs;
and {f}[n] contains all of the results, across conditions and inputs.

The models and methods discussed in this paper apply to any computer experiment
with an unknown system condition. However, balanced designs for multi-deterministic
models have certain powerful theoretical properties which are very useful for analyzing
model uncertainty. Therefore, to highlight these properties and to simplify our account, we
develop the statistical theory for balanced computer experiments. Such experiments call
for the same experimental design per system condition specification so that 1) the same
collection of model evaluations, x1, ..., xn(c) is made for each selected condition cj , and 2)
n(cj) = n(cj′ ) = n(c) > p for all j, and 3) m(xi) = m(xi′) = m. When necessary, we discuss
theoretical issues for unbalanced experiments.

3. Goal: Assess Latent Model Outcomes

Multi-deterministic models are useful because researchers may explore multiple specifica-
tions for a system condition, when the ideal or true value for the condition is unknown or
impossible to specify. We refer to the computer model given the ideal condition as the latent
model and denote the outcomes by f (L)(x). For example, the hypothetical or latent model
for Galform (Example 2.1.a and Section 9) is based on the true dark matter configuration
that existed and evolved over the last 13.7 billion years (the time elapsed since the big
bang). In this paper, we develop the methodology to assess the expectation and variance
of f (L)(x) for all x provided outcomes from realized versions of the model {f}[n].

To model f (L)(x), we rely on the true condition being a priori second-order exchangeable
(SOE) with the set of specified system conditions. Second-order exchangeability dictates
a fundamental correlation structure between the latent and realized model outputs so that
we may use information in the realized outcomes to assess f (L)(x). In the next section, we
explain the SOE assumption and extend it to apply to functional data.

4. Second Order Exchangeable Functions

As described by de Finetti (1974), an infinite sequence is fully exchangeable when any subset
of size k (k < ∞) elements has the same joint probability distribution as any other k subset.
Thus, the specification of this distribution for each k is required to assess full exchangeability
and implies that the probability for an infinite number of finite sets of random variables
can be specified a priori. A second-order exchangeable (SOE) sequence however, does not
have the same, strong requirement and relies only on judgments for every pair of elements
(k=2) in a sequence. In this section, we extend the notion of SOE to functions and show
how it applies to multi-deterministic models.
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4.1. Extending SOE to SOEF
An infinite sequence of random vectors, say a1, a2, ..., is SOE when the first and second-
order belief specification for the sequence of vectors is unaffected by any permutation of
the order of the vectors (Goldstein and Woof, 2007, pg. 184). Thus, for any j and k, the
following expectation, variance, and covariance are constant,

E[aj] = µa, Var[aj ] = Σa, Cov[aj, ak] = Γa ∀ j 6= k. (1)

We introduce the notion of second-order exchangeable functions (SOEF) and state the
SOEF Representation Theorem by extending the definition of SOE sequences.

Second-order Exchangeable Functions

Let a(x) represent function a with input x where x = [x1, ..., xp] and
a(x) = [a1(x), .., aq(x)]. The sequence of functions {a(1), a(2), ...} is
second-order exchangeable if,

(a) For the same input x, the elements of the sequence
{a(1)(x), a(2)(x), ...} are SOE with mean µa(x) and variance matrix
Σa(x)

(b) For differing inputs x and x′, any two different outcomes have a
constant covariance within and between models,

Cov[a(j)(x), a(j′)(x′)] =

{
Γa;x;x′ for j = j′

Λa;x;x′ for j 6= j′
(2)

and for x = x′, Γa;x;x′ = Σa(x) .

We have the following representation theorem for SOEF which generalizes the corresponding
representation theorem for SOE sequences.

SOEF Representation Theorem

Let a(i) represent the ith deterministic function in the infinite sequence
{a} = {a(1), a(2), . . .}. If {a} is SOEF then we may introduce the further
random function M{a}, termed the population mean function, and also the
infinite sequence, R1{a},R2{a}, . . . termed the individual residual
functions which satisfy the following properties:

(a) Given x ∈ X , for each j

a(j)(x) = M{a(x)} + Rj{a(x)}

(b) The first two moments of M{a(x)} are as follows

E[M{a(x)}] = µa(x), Var[M{a(x)}] = ΣM{a(x)} = Λa;x;x

Cov[M{a(x)},M{a(x′)}] = Λa;x;x′.

(c) The sequence {R1{a},R2{a}, . . .} is SOEF, where for any j, j′ ∈ N,
j 6= j′, x, x′ ∈ X , and

E[Rj{a(x)}] = 0,

Var[Rj{a(x)}] = Σa(x) − ΣM{a(x)} = ΣR{a(x)},

Cov[Rj{a(x)},M{a(x′)}] = Cov[Rj{a(x)},Rj′{a(x′)}] = 0,

Cov[Rj{a(x)},Rj{a(x′)}] = Γa;x;x′ − Λa;x;x′.
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The proof for the SOEF Representation Theorem follows directly from the proof of the
corresponding representation theorem for SOE sequences in (Goldstein, 1986; Goldstein
and Woof, 2007). For any infinite SOE sequence {a1, a2, . . .}, each ai can be written as
ai = M{a} + Ri{a} where {R1{a},R2{a}, . . .} is a mean zero, SOE sequence of mutually
uncorrelated quantities and each element is uncorrelated with M{a}; and for any two
infinite SOE sequences, {a1, a2, . . .} and {b1, b2, . . .} where the Cov[aj , bj′ ] is constant for
j 6= j′, the Cov[Rj{a},Rj′{b}] = 0. Properties a-c follow accordingly.

4.2. SOEF Representations for Multi-deterministic Models
Within the context of multi-deterministic models, there is in principle an infinite sequence
of conditions {c1, c2, ...} for which, in many cases, we may make the judgment that the
functions {f (c1), f (c2), ...} are SOEF. If we make the additional judgment that f (L) is second-
order exchangeable with f (cj) for each cj ∈ C (in the sense that the augmented sequence
{f (L), f (c1), f (c2), ...} is also SOEF), we may consider the SOEF Representation theorem
and characterize the latent model as

f (L)(x) = M{f (x)} + RL{f (x)}, (3)

which formalizes the relationship between the latent model and any realized set of model
outcomes as, for each x, x′ and j 6= j′, we have

E[f (L)(x)] = E[f (cj)(x)] = µf (x) (4)

Var[f (L)(x)] = Var[f (cj)(x)] = ΣM{f (x)} + ΣR{f (x)} = Σf (x) (5)

Cov[f (L)(x), f (cj)(x′)] = Cov[f (cj)(x), f (cj′ )(x′)] = Λf ;x;x′. (6)

We assess µf (x), Σf (x), and Λf ;x;x′ via a combination of emulation and expert judgment
which we now discuss in the sections that follow. In Section 5, we develop SOEF emula-
tors for the multi-deterministic computer models; in Section 6, we make estimates for our
emulators, given the collection of evaluations of the model, and construct SOEF represen-
tations for these estimates; in Section 7, we review and develop Bayes linear methods for
updating means and variances for SOEF sequences, apply these methods to the sequence of
emulator estimates, and deduce the appropriate revisions for the second order specification
for f (L)(x); and in Section 8, we discuss how to make prior specifications for each of the
quantities required for this analysis.

5. Emulation

An emulator f (x) is a stochastic representation of a computer model (e.g., Bayarri et al.,
2007; Kennedy et al., 2006; Goldstein and Rougier, 2006a) which is used to make proba-
bilistic or moment based statements about model outcomes for unsampled subsets of the
input space. In this paper, we have the additional purpose of emulating the latent model
and learning about its second order properties as well.

A variety of approaches exist to emulate both univariate and multivariate deterministic
model outcomes (e.g., Bayarri et al., 2007; Rougier, 2008; Conti and O’Hagan, 2008). We
build from such approaches and emulate multi-deterministic model results with parameters
that depend upon the system condition. We shall suppose that our emulator for {f}[n] is
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of the form

f (cj)(x) = g(x)β(j) + ǫ(j)(x), (7)

E[ǫ(j)(x)] = 0, Cov[ǫ(j)(x), ǫ(j)(x′)] = ΣǫK(θ, x, x′)

where g(x) is a specified function of x that results in a 1 × r row vector; β(j) is a r × q

matrix of model coefficients for condition cj ; ǫ(j)(x) is a 1 × q vector of error terms for
condition cj that is x-dependent, with mean zero, uncorrelated with β(j), and modeled to
have a separable covariance structure; Σǫ is a q×q variance matrix for ǫ(j)(x) that is constant
over both x and c; K(θ, x, x′) represents the correlation between any two points in X and
reflects the local smoothness of the model output f (cj)(x) as a function of θ; and, θ is q× 1
and constant across conditions (both θ and Σǫ are constant, because {f}[n] is SOEF). The

benefit of using condition-dependent model terms β(j) and ǫ(j)(x), is twofold. First, we may
emulate {f (c1), ..., f (cm)} based on the corresponding sets of model realizations {f (c1)}[n(c)],

{f (c2)}[n(c)], ..., {f (cm)}[n(c)] separately, rather than simultaneously. This provides great
computational and theoretical simplifications, provided that we have a large enough design
that each model may be emulated with an acceptable degree of precision. Second, we may
learn about the mean behavior of the overall multi-deterministic model and the degree to
which any c = cj impacts model outcomes, including c = L, from the sequences {β}[m] and
{ǫ(x)}[m] (per x).

Our judgment that {f (L)(x), f (c1)(x), , f (c2)(x), ...} is SOEF (Section 4) implies that the
sequences of emulator parameters, {β(L), β(1), β(2), ...} and error terms {ǫ(L)(x), ǫ(1)(x), ...}
are SOE and SOEF respectively. Thus, by the SOE Representation Theorem (for the
coefficients) and the SOEF Representation Theorem (for the error terms), we have decom-
positions

β(j) = M{β}+ Rj{β}

ǫ(j)(x) = M{ǫ(x)} + Rj{ǫ(x)}

where {R1{β},R2{β}, ...} are SOE with mean zero; Rj{β} is uncorrelated with M{β};
Rj{β} is uncorrelated with Rj′{β} for j 6= j′;{R1{ǫ(x)},R2{ǫ(x)}, ...} are SOEF with
mean zero; Rj{ǫ(x)} is uncorrelated with M{ǫ(x)}; and Rj{ǫ(x)} is uncorrelated with
Rj′{ǫ(x)}, j 6= j′. In turn, we have the SOEF decompositions of the emulators,

M{f (x)} = g(x)M{β} + M{ǫ(x)} (8)

Rj{f (x)} = g(x)Rj{β} + Rj{ǫ(x)}. (9)

Given the above decompositions, we make two points. First, emulator (7) models out-
comes similar to a mixed statistical model with fixed terms M{f (x)} and random interac-
tion terms Rj{f (x)}. However, unlike mixed models, we do not presume fully exchangeable
computer outcomes to assess M{f (x)} and Rj{f (x)}. Second, we may extend Equations
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(4)-(6), as follows:

µf (x) = E
[
g(x)M{β} + M{ǫ(x)}

]
= g(x)µβ + µǫ(x) (10)

ΣM{f (x)} = Var
[
g(x)M{β} + M{ǫ(x)}

]

= g(x)ΣM{β}g(x)T + ΣM{ǫ(x)} (11)

ΣR{f (x)} = Var
[
g(x)Rj{β} + Rj{ǫ(x)}

]

= g(x)ΣR{β}g(x)T + ΣR{ǫ(x)} (12)

Λf ;x;x′ = Cov
[
g(x)M{β} + M{ǫ(x)}, g(x′)M{β} + M{ǫ(x′)}

]

= g(x)ΣM{β}g(x′)T + ΛM{ǫ;x;x′}. (13)

We discuss in the next section methods for both fitting a computer model emulator and
including estimation error in assessments of µf (x), ΣM{f (x)}, ΣR{f (x)}, and Λf ;x;x′ .

6. Emulator Estimation

In order to fit the emulator (7), given the computer model evaluations, we use generalized
least squares (GLS) methods (Appendix A). GLS has two desirable effects that greatly
simplify all of the following calculations in this section. First, it de-correlates the error
terms within a system condition. Secondly, the resulting estimates for the coefficients and
residuals are themselves SOE and SOEF because we are using a balanced design for the
computer evaluations.

Let f̂ (cj)(x) represent the estimated version of the computer model emulator for system

condition cj, and let {β̂}[m] and {ǫ̂}[n] represent the model terms in {f̂ (x)}[m] that include
estimation error e(·),

β̂(j) = β(j) + e(β̂(j)), ǫ̂(j)(x) = ǫ(j)(x) + e(ǫ̂(j)(x)),

where, for a ∈ (β, ǫ(x)), estimation error e(â(j)) equals â(j) − a(j). Since we are using GLS

estimation for a balanced design across the conditions, β̂ and ǫ̂(x) have the following proper-
ties: for a ∈ (β, ǫ(x)), E[e(â(j))] = 0, Var[e(â(j))] = Σe(ba) is constant, Cov[a(j), e(â(j))] = 0,

Cov[e(â(j)), e(â(j′))] = 0 for j 6= j′, and the sequences of estimates {β̂(1), β̂(2), ...}, and
{{ǫ̂(1)}[n(c)], {ǫ̂

(2)}[n(c)], ...} are SOE and SOEF respectively. In turn,

β̂(j) = M{β̂} + Rj{β̂} = M{β} + Rj{β̂}

= M{β} +
(
Rj{β} + e(β̂(j))

)

ǫ̂(j)(x) = M{ǫ̂(x)} + Rj{ǫ̂(x)} = M{ǫ(x)} + Rj{ǫ̂(x)},

= M{ǫ(x)} +
(
Rj{ǫ(x)} + e(ǫ̂(j)(x))

)
.

and {f̂ (c1)(x), f̂ (c2)(x), ...} is SOEF. Also, the means of f (cj)(x) and f̂ (cj)(x) are equal

because M{β} = M{β̂} and M{ǫ(x)} = M{ǫ̂(x)},

µ
f̂ (x) = µf (x) ΣM{f̂ (x)} = ΣM{f (x)};

but, the variance of f (j)(x) is less than the variance of f̂ (cj)(x) because

Σ bR{f (x)} = ΣR{f (x)} + g(x)Σ
e(bβ )g(x)T + Σe(bǫ(x)).
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To account for the change in variance, we describe in the next section the Bayes linear
adjustments of the prior expectation and variance of f (L)(x) given {β̂}[m] and {ǫ̂}[n], rather
{β}[m] and {ǫ}[n].

7. Bayes Linear Adjustments for the Latent Emulator

Since we are only willing to assume that the models are second-order exchangeable, we use
Bayes linear methodology that relies on expectation as the primitive, not probability. Thus,
without distributional specifications, Bayes linear methods entail adjusting prior moments
for quantities of interest by data. In this paper, we aim to adjust the moments of the latent
model f (L)(x) given a collection of realized models and their emulator estimates.

Using standard, Bayes linear notation, the adjusted expectation and adjusted variance
are denoted as follows: given random vectors a and b, let Eb[a] and Varb[a] represent the
adjusted expectation and variance of a given b. These quantities are derived from first
eliciting the joint prior expectation, variance and covariance for (a, b), and subsequently
applying the Bayes linear equations,

Eb[a] = E[a] + Cov[a, b]Var[b]−1
(
b − E[b]

)
(14)

Varb[a] = Var[a] − Cov[a, b]Var[b]−1Cov[b, a]; (15)

a detailed discussion of the Bayes linear approach is given in (Goldstein and Woof, 2007).
The specification of the joint prior moments is an important step in Bayes linear analyses.
Thus, in the sections that follow we include detailed descriptions about how to make the
needed specifications within the context of multi-deterministic computer experiments.

7.1. Expectation
Goldstein and Woof (2007, pg. 196) show that a sample mean for a SOE sequence is Bayes
linear sufficient for both: (i) the population mean (i.e. Bayes linear adjustments of the
population mean given either the full sample or just the sample mean are equal), and (ii)
any further members of the SOE sequence which are not included in the sample. Since the
sequences {β̂}[m] and {{ǫ̂(1)}[n(c)], ..., {ǫ̂

(m)}[n(c)]} are SOE and SOEF respectively, we know

that β̂ and {ǫ̂}[n(c)],

β̂ =
1

m

m∑

j=1

β̂(j), ǫ̂(x) =
1

m

m∑

j=1

ǫ̂(j)(x),

are Bayes linear sufficient to update M{β} and M{ǫ(x)}. The prior moments of β̂ and
{ǫ̂}[n(c)] are

E[β̂ ] = µβ Var[β̂ ] = ΣM{β} + 1
m

(ΣR{β} + Σ
e(bβ))

E[̂ǫ(x)] = µǫ(x) Var[̂ǫ(x)] = ΣM{ǫ(x)} + 1
m

(ΣR{ǫ(x)} + Σe(bǫ(x))),

and, the adjusted moments of f (L)(x) given β̂ and {ǫ̂}[n(c)] are

E({bβ}[m],{bǫ}[n])
[f (L)(x)] ≡ E

{b
β,{bǫ}

[n(c)]
}
[f (L)(x)]
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= g(x)E
{

b
β,{bǫ}

[n(c)]
}
[M{β}] + E

{
b
β,{bǫ}

[n(c)]
}
[M{ǫ(x)}],

≈ g(x)Eb
β
[M{β}] + E{bǫ}

[n(c)]

[M{ǫ(x)}] (16)

Var({bβ}[m],{bǫ}[n])
[f (L)(x)] ≡ Var

{b
β,{bǫ}

[n(c)]
}
[f (L)(x)]

≈ g(x)Varb
β

[
M{β} + RL{β}

]
g(x)T + Var{bǫ}

[n(c)]

[
M{ǫ(x)} + RL{ǫ(x)}

]

= g(x)Varb
β
[M{β}]g(x)T + g(x)ΣR{β}g(x)T

+ Var{bǫ}
[n(c)]

[M{ǫ(x)}] + ΣR{ǫ(x)}, (17)

where Eb
β
[M{β}], E{bǫ}

[n(c)]

[M{ǫ(x)}], Varb
β
[M{β}], and Var{bǫ}

[n(c)]

[M{ǫ(x)}] are the ad-

justed expectations and variances of M{β} and M{ǫ(x)} as defined by Equations (14)
and (15). Equations (16) and (17) are approximations because we zero the natural correla-

tion between the β̂ and {ǫ̂}[n(c)] that is induced by their estimation errors. Goldstein and
Rougier (2006b) make the same approximation, and for large samples, this will have little
impact on model based inferences.

Notice that two terms in Equation (17) are independent of both β̂ and {ǫ̂}[n(c)]; the
latent residuals RL{β} and RL{ǫ(x)} are, by the SOE and SOEF representation theorems
respectively, orthogonal to the sample means. Thus, Bayes linear adjustments by the sample
means do not affect residual variances ΣR{β} and ΣR{ǫ(x)}. In the next section, we show
how to make data adjusted assessments of ΣR{β} and ΣR{ǫ(x)}.

7.2. Residual Variances
Let Sbβ

and Sbǫ(x) represent the observed sample variances of {β̂}[m] and {ǫ̂(x)}[m] respec-

tively. In this section, we use Sbβ
and Sbǫ(x) to carry out a Bayes linear adjustment of

ΣR{β} and ΣR{ǫ(x)}. To do so however, we make two additional second-order exchangeable
assumptions and decompose Sbβ

and Sbǫ(x) so that the joint prior moment assessments of

(Sbβ
, ΣR{β}) and (Sbǫ(x), ΣR{ǫ(x)}) are clear.

7.2.1. SOE and SOEF Assumptions for the Squared Residuals

The additional assumptions pertain to the m + 1 sequences of squared residuals of the
emulator terms which, for ease in notation, we denote as {vβ}[m,L] and {v

ǫ(x)}[m,L] that

contain elements v
(j)
β and v

(j)
ǫ(x),

v
(j)
β = Rj{β}Rj{β}

T and v
(j)
ǫ(x) = Rj{ǫ(x)}Rj{ǫ(x)}T .

If we assume that the {v
(L)
β , v

(1)
β , v

(2)
β , ...} is SOE and {v

(L)
ǫ(x), v

(1)
ǫ(x), v

(2)
ǫ(x), ...} is SOEF, then

we have decompositions,

v
(j)
β = M{vβ} + Rj{vβ} and v

(j)
ǫ(x) = M{vǫ(x)} + Rj{vǫ(x)}
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that satisfy properties a-c of the SOEF representation theorem. In particular,

E[v
(j)
β ] = µv

β
Var[v

(j)
β ] = ΣM{v

β
} + ΣR{v

β
}

E[v
(j)
ǫ(x)] = µv

ǫ(x)
Var[v

(j)
ǫ(x)] = ΣM{v

ǫ(x)
} + ΣR{v

ǫ(x)
}.

Since E[Rj{β}] = 0 and E[Rj{ǫ(x)}] = 0 for any j ∈ {L, 1, 2...}, the variances of Rj{β}
and Rj{ǫ(x)} equal the means of vβ and v

ǫ(x) respectively,

Var[Rj{β}] = ΣR{β} = µv
β

Var[Rj{ǫ(x)}] = ΣR{ǫ(x)} = µv
ǫ(x)

.

Thus, updating the residual variances ΣR{β} and ΣR{ǫ(x)} is similar to adjusting the expec-

tations of v
(j)
β and v

(j)
ǫ(x) by Sbβ

and Sbǫ(x) respectively for any j; i.e., we assess ES bβ
[M{vβ}]

and ESbǫ(x)
[M{vǫ(x)}]).

7.2.2. Marginal and Joint Prior Variance Specifications

Adjustments ES bβ
[M{vβ}] and ESbǫ(x)

[M{v
ǫ(x)}] rely on the marginal and joint prior ex-

pectations and variances of (v
(j)
β , Sbβ

) and (v
(j)
ǫ(x), Sbǫ). However, eliciting the partial priors

for v
(j)
β and v

(j)
ǫ(x) from experts can be challenging. Experts are constrained by the fact that

the final adjusted variances must be positive semi-definite and, given multivariate outputs,
the emulator coefficients and error terms have multi-dimensional variance arrays that can
be hard to conceptualize. Therefore, we suggest to either vectorize the variance arrays or
model the multivariate output univariately. In doing so, we need only consider standard,
two-dimensional variance matrices for our variance adjustment of f (L)(x) which can be
assessed by a semi-adjustment technique developed in Goldstein and Woof (2007, pg. 286).

In short, the Bayes linear semi-adjustment technique separates the tasks of learning
from the data the diagonal and off-diagonal elements within a variance matrix. To assess
the column vector of univariate variances (the diagonal terms of the variance matrix),
standard Bayes linear updating applies; to estimate the posterior correlation matrix, a
weighted average of a prior and estimated correlation matrix is taken. In turn, the updated
correlation matrix and the outer product of the square root vector of updated, univariate
variances are multiplied (element-wise). The result is a data semi-adjusted variance matrix.
In Section 9, we use the semi-adjustment method to assess the variance matrix of β and
rely on data collected from a pilot study to specify a prior correlation matrix.

Because we rely on GLS to emulate the computer model, we do not need to use the
semi-adjustment technique to assess Var[ǫ(j)(xi)]. Due to the data rotation and model-
ing assumptions discussed in Section 6, Corr[ǫ(j)(xi), ǫ

(j′)(xi′ )] = 0 and Var[ǫ(j)(xi)] =
Var[ǫ(j

′)(xi′ )] = Σǫ for any j, j′, i, and i′, and Σǫ has only non-zero elements on the
diagonal. Thus, we need only adjust one, univariate variance to characterize Σǫ which re-

quires the joint prior specifications of (v
(j)
ǫ(x), Sbǫ). The remainder of this section describes

an approach for specifying the joint prior expectation and variance for both (v
(j)
ǫ(x), Sbǫ) and

(v
(j)
β , Sbβ

).
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The joint specifications follow clearly from the decompositions Sbβ
and Sbǫ(x) as defined in

Goldstein and Woof (2007, pg. 282) and applied to exchangeable sequences with estimation
error:

Sbβ
= M{vβ} + Tbβ

and Sbǫ(x) = M{vǫ(x)} + Tbǫ(x),

where for a ∈ [β, ǫ(x)],

Tâ = Σe(â) +
1

m

∑

j

Rj{va} −
1

m

∑

j 6=k

Rj{a}Rk{a}
T ,

and Tbβ
and Tbǫ(x) have the following properties (Goldstein and Woof, 2007, pg. 282, eq. 8.7):

E[Tbβ
] = Σ

e(bβ), E[Tbǫ(x)] = Σe(bǫ(x)), Var[Tbβ
] = Σ†

e(bβ)
+ ΣTβ

, Var[Tbǫ(x)] = Σ†
e(bǫ(x)) + ΣTǫ(x)

,

Cov[M{vβ}, Tbβ
] = 0, and Cov[M{vǫ(x)}, Tbǫ(x)] = 0, where Σ†

e(ba) is the variance of e(â)2

which can be thought of as the variance of the variance of e(â). As a result, the joint prior

expectations and variances of (v
(j)
β , Sbβ

) and (v
(j)
ǫ(x), Sbǫ) are

E[v
(j)
β , Sβ ] = [µv

β
, µv

β
+ Σ

e(bβ)] E[v
(j)
ǫ(x), Sǫ(x)] = [µv

ǫ(x)
, µv

ǫ(x)
+ Σe(bǫ(x))]

Var[Sbβ
] = ΣM{v

β
} + Σ†

e(bβ )
+ ΣTβ

Var[Sbǫ(x)] = ΣM{vǫ}
+ Σ†

e(bǫ(x)) + ΣTǫ(x)

Var[v
(j)
β ] = ΣM{v

β
} + ΣR{v

β
} Var[v

(j)
ǫ(x)] = ΣM{v

ǫ(x)
} + ΣR{v

ǫ(x)
}

Cov[v
(j)
β , Sbβ

] = ΣM{v
β
} Cov[v

(j)
ǫ(x), Sbǫ ] = ΣM{vǫ}

,

and adjustments ES bβ
[M{vβ}] and ESbǫ(x)

[M{v
ǫ(x)}] may follow by applying formula (14).

These adjustments, in addition to those described in Section 7.1, enable the calculation of
a data-informed variance.

7.3. Bayes Linear Two-stage Analysis
Our analysis of f (L)(x) proceeds in two stages (Goldstein and Woof, 2007, pg. 288). For
stage one, we adjust the residual variances by the data via ES bβ

[M{vβ}] and ESbǫ(x)
[M{v

ǫ(x)}];

and, for stage two, we use these adjustments as plug-in estimates for ΣR{β} and ΣR{ǫ(x)}

to assess Varb
β
[M{β}], Var{bǫ}

[n(c)]

[M{ǫ(x)}], and Equation (16). We denote the one and

two-stage adjustments by superscripts ‘(1)’ and ‘(2)’ respectively and define the two-stage
adjustments of E[f (L)(x)] and Var[f (L)(x)] as follows:

E
(2)
D [f (L)(x)] ≈ g(x)E

(2)
b
β

[M{β}] + E
(2)

{bǫ}
[n(c)]

[M{ǫ(x)}] (18)

Var
(2)
D [f (L)(x)] ≈ g(x)Var

(2)
b
β

[M{β}]g(x)T + g(x)E
(1)
S bβ

[M{vβ}]g(x)T

+Var
(2)

{bǫ}
[n(c)]

[M{ǫ(x)}] + E
(1)
Sbǫ(x)

[M{vǫ(x)}], (19)

where D = {β̂ , {ǫ̂}[m], Sbβ
, Sbǫ}.
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8. Prior Specifications

Some of the prior quantities needed for adjustments (18) and (19) might be somewhat
unfamiliar to experts and, as discussed by O’Hagan (1998), reasonable prior specifications
are vital for Bayesian analyses. In this section, we describe some examples of the types of
modeling decisions which we make to simplify the specifications.

For a random SOE quantity a, we might be prepared to specify directly one of the
following three variances: Σa, ΣM{a}, or ΣR{a}, where Σa = ΣM{a} + ΣR{a}. To deduce
the remaining variance terms, we presume that ΣM{a} = w0 + w1ΣR{a} where w0 and
w1 are expert elicited, and in Goldstein, House, and Rougier (2008) we discuss a complex
method for making such judgments. If w0 is judged to equal zero, then the procedure for
specifying w1 simplifies. The variance ΣM{a} is strictly proportional to ΣR{a}, and the
value for w1 should be small when the expert believes that the realized models outcomes
are indicative of the entire set of possible model outcomes (and large otherwise). In Section
9, we make the judgment that w0 = 0 and elicit values for w1 < 1 from experts which we
denote by w1a and w1b.

We make similar proportionality assumptions as suggested in Goldstein and Woof (2007)
to solve for the variance of the mean variance and the variance of the residual variance, e.g.,
for random quantity a, ΣM{va}

= w2µ
2
va

and ΣR{va}
= w3(ΣM{va}

+ µ2
va

). The constant
w2 can be found in terms of m and two expert elicited quantities p and k,

w2 =
k(1 − p)

(k(p − 1) + p(m − 1))
.

The first quantity p pertains to the proportion of the updated variance of a we expect prior
judgments to explain. The second quantity k is a function of the expected kurtosis for the
distribution of a (Kur(a)) where

k =
1

m

[
(m − 1)

(
Kur(a) − 1

)
+ 2

]
.

Given Kur(a), we may solve for w3,

w3 = Kur(a) − 1.

As mentioned previously, the specifications of prior moments is an important component
in Bayes linear analyses. In the next section, we apply our methods and exemplify how we
elicit prior information from both experts and data collected previously.

9. Application: Galform

The Galform model was developed by the Durham Semi-analytical modeling group at the
Institute of Computational Cosmology (ICC), the University of Durham, United Kingdom
and simulates the creation and evolution of approximately one million galaxies, from the
beginning of the universe until the current day. It relies on complex mathematical equations
which characterize relevant physical processes, including gravitational collapse, radioactive
cooling and star formation, to predict (among other variables) the number and luminosity
of the simulated galaxies that are observed in our universe. The Galform equations require
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Table 1. List of input variable (x = [x1...x8]) ab-
breviations with corresponding minimum and max-
imum values designed for Galform.

l : xl Variable Minimum Maximum

1 vhotdisk 100 550
2 alpha reheat 0.20 1.20
3 alpha cool 0.20 1.20
4 vhotburst 100 550
5 epsilon Star 10 1000.00
6 stabledisk 0.65 0.95
7 alphahot 2.00 3.70
8 yield 0.02 0.05

the specification of values for p = 8 input parameters† which are listed in abbreviated form
in Table 1. Further details concerning the input parameters and the model itself can be
found in several references including Cole et al. (1994); Springel et al. (2005); Bower et al.
(2006); Baugh (2006), and references therein.

One output f (x) produced by Galform is a q-dimensional vector (f (x) = {f1(x), ..., fq(x)})
which effectively represents the proportion (logarithm base 10) of all galaxies simulated per
unit volume φ(h3 Mpc−3mag−1) that fall within q = 35, mutually exclusive ranges of bj-
band luminosity‡ or absolute magnitude (-Mbj + 5 log10h). Figure 1 includes one example
of an output from Galform. Six vertical lines are drawn in Figure 1 to mark six luminosities
or points of interest on the curves that are particularly sensitive to the Galform inputs.
These points include 17, 18.25, 20, 21, 21.75, and 22.25 (-Mbj + 5 log10h).

An important component to the formation of our universe is the presence of dark matter
(Figure 2). Thus, coded into Galform is a system condition variable c called region for dark
matter specifications. The name region is a natural choice because another computer model
simulated one large configuration of dark matter (known as, the “millennium simulation”)
that was subdivided into 512 spatial regions, each of which can be used as forcing functions
for Galform.

9.1. Experimental Design and Data Transformations
The first m = 40 of the 512 regions were preselected and fixed for a Galform computer
experiment. An 8-dimensional Latin hypercube experimental design was used to select
n(c) = 1000 input values xi, i ∈ 1, ..., n(c). Since the same n(c) values were input into
Galform for each pre-selected region or system condition j where j ∈ [1, ..., m], the Galform
computer experiment included n = 40, 000 design points.

For the following analysis, incomplete runs were removed which reduced n(c) to 967
(runs only failed at random due to computational, not theoretical, limitations), and, per

†The current version of Galform actually includes 17 input parameters. However, 8 of the 17
variables influence the luminosity predictions substantially more than the remaining 9. Thus, the
computer experiment designed and discussed in this paper set 9 input parameters to expert elicited
values and varies the influential 8 parameters.
‡Galform actually makes predictions for 109 mutually exclusive luminosity ranges, but typical

analysis focus on galaxies with luminosity is less than -15.5. Additionally, the bj-band luminosity
curves is one of several outputs produced by Galform.
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Fig. 1. Example of one Galform result compared to observational data. The x-axis represents the
absolute magnitude of the galaxies which relates directly to the intrinsic luminosity of the galaxy, and
the y-axis is the logarithm base 10 proportion of galaxies (for a given curve) per unit volume that fall
within the given luminosity range.

Fig. 2. The gray net of matter represents an example of one dark matter specification, and the dots
represent different galaxies simulated with various luminosities.
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luminosity, the outcomes were scaled by the mean and standard deviation across runs and
regions. Additionally, each input was transformed so that x ∈ [−1, 1].

9.2. Assess f (L)(x)
For exemplary purposes, we start by selecting one point from the luminosity curve and
applying our methods as explained in Sections 4-7. Thus, our initial goal for this section is
to assess the latent Galform outcome for luminosity 18.25 (-Mbj +5 log10h) which we denote

by f
(L)
18.25(x), and we implement our analysis of f

(L)
18.25(x) in the following order:

9.2.1 Judge whether Galform outcomes are SOEF.
9.2.2 Fit a mean-emulator to learn g(x) and K for emulator (7).
9.2.3 Fit emulator (7) and store both the sequence of model coefficients

{β}[m] and sequence of error terms {ǫ}[n].
9.2.4 Obtain the data summaries and elicit the prior quantities needed

to calculate the adjusted variances of β(L) and {ǫ(L)}[n(c)] and the

adjusted expectations of β(L) and {ǫ(L)}[n(c)].

9.2.5 Assess results.

In Section 9.2.6, we repeat steps 9.2.1-9.2.5 for additional points on the luminosity curve;

i.e., we derive the adjusted expectations and variances of f
(L)
17 (x), f

(L)
20 (x), f

(L)
21 (x), f

(L)
21.75(x),

and f
(L)
22.25(x). In conclusion, we assess f (L)(x) based on the six sets of adjusted moments.

9.2.1. SOEF Judgment

Each specification for region is the result of one dark matter simulation and an underlying
modeling structure may exist which correlates certain dark matter predictions more strongly
than others. However, we still make the prior judgment that the m+1 sequence {f (x)}[m] =

(f (L)(x), {f (x)}[m]) is SOEF because the possible structure is, for all practical purposes,
unquantifiable and unknown. The task of cataloging and parameterizing the differences in
dark matter specification such as Figure 2 is enormously complicated, and even the spatial
orientation of the selected regions is undocumented. In light of these limitations, a simple
thought experiment conducted by an expert resulted in the judgment that the mean and
correlation of Galform output given two different, randomly chosen regions is constant.
Hence, we consider the sequence {f}[n] to be SOEF. Similarly, we make the provisional
assumption that the simulated estimates of Galform are SOEF with the results conditional
on the true dark matter; a priori, ({f (L)}[n(c)], {f}[n]) are also SOEF.

9.2.2. Learn Correlation Distance and g(x) from Mean-Emulator

Emulator (7) relies on specifications of g(x) and θ which we choose to learn from a mean-
emulator f (x),

f (x) = g(x)β + ǫ(x), Cov[ǫ(x), ǫ(x′)] = ΣǫK(θ, x, x′). (20)

where, g(x) and K(θ, x, x′) have equivalent definitions to Equation (7); β is a r × q matrix
of model coefficients for the mean emulator; ǫ(x) is a Gaussian process error term; and Σǫ

is a q×q matrix that represents the variance for ǫ(x) per input x and does not depend on x.
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The advantage of using a mean-emulator (20) is that the procedures implemented to learn
g(x) and K(), such as backward stepwise regression or variograms respectively, need only
apply to one sequence, i.e., the n(c)−sequence of means {f}[n(c)], rather than the complete

m × n(c) collection of model runs. The implication of this choice is that the mean effects
are parameterized similarly to the region effects. Allowing g(x) to vary with region would
avoid this restriction and enable a more complex parameterization for the effect of region
than M{f (x)}. However, preliminary analyses of Galform suggest that this complexity is
not necessary for our research question.

There are a variety of options for K(), g(x), and methods to fit model (20) (e.g., Conti
and O’Hagan, 2008; Craig et al., 2001). For Galform, we choose a product, Gaussian
correlation function where each (i, i′) element in the n(c) × n(c) correlation matrix K, is

K(θ, xi, xi′) =

p∏

l=1

exp
{
−

(xil − xi′l

θ

)2}

and specify θ as follows. We transform the inputs so that the range of each variable is [−1, 1],
and consider the correlation between ǫ(xi) and ǫ(xi′ ) when |xil − xi′l| > 1 for each l to be
practically zero (i.e., 0.00001). In turn, we solve for θ as 0.834. Given θ, we use Generalized
Least Squares (GLS) regression and apply a backward stepwise procedure (Venables et al.,
2002) to identify the form of g(x) from 967 mean model runs. We start with an overly large,
full polynomial model which include the main effects, the main effects squared, the main
effects cubed, and every two-way interaction between the main effects. After we reduce
the model according to AIC, we result in an emulator for Galform at luminosity 18.25 (-
Mbj + 5 log10h) that has 34 coefficients, where the mean squared error = Var[̂ǫ(x)] = 0.013
and adjusted R2=0.980.

9.2.3. Emulate Galform

Given g(x) and θ, the computer model outcomes per dark matter specification were fit using
GLS. On average the mean squared error and adjusted R2 were 0.00254 and 0.993 respec-
tively. The boxplots in Figure 3 display the distribution of standardized GLS estimates for

β̂(j) (centered by β̂ and scaled by the corresponding emulator estimates for the standard

errors of β̂(j)). The spread for each estimate is indicative of the degree to which the system
condition impacts the model outcomes.

9.2.4. Bayes Linear Adjustment

Since the Galform emulator has 34 coefficients and n(c) = 967 error terms with a common
variance, we will update a 34×34 prior coefficient matrix and one univariate variance. These
updates are determined by calculation (19) that relies on specifications for eight quantities:
µv

β
, ΣM{β}, ΣTβ

, Σ
e(bβ), µv

ǫ(x)
, ΣM{ǫ(x)}, ΣTǫ

, and Σe(bǫ(x)). Subsequently, we assess the

adjusted expectations for Galform via Equation (18) that relies on the additional specifi-
cations of µβ and µǫ . We advocate eliciting these values from experts by asking detailed
questions about the model itself, and not the parameters specifically; the parameters are
hard to conceptualize, and thus, hard to specify directly. A detailed discussion concerning
the questions that we would recommend is beyond the scope of this paper. Thus, we opted
to use data from a pilot study of Galform to specify the necessary prior quantities.
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Fig. 3. The boxplots display the distribution of standardized GLS estimates for bβ(j) across the re-

gions where j ∈ [1, ..., m]. Since the estimates were standardized based on b
β and the corresponding

region estimates for the standard errors of bβ(j), the spread for each estimate is an indication of the
degree to which the system condition, region, impacts the model outcomes. Coefficients 2-7 repre-
sent the mains effects chosen for this emulator and represent the following: vhotdisk, alpha reheat,
vhotburst, epsilon Star, stabledisk, and yield. The remaining coefficients correspond to either
quadratic, cubic, or paired-interactions.
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The pilot study or small computer experiment of Galform was conducted before we
began our formal assessment of the latent Galform model. This experiment consisted of
100 runs for which 10 different system conditions were randomly selected per run so that, in
total, 1000 runs were completed. The dataset is small and easy to manage, but unusable for
the purpose of assessing the influence of inputs on process behavior because the effects of
the system condition and inputs are irreversibly confounded. However, given a few guided
approximations, this dataset can give reasonable prior estimates for the model quantities.

(a) We start by specifying µv
β

and µvǫ
. Let {F (x)}[1000] and F 100(x) represent re-

spectively the sequence of model runs for the randomly selected conditions and the
sequence of means for input i, where i ∈ [1, ..., 100]. Since the observed 100 × 100
variance matrix for {F (x)}[1000] estimates ΣR{F (x)}, we may solve for µv

β
by

µv
β

= (GT G)−1GT (ΣR{F (x)} − I100µvǫ
)G(GT G)−1

where G represents the 100×34 design matrix, I100 is a 100×100 identity matrix, and
µvǫ

is considered to be a fraction w1a for the observed residual variance ΣR{F (x)},

µv
ǫ(x)

= w1aVar[{F (x)}[1000]]. We set w1a = 0.15 because preliminary analyses of the

pilot study suggested that the mean emulator, per condition, explained most of the
observed output variation in the pilot study.

(b) To assess the moments of M{β} and M{ǫ(x)}, we rely on expert judgment and re-use
the above pilot study. Namely, we set µǫ = ΣM{ǫ} = 0 and use the pilot data to solve
for µβ ,

µβ = (GT G)−1G{F (x)}[100].

We then bootstrap the pilot data and calculate 250 estimates of M{β} based on
samples drawn with replacement (ignoring run and region) of size 100. We set ΣM{β}

to the empirical variance of the 250 estimates.
(c) As explained in Section 8, we set ΣM{v

β
} = w2µv

β
, ΣM{vǫ}

= w2µvǫ
, ΣR{v

β
} =

w3(ΣM{v
β
} + µ2

v
β
), and ΣR{vǫ}

= w3(ΣM{vǫ}
+ µ2

vǫ
) where w2 and w3 can be deter-

mined using n(c) = 967, Kur(β) = Kur(ǫ) = 9, and p ∈ [0.1, .5, .9]. For conservative
reasons, we opt to assume the distributions of β and ǫ(x) have fatter tails (compara-
ble to those of a t-distribution with 5 degrees of freedom) than a normal distribution.
To select p which is the proportion of an updated variance that we expect our prior
judgments to explain, we consider how well we can predict the behavior of the com-
puter model. If we expect the observed data to alter our current beliefs dramatically,
slightly, or in between, we set p = 0.1, p = 0.9, or p = 0.5 respectively.

(d) The final variance specifications we need are Σ
e(bβ) and Σe(bǫ(x)). Since we have 967

model runs, we judge that the estimation variances should be close to zero. Thus, we

use the least-squares estimates from the pilot study for the standard error of β̂ and
ǫ̂(x) and set Σ

e(bβ) to Sβ (XT X)−1 and Σe(bǫ(x)) to 0.05Sǫ respectively.

Following steps 1-4, we screen each prior quantity derived from the pilot study to assure
that our beliefs match our specifications; e.g., to assure that we do not overstate our confi-
dence for any given quantity by specifying a small corresponding prior variance. Once our
specifications match our beliefs, we have all of the needed components to solve Equations

(18) and (19) and assess E[f
(L)
18.25(x)] and Var[f

(L)
18.25(x)].
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9.2.5. Assess the Adjusted Moments for f
(L)
18.25(x)

Although Bayes linear methods do not impose distributional assumptions, we display, for
explanatory purposes, the results of our adjusted moments in Figure 4 as if the distribution

of f
(L)
18.25(x) is symmetric and compare it to the empirical distribution of realized model

outcomes, f
(j)
18.25(x) for j ∈ [1, ..., 40]. Specifically, we plot in Figure 4 the observed mean

plus/minus three empirical standard deviations (f18.25(xi)±3
√

Sf18.25(xi), where Sf18.25(xi)

is the sample model outcome variance at point 18.25 for run i), and the adjusted expected

value plus/minus three adjusted standard deviations (E
(2)
D [f

(L)
18.25(x)]±3

√
Var

(2)
D [f

(L)
18.25(x)]).

We refer to the latter as adjusted intervals.

For luminosity 18.25, we do not see much difference between the observed and adjusted
means, although, the empirical spread of outcomes per input tends to be smaller (with
some exceptions) than the corresponding adjusted intervals. This means that the affect of
dark matter specifications for some input values is greater than what we observed from the
computer experiment. Relying solely on summary statistics for assessing the uncertainty
of a system condition may result in overly confident model predictions. With that said,
we will see in the next section that the observed variance may also over estimate model
uncertainty. Underlying our calculations of the adjusted variance is a balance between the
variance of M{f (x)} and the variance of RL{f (x)}. If the variance of the M{f (x)} is
relatively small and the prior variance of RL{f (x)} is less than the observed variance, the
overall adjusted variance has the potential to be less than the observed variance.

To validate our methods, we implement a leave-one-out (i.e., leave-one-region-out) val-
idation procedure. We re-calculated the adjusted expectation and variance forty times,
each without the results (for all runs) from one of the forty regions. A high percentage of
re-calculated adjusted intervals containing the missing observations would suggest that the
methods proposed in this paper are reasonable. Although, 100% coverage might indicate
that our adjustments are too conservative; i.e., our assessments of model uncertainty might
be too large. Our cross validation procedure found that the adjusted intervals covered 99.9
percent of the missing observations.

In the next section, we extend our application to other points on the luminosity curve
and repeat the cross validation procedure. We also investigate additional data that was
generated by Galform conditional on regions which were not included in the original exper-
imental design.

9.2.6. Assess the Adjusted Moments for f
(L)
17 (x) − f

(L)
22.25(x)

We apply the same techniques that are described in Section 9.2.4 for prior elicitation and
assess E[f (L)(x)] and Var[f (L)(x)] for the remaining five sensitive points on the luminosity
graph (Section 9): 17, 20, 21, 21.75, and 22.25 (-Mbj + 5 log10h). Figure (5), plots the
adjusted intervals for two runs of Galform (chosen randomly from 1000): runs x188 and
x870. Notice that our assessments of model uncertainty do not equal the observed spread of
model outcomes and the difference is not uniform across the inputs nor luminosities. This
is important because the behavior of Galform, or almost any complex computer model, is
often understood better in some subsets of the input space and/or subsets of the responses
than others. Forcing uniform estimates of uncertainty across the domain or co-domain
of a computer model could hinder subsequent model-based inference. In particular, the
adjusted interval at 21 (-Mbj + 5 log10h) for run 870 is smaller than the empirical interval.
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Table 2. Provided Galform outcomes that were based on system
condition specifications (regions 41-50) that were not included in
the original experimental design, this table includes the proportion
of model outcomes that are contained in our adjusted intervals.
Since the adjusted intervals are based only on the original data,
the new predictions are similar to possible realizations of the latent
model.

New Region
Luminosity Points(- Mbj + 5 log10h)

17.00 18.75 20.00 21.00 21.75 22.25

41 1.000 1.000 1.000 0.996 0.991 0.995
42 1.000 1.000 0.998 0.996 0.989 0.998
43 1.000 1.000 0.999 0.997 0.994 1.000
44 1.000 1.000 0.999 0.992 0.988 0.997
45 1.000 1.000 0.998 0.994 0.994 0.997
46 1.000 1.000 0.999 0.998 0.993 0.999
47 0.829 0.997 1.000 0.995 0.991 0.999
48 0.863 1.000 1.000 0.998 0.995 0.996
49 1.000 1.000 0.999 0.992 0.983 0.997
50 1.000 1.000 1.000 0.994 0.989 1.000

This occurred for reasons stated in Section 9.2.5 and we observed an overly large variance
due to outliers.

Also, the cross validation results are satisfactory and are as follows: 95.8% for out-

come f
(L)
17 (x), 99.9% for outcome f

(L)
20 (x), 99.9% for outcome f

(L)
21 (x), 99.9% for outcome

f
(L)
21.75(x), and 99.9% for outcome f

(L)
22.25(x). To further check our proposed methods, we

requested additional Galform simulations that were based on ten regions that were not
in the original experimental design: regions 41-50. We display three of the ten luminosity
curves (for runs 188 and 870) that were predicted by Galform based on the new dark matter
specifications in Figure 6. For each of the 10 regions and points of interest on the luminosity
curve, we assess the percentage of new predictions that fall within our adjusted intervals
(Table 2). Our adjusted intervals contain 83%-100% of the predictions.

10. Discussion

We introduced the notion of a multi-deterministic computer model which we define as a
deterministic model that can produce more than one result per input because of varying
system condition specifications. The main goal of this paper is to develop a method to learn
about model uncertainty by pooling information across the multi-deterministic outcomes
without making strong modeling assumptions, such as full exchangeability. Specifically, we
show that by assuming only that the outcomes per condition are from functions that are
SOEF, we can adjust prior assessments of uncertainty.

Given a multi-deterministic model, researchers often use the sample average and sample
variance of the model outcomes to assess the expected value and variance of the latent
model. We make two arguments against this practice. First, the mean model and the latent
model differ by the latent residual term RL{f (x)} which a posteriori need not equal zero.
In fact, from the methods developed in this paper, we can learn about the discrepancy
specifically. In Section 5, we defined the expectation and variance for the model results
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Fig. 4. The above graphs overlay the average simulated data and data-adjusted expectations for
f (L)(x), x∈[x105, ..., x115] and x∈[x515, ..., x525]. The circles connected by a dotted line and the
parallel dotted lines represent the realized sample means ±3 standard deviations (f18.25(xi) ± 3p

Sf18.25(xi)). The triangles with vertical solid lines represent the adjusted expectation ±3 adjusted

standard deviations (E(2)
D [f

(L)
18.25(x)] ± 3

q
Var

(2)
D [f

(L)
18.25(x)]).
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Fig. 5. Given analyses for six luminosity points, we may learn about the expected curve. Here,
we randomly selected runs 188 and 870 to show the difference between both the simulated mean
and variance across regions and our updated mean and variance. Specifically, the dotted lines

represent ±3 realized, standard deviations from the realized mean curve (fk(xi) ± 3
q

Sf
k
(xi), k ∈

[17, 18.25, 20, 21, 21.75, 22.25]). The triangles and vertical lines plot the adjusted predicted mean for

a latent model and ±3 adjusted standard deviations (E(2)
D [f

(L)
k (xi)] ± 3

q
Var

(2)
D [f

(L)
k (xi)]).
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Fig. 6. These graphs are the same as shown in Figure 5, with three additional luminosity curves that
were predicted by Galform. The predictions were based on dark matter specifications that were not
included within our original experimental design and analysis. Notice that our adjusted intervals per
luminosity point tend to overlap the new data and differ from the original range of outcomes.
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via emulators which are a function of µβ , µǫ(x), ΣM{β}, ΣM{ǫ(x)}, ΣR{β}, and ΣR{ǫ(x)}.
Thus, a priori,

E[f (L)(x) − f (cj)(x)] = 0

Var[f (L)(x) − f (cj)(x)] = 2(g(x)ΣR{β}g(x)T + ΣR{ǫ(x)})

Provided posterior assessments of ΣR{β}, and ΣR{ǫ(x)} from Section 7, we obtain poste-
rior estimates for the difference between the latent and a realized model as well. Second,
approaches that rely only on summary statistics for multi-deterministic simulations may
over or under estimate model uncertainty. For example, the sample variance may under
estimate model uncertainty because it does not account for any variation associated with
the underlying mean M{f (x)} of the computer model.

The uncertainty of the latent model associates specifically with the system condition.
In this paper, we made comparisons between the affect of a system condition on computer
model outcomes to the influence of a random effect in a mixed statistical model. However,
we choose not to emulate the results from a multi-deterministic computer model using a
mixed model for two fundamental reasons. First, a mixed statistical model requires the
assumption that multi-deterministic models results per input x are fully exchangeable, and
we were not willing to make this strong assertion. Secondly, for moderately large m, n(c),
and column-dimension p of x, fitting a simple random intercept model with g() = [1 x]
would press the memory limits in most standard computers. Hence, the methods presented
in this paper do not only preserve the limits of expert judgments by relying on SOEF rather
than fully exchangeable results, they also require minimal computational power to complete.

A. Generalized Least Squares

For ease in explanation, consider q = 1. Let K represent the correlation matrix for the
computer model inputs; F (j) be an n(c) × q matrix that contains the sequence of outcomes
in matrix form for condition j; and G denote the the matrix of inputs that are transformed
according to g(x), where each row i equals g(xi). Given the Cholesky decomposition K =
QT Q, we transform both G and F (j) by the Q−T where

˜F (j) = Q−T F (j) G̃ = Q−T G. (A-1)

We then fit

f (cj)(x) = g̃(x)β + ǫ(x), Var[ǫ(x)] = Σǫ (A-2)

based on ˜F (j), where g̃(x) equals the row of G̃ corresponding to x, β(j) is a r × q vector of
model coefficients for condition cj ; ǫ(j)(x) is a q × q matrix of error terms for condition cj ;
Σǫ is a q × q variance matrix for ǫ(j)(x) that is independent of both x and c.

The advantage for using GLS is that the variance matrix for all error terms is diagonal
(the off-diagonal elements are zero). When q > 1, we may apply the same method for the
vectorized version of F (j). In turn, K is n(c)q × n(c)q and characterizes the correlation
between model outcomes within and between runs; and, G has n(c)q rows.
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